Abstracts of AAPA Poster and Podium Presentations

Risky business: an evolutionary perspective on placental nutrient transport and postpartum hemorrhage.

ELIZABETH T. ABRAMS1 and JULIENNE N. RUTHERFORD2. 1Department of Anthropology and 2Department of Oral Biology, University of Illinois at Chicago.

Postpartum hemorrhage (PPH), the leading cause of maternal mortality worldwide, is responsible for 35% of maternal deaths. Proximately, PPH results from the failure of the placenta to separate from the uterine wall properly, most often because of impairment of uterine muscle contraction. However, despite its prevalence and its well-described clinical manifestations, the ultimate causes of PPH are not known and have not yet been investigated through an evolutionary lens. We argue here that vulnerability to PPH stems from the uniquely invasive nature of human placentation. The human placenta actively causes uterine vessels to undergo significant morphological and functional transformation in order to provide the developing fetus with a high plane of maternal resources; compared to other mammals with hemochorial placentation, the degree of this invasiveness and transformation in humans is unique. We argue that the particularly invasive nature of the human placenta increases the possibility of delays or difficulties in placental separation and therefore increased blood loss at parturition. We furthermore review both genetic and behavioral adaptations that may have evolved to mitigate the risk of PPH across human history. Significant financial support was provided by Wenner-Gren (Abrams and Patil), the Center for the Integrated Study of Animal Behavior at Indiana University (Rutherford). NIH R01 R022022 and P51 RR1936 (Tardif).

The longevity of phenotypic signatures of hybridization in descendent populations.

REBECCA R. ACKERMANN. Department of Archaeology, University of Cape Town.

Hybridization may have played a substantial role in shaping the diversity of our evolving lineage. Although recent genomics evidence has shown that hybridization occurred between AMHS and Neanderthals, it remains difficult to pin down precisely where and when this gene flow took place. Investigations of the hybrid phenotype in primates and other mammals are providing some insight into both, revealing evidence of hybridization in the Middle East and nearby regions circa 100kya. However, an impediment to precisely delineating the timing of hybridization (both its start and cessation) remains: we don't know how long hybrid skeletal traits persist in the absence of continued gene flow, and therefore it is not clear whether observed hybrid phenotypes are evidence of recent or much earlier hybridization events. This problem is exemplified by the child skeleton from Lagar Velho, Portugal, which has been argued to reflect mixed ancestry despite living ~200 generations after the last known existence of Neanderthals in the region. Is this possible? Research in both plants and animals suggests that it is: 'new' variation that enters a system through gene flow can persist for a considerable amount of time – even for hundreds of generations. This is especially true if the traits are not linked to fitness. Although data for long-term, evolutionary time frames do not exist from primates, ongoing work in a hybridizing captive baboon colony also supports the conclusion that traits associated with hybridization persist into subsequent (recombined) generations. This has significant implications for interpreting the hominin fossil record.

Joint moments in forefoot versus rearfoot strike running.

BRIAN ADDISON, LAUREN WHITE, ADAM DAOUD and DANIEL LIEBERMAN. Department of Human Evolutionary Biology, Harvard University.

This study focuses on the differences in joint torques between shod and minimally shod runners during both rear-foot-strike (RFS) and fore-foot-strike (FFS) gaits. Recent evidence shows that habitually shod runners are more likely to RFS and that habitually unshod or minimally shod runners are more likely to FFS, but published data on lower-extremity joint torques during running has largely been confined to shod runners with RFS gaits. We hypothesized that FFS gaits would result in higher torques about the ankle during the beginning of stance, even though the magnitude of loading is less, because FFS landings involve controlled dorsiflexion. Ten subjects able to both FFS and RFS ran at 3.5 m/s in four conditions: shod-RFS, shod-FFS, minimally shod-RFS, minimally shod-FFS. Using force-plate and 3D kinematic data, an inverse dynamics analysis calculated lower-extremity joint torques in the sagittal plane for all experimental conditions. The results show marked differences between RFS and FFS, with higher torque magnitudes about the ankle in FFS than RFS, but greater torque magnitudes about the knee in RFS than FFS. However, the results also indicate that torque rate may be a more important influence on performance differences than torque magnitude. Funding for this study was provided by the Hintze Charitable Foundation and VibramUSA.
Musculoskeletal stress markers and body mass index.

GINA AGOSTINI. Department of Anthropology, University of Massachusetts, Amherst.

Musculoskeletal stress markers (MSM) are commonly used to assess activity patterns in past populations, typically related to habitual action. While MSM analysis is common in bioarchaeology, testing of this method using modern known populations or recorded occupational data is limited. In addition to activity, MSMs also correlate to sex, age and body size. The goal of this project was to assess the relationship between MSMs and an additional characteristic: weight. A sample of 184 white males of known age, stature and weight was divided into three BMI classes: underweight, normal weight and overweight. Thirteen MSMs were evaluated on both humeri and the left and right femurs, and were scored according to standardization techniques presented by Mariotti et al. (2007). Results of an ANOVA showed a significant effect of age on the left and right deltoid tuberosities and the gluteal line. An effect of BMI was reported only for one location: the left medial bicipital groove. However, subsequent t-tests found no difference in MSM expression between BMI classes. These null findings are surprising, given that obesity has been significantly linked to biomechanical modifications in walking and sit-to-stand strategies, as well as increased muscle strength. They also contrast with results of a cross-sectional analysis conducted on the same sample which revealed a significant relationship between BMI and increased mediolateral dimensions of the proximal femur and both humeri. Because long bone cross-section is an activity-used technique in activity assessments, this deviation warrants further investigation.

A''bone''ment: the reconciliation between MNI and MLNI in determining the population count of the death assemblage of the Saint Stephen's collection from Jerusalem.

HIBA AHMED, KELLY DAVIN and SUSAN SHERIDAN. 1Department of Anthropology, University of Notre Dame.

The purpose of this study is to obtain a more accurate count of the number of individuals for the death assemblage from St. Stephen's Monastery in Jerusalem using MLNI. This method is argued to be a more accurate way of estimating the total number as compared to methods such as MNI, NISP, LI, etc. In this study, the calcaneus, distal femur and talus, were chosen to calculate MLNI because they were the most represented bones. After separating out the fragments, elements of all three bones were sided, seriated, and measured. The bones were visually pair matched according to similarities between key landmarks, features, and paleopathologies. The resulting number of pair matches for each bone was used to calculate MNI and MLNI.

The calculated MLNI for the Saint Stephen's Collection was 214 using the calcaneus, 544 using the distal femur, and 226 using the talus. The numbers generated from the calcaneus and talus were more accurate than the MLNI derived from the femur due to the limitations of the original burial site. Also noteworthy is the effect of limited pair matching on MLNI calculation. The limited number of pair matches found for all three elements caused the high MLNI estimates, which are larger than the NISP: the supposed upper limit. Nevertheless, we found that the tarsal bones provide a more realistic MLNI estimate than long bones because of greater practicality for pair matching, due to both the calcaneus and talus' numerous articulations and greater degree of preservation. This study was funded by the Undergraduate Research Opportunity Program (UROP) at the University of Notre Dame, grant numbers 3103 and 3125.

New excavations at the Late Miocene hominoid-bearing locality of Can Llobateres 1 (Valles-Penedes Basin, Catalonia, Spain): Preliminary results.

DAVID M. ALBA1, ISAAC CASANOVAS-VILAR1, SALVADOR MOYA-SOLA2, SERGIO ALMEJDA2, JOSEP M. ROBLES1,4 and JOSEP M. MARM1. 1Institut Català de Paleontologia, Universitat Autònoma de Barcelona, 2ICREA at Institut Català de Paleontologia and Unitat d'Antropologia Biologica, Universitat Autònoma de Barcelona, 3Department of Vertebrate Paleontology, American Museum of Natural History, 4FOSSILLIA Serviços Paleontológicos i Geológicos, S.L.

The Late Miocene (ca. 9.7 Ma) site of Can Llobateres (Valles-Penedes Basin, Catalonia, Spain) yielded the most abundant and complete remains of the fossil great ape Hispanopithecus laietanus. Most of the hominoid remains came from the lower levels (CLL1, early Vallesian, MN9), although a partial skeleton was recovered from the upper level (CLL2, late Vallesian, MN10) during the 1990s. In 2010, after almost 20 years of inactivity, paleontological excavations were resumed at CLL1, with the aim to enlarge the sample of hominoid remains, as well as to gather more geological, taphonomic and paleoecological data. In order to reach the fossiliferous levels, about 6 m of overlying and nearly sterile sediments had to be removed from a surface of about 100 m² with the aid of a bigger. This allowed us to recover abundant and well-preserved plant remains from several layers situated slightly above the CLL1 classical levels; these macrovegetal remains will provide a wealth of relevant data for reconstructing the habitat inhabited by Hispanopithecus. Regarding the vertebrate levels, no systematic excavation was performed, although different levels from three different spots were excavated and screen-washed, in order to evaluate their richness regarding micro- and macroremains. These samplings led to the recovery of more than a hundred large mammal remains (including a partial equid skeleton), as well as abundant small mammal remains, from several levels. Thus, although no hominoid remains were recovered, the preliminary results are very promising for the upcoming campaigns, when systematic excavations will be performed in this site.

This work has been supported by the National Geographic Society (8750-10), the Spanish Ministerio de Ciencia e Innovación (CGL2008-0325/BTE, and RYC-2009-04533 to DMA), the Generalitat de Catalunya (Grup de Paleoprimalògiques i Paleontologia, 2009 SGR 754), and the Fulbright Commission (2008 BFUL 00049 to SA).

The etiology of Porotic Hyperostosis and Spina Bifida Occulta in a high latitude hunter-gatherer.

MARTA P. ALFONSO-DURBRUTY1,2, FLAVIA MORELLO2 and ELISA CALAS1. 1Department of Anthropology, University of Pennsylvania, 2Department of Anthropology, State University of New York, Binghamton, 3Universidad de Magallanes, Instituto de la Patagonia, Centro de Estudios del Hombre Austral, Punta Arenas, Chile, 4Departamento de Antropología, Universidad de Chile.

Porotic hyperostosis (PH) and spina bifida occulta are among the most common stress-markers and congenital defects found in skeletal collections. Although PH is commonly regarded as the result of iron-deficiency anemia, only megaloblastic anemias (genetic or acquired) lead to the medial expansion that results in PH formation. Spina Bifida, on the other hand, has a complex etiology that includes genetic and environmental factors. In this case-study, we present evidence of both lesions in a high latitude hunter-gatherer from Cabo Nose, Tierra del Fuego, Chile (AD 1030 ± 80). The co-occurrence of these conditions, the type of diet, and the environment occupied by this individual suggests that a deficiency in vitamin B9 (folate) is the most likely explanation for the presence of both conditions. This case-study contributes to the ongoing discussion regarding the etiology of Porotic Hyperostosis and spina bifida occulta. This study suggests that an analysis of co-occurrence among high-latitude populations may clarify the etiology of both conditions.

American Journal of Physical Anthropology
AAPA ABSTRACTS

Getting better with age? Testing the utility of Transition Analysis methods for forensic skeletal material of Hispanic origin.

BRETT F. B. ALGEE-HEWITT and REBECCA J. TAYLOR. 1Department of Biomedical Sciences, Grand Valley State University, 2Department of Anthropology, University of Tennessee.

The multiple-trait, component scoring approach of Transition Analysis (TA) is a promising alternative to conventional age-estimation methods for individual, undiagnosed and fragmented skeletal cases. TA provides measures of statistical certainty and flexibility in the use of indicators, and shows potential for its applicability to diverse populations. We previously demonstrated that the Traditional TA method performed very well for positively identified modern American forensic skeletal cases: age-estimates fell within an acceptable range of the true ages, were consistently repeated, and were not subject to significant inter-observer error in scoring. We also showed that the ADBOU age-estimation software improves the ease of implementing the statistical procedures, calculating the age estimates, and graphically displaying the results. Ongoing work on the Expert TA method of scoring multiple non-traditional, mostly presence-absence, age-progressive traits similarly produced accurate and repeatable adult age estimates. Refined testing of both TA methods is warranted, therefore, especially for modern minority populations. We present results for estimating age-at-death using both TA methods for a multi-collection sample of mixed-sex/age Hispanic skeletons drawn from reference populations of forensic significance. We also report on inter-observer error and evaluate the ease of interpretability of the trait definitions and ADBOU scoring manual for cases of Hispanic identity. This project promises improvements to the quality and ease of obtaining age estimates for forensic cases by (1) evaluating the applicability of these methods to an untested demographic group, (2) providing tests of interpretability, repeatability and error, and (3) by obtaining reference materials for use as priors. This study was funded in part by a William M. Bass Endowment from the University of Tennessee, Knoxville.

Age differences in social support and health among elderly Kuwaitis.

YAGOUB Y. AL-KANDARI1 and DOUGLAS E. CREWS. 1Kuwait University, 2Department of Anthropology, The Ohio State University.

We report here data on social support elements and health status differences across three age groups of Kuwaiti elderly (60-69, 70-79, and 80 years and above). Social support elements considered include total social support scale, frequency of contact with relatives and friends, strength of these contacts, religiosity, number of children, and number of children living with the elderly. This study evaluates health status in terms of systolic and diastolic blood pressure, glucose levels, and self-reported somatic symptoms, satisfaction with current health, and health over the last year. Differences by education and socioeconomic status are considered among the three age groups of the elderly. Examined for this study were 1,427 adults (472 men and 955 women) aged over 60 years representing all six governorsates in Kuwait. Respondents were sampled from multiple sociocultural and economic backgrounds. Data collection consisted of obtaining informed consent, completing a questionnaire and an oral interview with the participant along with aid from the person most closely related to the interviewee currently in the home. The questions, using sociocultural/demographic data, medical history and self-ratings of health. Questionnaires, along with assessments of several aspects of physical health were completed. A ten-point scale was used to assess religiosity. The Social Support Scale (SSS), A Frequency of Contact Scale, and the Strength of Relations have been used. Self-rated scales of general health and health in the past year were used. A Somatic Symptoms Inventory (SSI) was used too. Systolic and diastolic Blood Pressure measurements were completed. SPSS was used all analyzes. The data show that there are important social support elements in all of the age groups. Social support, frequency of contact, strength of relationships, number of children living with the elderly, and religiosity are shown to influence the health and well-being of elderly. Social support elements are shown to be higher in the oldest age group. Social support, frequency of contact, and strength of relations are related to somatic symptoms and systolic and diastolic blood pressure, while religiosity is related to somatic symptoms and systolic blood pressure. The factor of children living with the elderly in the same household was found to be related to, and predicted, somatic symptoms in all age groups.

Scaling of forearm muscle weights in primates.

KARI LEIGH ALLEN1, DAMIANO MARCHI1 and ADAM HARTSTONE-ROSE2. 1Department of Evolutionary Anthropology, Duke University, 2Department of Biology, Pennsylvania State University at Altoona.

Among primates, it has been proposed that the differential development of the forearm flexor compartment is connected to substrate use. Likewise, the projection of the medial epicondyle is thought to reflect this differential developmental process. We examined the scaling properties of forearm muscle wet weights to test the hypothesis that the total masses of various muscle compartments are differentially developed among primates. The forearms of six strepsirhine (Eulemur fulvus, Lemur catta, Varecia rubra, Hapalemur griseus, Galago senegalensis, Nycticebus coucang) and seven haplorhine (Callithrix jacchus, Macaca sp., Papio sp., Erythrocebus patas, Hylobates lar, Gorilla gorilla, Pan troglodytes) primate specimens were used. Forearm muscle measurements and muscle wet weights were measured. Scaling properties of each muscle compartment within the forearm were examined via ordinary least squares regression. The total mass of the flexor and extensor compartments were both found to scale isometrically on total forearm muscle mass, with little unexplained variance (p<0.0001, r²=0.99). Likewise, the mass of the wrist flexor muscles both flexors both scale isometrically to total forearm muscle mass (p<0.0001, r²=0.98). The mass of the total flexor compartment and the mass of the digital flexors both fail to significantly explain the variance in median epicondyle projection, when body size is taken into account. It is concluded that the relative masses of the wrist and digital flexors do not predictably vary with substrate use. Locomotor differences in epicondyle development likely serve to reorient the muscles around the joint, rather than reflect any differential development of muscle mass.

Large-hominoid remains from the Middle Miocene locality of Castell de Barberà (Valles-Penedès Basin, Catalonia, Spain).

SERGIO ALMÉCILLA1,2, DAVID M. ALBA2 and SALVADOR MOYA-SOLÁ2. 1Department of Vertebrate Palaeontology, American Museum of Natural History, 2Institut Català de Paleontologia, Universitat Autònoma de Barcelona.

The Middle Miocene locality of Castell de Barberà (late Aragonian, MN8, ca. 11.5 Ma), located within the Valles-Penedès Basin (Catalonia, Spain), is one of the few European localities that have yielded both pliopithecoid and hominoid remains. Whereas pliopithecoids are represented by dentognathic remains, apes are only recorded by a very restricted sample of unpublished postcranial remains—an upper canine from this locality, traditionally attributed to a female hominoid, does in fact belong to a male pliopithecid. We provide a description and functional interpretation of the three available homi-
noid remains from Castell de Barbera: a pollical proximal phalanx (IPS4333), a partial pollical distal phalanx (IPS4335) and a partial mid-discal humeral shaft with no epiphysis (IPS4334).

The latter permits us to infer a body mass of about 50 kg, being tentatively attributed to a male specimen of Dryopithecus fontani (as opposed to the smaller specimen from Saint Gaudens, which would correspond to a female individual). This specimen, together with a partial femur from Abocador de Can Mata tentatively attributed to the same taxon, are indicative of a significant quadrupedal component. The pollici
cerns specimens more closely resemble other Miocene apes than extant great apes, being suggestive of a significant degree of powerful grasping assisted by the thumb during above-branch quadrupedal locomotion.

Toward assessing the locomotor repertoire of D. fontani was probably more similar to that of the contemporary Pierolapithecus catalaunicus, than to that of the more suspensory Hispanopithecus laeotanus from the Late Miocene.

This work has been supported by the Spanish Ministerio de Ciencia e Innovacio

tion (CGL2008-00325/BTE, and RYC-2009-04353 to DMA), the Generalitat de Cata

The role of biomes in the settlement of the Americas: testing Beaton’s and Dixon’s hypotheses.

TATIANA F. ALMEIDA1, WALTER A. NEVES1, DIOGO MEYER1 and DANILIO V. BERNARDO1. 1Institute for Genomic Biology, University of Illinois, 2Department of Anthropology, University of New Mexico.

Until recently, the settlement of the Americas was seen as the product of a "bow wave" human expansion from north to south. Under this scenario, the archaeo

deal scales are much more conditioned by the ecological attributes of the macro environmental zones (biomes) involved than by linear geographic distances, an idea also espoused by Dixon (2001). In this study we test Beaton’s and Dixon’s ideas, as applied to the Americas, by investigating if the genetic structure of recent Native American populations is influenced by the biomes they occupy. In order to do this, three different kinds of matrices were constructed based on the frequency of mtDNA and microsatellites from Native American groups: one formed by the genetic distances (Fst) among the populations, a second one formed by the geographic distances among the same populations in kilometers, and a last one formed by their "physiographic" distances. These matrices were compared by Pearson’s correlation followed by Mantel and partial Mantel tests. The results obtained showed that in general the different biomes did not play a significant role in the Native American genetic structuring, at least as they are distributed today. FAPESP grants 04/01231-6, 08/51637-0, 08/58729-8 and CNPq grant 300818/ 2007-6.

Hormones, musculature, and strength across the life course of men from a rural Polish village.

LOUIS CALISTRO ALVARADO. Department of Anthropology, University of New Mexico.

The steroid hormone testosterone has been hypothesized to regulate trade-offs between reproduction and survival in males through the management of sex

ally dimorphic muscle mass. Male physiol

ogy supports higher testosterone levels when ecological conditions are favorable so that musculature is augmented to increase competitiveness for mates, while testosterone production is down regulated when energetic stress is experienced to facilitate a diminished, thrifter phenotype. An underlying assumption of this hypothesis is that a tightly linked relationship persists between males’ testosterone levels and musculature. Additional formulation of life history trade-offs specific to human males that takes into account the labor demands of men’s productivity may provide further insight into the relationship between testosterone and body composition. For men who subsist through the efforts of intensive labor, musculature and strength across the life course are predicted to be maintained to a greater extent than testosterone levels. The association between testosterone, musculature, and strength was examined in a rural farm village in which men’s work activities are often associated with demanding manual labor. Data were collected from 29 Polish men, ages 20-80 with a median age of 43 years. Grip and chest strength were assessed using a dynamometer, and musculature was esti

mated using arm circumference, adjusted for body fat. Testosterone levels were obtained from morning urine samples. Arm circumference, grip and chest strength were negatively and significantly associated with age. Results from hormone analyses are forthcoming, but age-related decline in testosterone is predicted to be more pronounced than either age-decline in strength or musculature. This research was supported by the Graduate Research Fellowship Program from the National Science Foundation, 2008-2011.

Gastrointestinal microbial community composition and habitat structur

in howler monkeys (Alouatta pigra).

KATHERINE R. AMATO1, CARL J. YEOMAN2, NICOLETTA RIGHINI1, ANGELA KENT1, ALEJANDRO ESTRADA2, DAVID MUNOZ2, REBECCA M. STUMPE2, BRYAN WHITE2, KAREN E. NELSON3, MANOLITO TERRAALBA3, MARCUS GILLIS4 and STEVEN R. LEIGH1. 1Institute for Genomic Biology, University of Illinois, 2Estacion de Biologia Animal Los Tuxtlas, Instituto de Biologi

a Universidad Nacional Autonoma de Mexico, 3U. Craig Venter Institute.

Howler monkeys (Alouatta sp.) are among the most folivorous of the New World monkeys and have highly flexible diets. However, despite the fact that groups of howlers exhibit distinct diets depending on spatial and tempo

ral patterns of resource availability, activity patterns are consistent across howler groups and species. High levels of fiber and toxins in leaves make gut microbial fermentative activity essential to howler nutrition, and based on studies with other mammals, it is possible that differences in gut microbial community composition allow groups of howlers in different habitats to take advantage of distinct resources to fuel the same activities.

To investigate variation in gut microbial community composition within a species, we collected fecal samples from five groups of black howler monkeys (Alouatta pigra) in Mexico over an eight week period (May-July 2009). Two of these groups inhabited a continuous, tall rainforest. The other three inhabited a fragmented, tall rainforest; a continuous, semi-deciduous forest; and a rehabilitation center.

Following the isolation and purification of microbial DNA from all samples, we used community fingerprinting (ARISA) and high-throughput sequencing of the 16s ribosomal RNA gene (V1-V3) to describe the microbial community structure in each group.

Our sequencing resulted in >2.6 million reads from 33 individuals, giving us unprecedented sequencing depth. Preliminary analyses indicate that differences in gut microbial community composition are related to the environment each group inhabits. Basic ecological data suggest that these differences are a result of diet composition. Differences in host monkey microbial communities may have important implications for primate adaptation, evolution, and conserv

ation. This study was funded by the University of Illinois and NSF 0935374.
Reconstructing the habitat preferences of Ardipithecus ramidus with paleosol and tooth enamel carbon isotope analysis:

Stanley H. Ambrose1 and Giday Woldegabriel2. Department of Anthropology, University of Illinois, Urbana,2Earth Environmental Sciences Division, Los Alamos National Laboratory, New Mexico.

Paleosol (fossil soils) were sampled along a 7 km W-E transect of the Aramis Member of the Sagantole Formation in the Middle Awash Valley. Paleosol carbon isotope ratios are interpreted as reflecting floral habitats with 30% to 70% C4 grass biomass, representing woodlands to wooded grassland. Pedogenic carbonate carbon and oxygen isotope ratios increase from west to east, reflecting more grassy drier grassland. Pedogenic carbonate carbon and oxygen isotope ratios increase from west to east, reflecting more grassy drier habitats on the east, where Ardipithecus ramidus fossils are absent. These data are consistent with diverse lines of geological, palaeomagnetic, and palaeoecological evidence for the character and distribution of floral habitats associated with Ardipithecus.

Cerling et al. (Science 328:1105 [2010]) presented a new model for interpreting soil carbon isotope data from Aramis, and concluded that Ardipithecus occupied mainly wooded grassland to grassland habitats with less than 25% trees and shrubs, with narrow strips of riparian woodlands. If their model were correct then all previously published paleosol carbon isotope-based reconstructions of tropical and sub-tropical environments would be invalidated. However, rejection of nearly three decades of research is unnecessary. Their modern reference is based mainly on soils formed on Kalahari sands, and Australian sands that have biased preservation of woody plant carbon (Wynn and Bird, Tellus 60B:610, 615-617 [2008]). Therefore their model is inapplicable to fine-grained paleosols formed on volcanic parent materials like those of most hominid sites in Rift Valley settings. We thus stand by our conclusion that the carbon isotope ratios of Aramis Member paleosols show that the preferred habitat of Ardipithecus was wooded grassy woodland.

X-chromosomal genetic diversity and linkage disequilibrium patterns in American populations.

Carlos Eduardo G. Amorim1, Sijia Wang2, Andrea Rita Marrero1, Andres Ruiz-Linares3, Francisco Mauro Salzano2, and Maria Cátira Bortolini1, 3Programa de Pós-Graduação em Genética e Biologia Molecular e Desenvolvimento, Instituto de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Brazil, 2The Galton Laboratory, Department of Biology, University College London, London, United Kingdom.

Understanding patterns of linkage disequilibrium (LD) is the basis for the design of association studies. It also provides information on populations' evolutionary history. We report X-chromosomal LD patterns in Amerindian (Kogi, Wayuu, and Zenu) and admixed Latin American (Central Valley of Costa Rica and Southern Brazil Gaúcha) populations. Short tandem repeats (STRs) widespread along the X-chromosome were investigated in 258 chromosomes. Diversity indexes were estimated for each population and the level of LD was inferred with an exact test. The Amerindian populations presented lower genetic diversity and a higher proportion of loci in LD than the admixed ones. Two haplotype blocks were identified restricted to the Amerindians. The first involved DXS8051 and DXS7108 in Xp22.22 and Xp22.3, while the second, found only among the Kogi, included eight loci in a region between Xp11.4 and Xq21.3, for which a network was built, indicating the action of genetic drift during the evolutionary history of this population. In accordance with previous work, human isolates, such as the Amerindian tribes, seem to be a suitable choice for the implementation of association studies due to the wide extent of LD that can be found in their gene pool. The low proportion of loci in LD found in both admixed populations studied here could be explained by events related to their history and similarities between the allele frequencies in the parental stocks.

This study was funded by the National Institute of the Ministry of Science, Technology, and Innovation of Brazil (CNPq). The authors would like to thank the residents of the Kogi and Zenu communities for their kindness and support. The Kogi DNA was collected by Dr. Fernando de Souza and Dr. Carlos S. de Souza of the Instituto de Genética (UFRGS). The Zenu DNA was collected by Dr. Carlos S. de Souza.

Bioarchaeology and taphonomy of human remains from Francisco de Borja, a historic cave site in N. Mexico.

Cheryl Anderson, Debra Martin, Jennifer Thompson, and Richard Brooks. Department of Anthropology, University of Nevada, Las Vegas.

San Francisco de Borja is a cave site in Chihuahua, Mexico that was excavated by Richard and Sheilagh Brooks in the 1950s and is now curated at UNLV. This site appeared to be a place where mingled remains were secondarily interred. During the historic period, it is likely an ancestral group to the Tarahumara culture. A reanalysis of these remains was undertaken in order to more fully investigate some of the initial findings suggesting perimortem processing. In addition to estimating the minimum number of individuals, age, sex, and pathological status were undertaken. The taphonomy of the burial site was reconstructed using original field notes. Analyses indicate that a minimum of 11 adults and 7 subadults were interred at this site. The MNI is based on the presence of the left femora. Evidence for perimortem sharp force trauma was found on one adult. Teardrop fractures, caused by hyperextension of the neck, were found in two adult second cervical vertebrae. Perimortem breakage was also found on the base of an occipital in two adult individuals. Many of the bone fragments show breakage patterns that suggest perimortem processing. Additionally, several skeletal elements showed signs of burning even though no evidence for fire was found within the cave. This suggests that the cave was a secondary burial site. Three competing hypotheses are discussed in light of these data that include (1) violence against enemies and display of the bones as trophies, (2) veneration of respected community members, or (3) sacrificial victims.

3-Dimensional hominin whole body and facial reconstructions in European museums.

Kari Anderson and Maciej Henneberg. Biological Anthropology and Comparative Anatomy Research Unit, School of Medical Sciences, University of Adelaide, Australia.

Displaying hominin representations in museums introduces the public to human fossil evolution. 3D life-sized representations are of three kinds, either a reconstructed face, bust or the entire body. There is little information about the types of hominin representations, their context or the range of taxa that are in museums. In 2006 European institutions (n = 48) were visited in 10 countries. Out of 601 representations that were observed the majority were anatomically modern humans, only 94 were of earlier hominin taxa, these were present in 11 museums. They comprised of 68 complete bodies, 24 busts and 2 heads. Neander- dals were the most common (n = 62), followed by generalised australopithecines (n = 5), Homo erectus (n = 5) and A. afarensis and H. habilis each had 4 representations, while A. africanus, A. boisei, gracile and robust australopithecines and H. ergaster had 2 representations each, and Kenyanthropus platyops, H. heidelbergensis, H. rudolfensis, and A. anamensis were represented by 1 specimen each. The Hes- sisches Landes-Museum in Darmstadt, Germany had the largest range of hominin taxa (n = 9), while the Natural History Museum, London had 2 taxa only (Neandertal and an Australopithecus). Specimens were displayed with associated contextual information (48%) or in a series (33%), the others were found in solo displays (5%), in complete context (1%) or in storage (13%). Curators prefer to display representations so that variation can be compared. Although these displays are meant to help the public visualise similarities and differences of paleoanthropological finds, some of them have been made many years ago and may not convey the current knowledge. This study was funded in part by the Walter and Dorothy Duncan Trust.
The pathological consequences of cranial vault modification: an analysis of human skeletal remains from Cuzco, Peru.

VALERIE A. ANDRUSHKO and DIANA LYNN MESSER. Department of Anthropology, Southern Connecticut State University.

Cranial vault modification, the intentional reshaping of the head, was practiced by ancient populations throughout the New World to symbolize group affiliation, beauty, or status. This practice could only be carried out on children while the cranial bones were still malleable, and researchers have long debated whether this practice detrimentally affected the children whose heads were shaped at an early age. In this study, we examine the possible pathological consequences of cranial vault modification through an analysis of 423 individuals from archaeological sites located in and around Cuzco, Peru. The sites included in this study date from the Early Intermediate Period (200 B.C. – A.D. 600) to the Late Horizon (A.D. 1476 – 1532) and include both Inca and pre-Inca burials.

Successful identification of fossil-bearing sedimentary deposits in the field typically requires expert knowledge in geology and anatomy, the sharp eyes of a well-trained team of fossil collectors, and often, some degree of luck. Since most of our knowledge of Paleocene and Eocene mammals comes from enormous sedimentary basins in the American West that are typically thousands of square kilometers in extent, it is clear that one way to reduce the role of serendipity would be to develop predictive models. Recent advances in the fields of Geographic Information Systems and Remote Sensing have the potential to increase the likelihood of locating productive fossil-bearing deposits by identifying subtle combinations of geological, geospatial, and remote sensing features that distinguish between productive and non-productive localities.

Utilizing a GIS fossil database, detailed geological mapping, and remote sensing imagery from the ETM+ sensor on the Landsat 7 satellite, we have developed an artificial neural network model for identifying sedimentary deposits with a high potential for containing mammalian fossils in Eocene rocks of the Great Divide Basin. The model identifies patterns of features that are common to fossil bearing deposits, and uses these features in a “fuzzy” fashion to classify other areas. The model’s output provides a classification of unvisited sites within the study area along with associated probabilities of these sites being productive. This neural approach that we have developed in the Eocene of Wyoming has broad implications for many other types of anthropological field research that also involve unique geospatial sets of features.

A histological reconstruction of crown initiation and formation using the developing dentition of Post-Medieval known-age children.

DANIEL ANTOINE¹, SIMON HILLSON² and M. CHRISTOPHER DRAIN³. ¹The British Museum, London; ²Institute of Archaeology, University College London; ³Department of Cell and Developmental Biology, University College London.

Most of our understanding of the timing of crown development comes from radiographic studies and anatomical collections of known age children but few researchers report precise initial mineralization times for permanent teeth. This is in part due to the difficulty of x-raying or dissecting the early stages of dental development, represented by very small amounts of poorly mineralized tissue. Histological analysis of developed teeth can also be used to reconstruct the chronology of crown development by recording the incremental growth structures contained within the enamel. This approach has the advantage that the early crown formation is recorded in the enamel above the dentine horn and can be studied in unawned or developing teeth. In order to investigate crown initiation and formation times, we sectioned the developing permanent dentition of five 18th century children aged between 2 and 4 years, from the crypt of Christ Church, Spitalfields, London. 100µm thin sections were used to record enamel cross-sections and the chronology of accentuated striae, allowing us to reconstruct with some precision the timing and sequence of crown formation. The results are comparable to other histological studies but the absolute initiation times of the lower/upper first molars (0.16/0.12 years before birth), lower/upper central incisors (0.17/0.23 years) and the lower canines (0.22 years) were earlier than previous estimates, whereas some of the cusp formation times were greater than expected. The results also confirm that, like the dentitions of great apes, there is an overlap in crown formation between M1 and M2 (0.33 years).

This study was funded by the Wellcome Trust (067257/2/02/2).

Data archiving as a prerequisite for publication.

SUSAN C. ANTON¹ and CHRISTOPHER B. RUFF². ¹Center for the Study of Human Origins, Department of Anthropology, New York University, ²Center for Functional Anatomy and Evolution, Johns Hopkins University.

As editors of American Journal of Physical Anthropology and Journal of Human Evolution we discuss the pros and cons of data-archiving as a requirement for publication. Currently, most journals do not require such archiving across-the-board. However, editors tend to follow the recommendations of those subfields that require archiving as is the case for molecular anthropology. Archiving published data seems reasonable to check the soundness of results. The availability of electronic “supplemental online material” sections and public archives, such as GenBank, TreeBASE and Dryad, increase the feasibility of requiring data-archiving. And some techniques, such as 3dGM or cladistic analyses, are tricky to evaluate without access to original data. However, other issues are in play. At odds are the rights of individual researchers for subsequent use of their data and the scientific community’s interest in open access. Perhaps data should be embargoed for some time or exemptions to archiving be allowed? What should be archived is contentious. Should we archive only new data in a study or all the comparative data necessary to recreate results, and should we include only the genetic sequences, metrics, or nonmetrics, or the specimens/fossils from which these were collected? There are unintended consequences of
the re-use of open access data as well. Combining data may be inadvisable for some data and analyses. We suggest the input and coordination of scholarly journals and professional governing bodies, such as the AAPA, are critical to the consideration of these and other aspects of whether and how to implement permanent data-archiving.

Variation in vocal structure reflects group history in primates.

LUISA F. ARNEDO1, JORGE A. AHUMADA2, JANETTE W. BORE2, CHARLES T. SNOWDON4, FRANCISCO D. C. MENDES5 and KAREN B. STRIER1.

1Department of Anthropology, University of Wisconsin – Madison. 2TEAM Network, Conservation International. 3Department of Zoology, Michigan State University. 4Department of Psychology, University of Wisconsin – Madison. 5Departamento de Processos Psicologicos Basicos, Universidade de Brasilia.

Acoustical properties of human accents often indicate geographic identity and migration patterns. Similarly, group signature calls can provide information about group membership in other species of vertebrates, but how inter-group acoustic divergence relates to population history is seldom known. We compared long neigh vocalizations emitted by philopatric male and dispersing female northern muriquis (Brachyteles hypoxanthus) to evaluate whether the acoustic properties of individuals’ calls reflect current and/or past group membership. Spectrographic analyses were conducted on 470 high quality long neighs collected between April 2006 and March 2007 from 21 females and 21 males living in three adjacent groups at the Reserva Particular do Patrimônio Natural Pelicano Miguel Abdala, Minas Gerais, Brazil. The acoustic properties of the long neighs correctly classified a higher percentage of males than females in their groups, but both males and females from the group that split more than 20 years ago clustered separately from the two groups that split more recently. A higher proportion of the females were misclassified in their current groups, and females showed higher levels of intra-group variation than the males. This suggests that, despite some convergence, females might retain some of the acoustic properties that characterized the neighbors of their natal groups. Our results suggest that similar to human regional accents and dialects, under certain circumstances, acoustic variation within and between group members can be attributable to patterns of migration and group formation in long lived social animals.

This research was supported by NSF Doctoral Dissertation Improvement Grant (#0621788), The Wenner-Gren Foundation, and The American Society of Primatology.

American Journal of Physical Anthropology

AAPA ABSTRACTS

The FAST pipeline: A bioinformatics pipeline for automated retrieval, processing, and dataset construction for sequence data to infer phylogenetic trees.

CHRISTIAN ARNOLD1,2 and CHARLES L. NUNN3.

1Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig. 2Department of Human Evolutionary Biology, Harvard University.

The construction of phylogenetic trees requires sequence data, yet the manual construction of such datasets is often time-consuming and error-prone. Moreover, due to data heterogeneity in public databases such as GenBank, many sequences may be missed, while others are of poor quality relative to other available data. Steps that are crucial for later analyses, such as the creation of multiple sequence alignments or the identification of an appropriate substitution model, are similarly time-consuming and error-prone when done manually. These concerns are particularly true for large phylogenetic trees.

Here, we describe the FAST pipeline (Fast and Automated Dataset Construction for Tree Inference), which is a bioinformatics pipeline for automated retrieval, processing, and dataset construction for sequence data to infer phylogenetic trees. The pipeline is particularly well suited for multi-genome analyses in conjunction with the program MrBayes, nullifies the aforementioned limitations, and makes it possible to construct higher-quality datasets with hundreds of species and multiple genes with minimum manual effort.

As an example, we applied FAST to the order Primates. The pipeline downloaded over 100,000 sequences and selected over 1750 sequences from 16 different genes for 308 (sub)species relative to other available data. Steps that are crucial for later analyses, such as the creation of multiple sequence alignments or the identification of an appropriate substitution model, are similarly time-consuming and error-prone when done manually. These concerns are particularly true for large phylogenetic trees.

Finally, FAST produced a Nexus file to serve as input for phylogenetic tree inference in MrBayes. In the near future, we envision using the FAST pipeline to produce versions 3 of 10kTrees for primates, and for other mammalian groups that are commonly studied comparatively (such as carnivores or artiodactyls).

This research was supported by the National Science Foundation and Harvard University.

Primates consume functional foods: antioxidant properties of leaves eaten by gorillas and monkeys in Ugandan rainforests.

CLAUDIA M. ASTORINO1,2 and JESSICA M. ROTHMAN2,3.

1Department of Anthropology, The Graduate School/CUNY, New York. 2The New York Consortium in Evolutionary Primatology. 3Department of Anthropology, Hunter College of the City University of New York.

Functional foods are those that contain a component that benefits health beyond having a nutritional effect. Antioxidants are substances that delay or retard reactive oxygen species (ROS) from destroying body tissues. While studies show that human diets contain antioxidants which are beneficial to human health, very little is known about the occurrence of anti-oxidants in the diets of wild primates. The objective of our study was to survey the staple foods (contributing >1% of annual dietary intake) eaten by mountain gorillas (Gorilla beringei) in Bwindi Impenetrable National Park, Uganda, and colobus monkeys (Colobus guereza and Procolobus rufomitratus) in Kibale National Park, Uganda to identify foods with antioxidant properties that may act as functional foods. We assessed antioxidant levels in 27 staple foods from 18% of colobus staple foods displayed anti-oxidant properties similar to Rutin, suggesting that functional foods are important components of primate diets. Although we surveyed only staple foods, at least 31 species of 158 gorilla dietary items are consumed by local human populations for medicinal purposes. These findings suggest that primate foods are functional foods conferring salutary health benefits, despite whether they were deliberately selected for these benefits.

This study was funded by The New York Consortium for Evolutionary Primatology.

Marriage and migration: comparisons of biometric and mortuary data at three Fort ancient villages in southwest Ohio.

BRYAN AUBRY and ROBERT COOK. The Ohio State University-Newark.

The purpose of this project was to obtain biologically relevant information to assess social models of marriage and migration for eleven Fort Ancient populations (located in the Little Miami River Valley in southwestern Ohio). The results for six of these sites are presented here. Dental material was analyzed and both metric and non-metric data were recorded (totaling 2,722 individuals). Non-metric traits were scored according to the ASU system, and dental metrics included the mesiodistal and buccolingual dimensions at the cemento-enamel junction (CEJ) following a modification of Hillson et al. (2005) (outlined in Aubry 2009).

Intrasite biological distances were calculated using a hierarchical clustering model in SPSS to obtain individual distance matrices for each site. Multidimensional scaling (MDS) was used to visualize the placement of individuals in two-dimensional space for comparison with the burial pattern (Permap
11.8 MDS program). Intersite distances were calculated for non-metric traits using Mean Measure of Divergence and for metric traits using R-matrix analysis (provides an estimate of expected genetic heterozygosity for each site). These early results support two existing models. First, biometric data support the multiethnic nature of the sites that blend local Late Woodland and non-local Mississippian populations, identified on the basis of grave construction, associated grave goods, and proximity to distinct features. Second, female outliers identified at each of the sites suggest that intermarriage involved females moving between Fort Ancient villages indicative of marriage alliances, common practices in many ethnographic cases.

Proportions and population history: exceptions to ecogeographic expectations in the Americas.

BENJAMIN M. AUERBACH. Department of Anthropology, The University of Tennessee.

Recent, geographically diverse surveys of New World Indigenous populations predating European colonization have demonstrated comparable morphological variation to Europeans and Africans in many body dimensions. Despite this diversity, correlations between body proportions, shape and size with climatic factors are diminished compared to correlations among Old World populations. Other factors, such as subsistence, may attenuate these relationships, but are difficult to examine in isolation. Moreover, geographically widespread interaction networks, in addition to large population movements, have introduced potential confounding factors to clinal patterns of morphological variation. This study utilizes measurements taken from over 3200 indigenous, pre-contact adult humans from throughout the Americas to examine if population history, based on archaeological evidence and models, shapes morphological variation. All skeletons date from the Holocene (primarily the last 4000 years). Examining body shape, size and proportions derived from skeletal metrics, samples were compared within time periods across the continents and across time periods within regions, with and without climate and subsistence as covariates.

Despite a complex mosaic of morphological change over time, important patterns emerge. All humans from the Americas maintain higher body breadths and masses compared with Old World populations living in similar climatic conditions, possibly reflecting a shared “cold-filtered” ancestry. Within regions such as the Great Plains or the Southeast, variation in intralimb and body proportions reflects archaeological evidence for cultural change or population movement, rather than thermoregulatory-related clines. The analyses indicate population history has been a strong factor in shaping patterns of human morphology in the Americas throughout the Holocene.

This research was supported by funding from a National Science Foundation Collaborative Research Grant (BCS #0962752) and a National Science Foundation Doctoral Dissertation Improvement Grant (#0550673).

Application of phylogenetic comparative methods to the adaptive radiation of Malagasy lemurs.

KAREN L. BAAB1, F. JAMES RohlF2, WILLIAM L. JUNGER55 and JONATHAN M.G. PERRY5. 1Department of Anthropology and IDPAS, Stony Brook University, 2Department of Ecol-ogy and Evolution, Stony Brook University, 3Department of Anatomical Sciences and IDPAS, Stony Brook University, 4Department of Anatomy, Midwest-ern University.

The Malagasy lemurs form a taxonomically, behaviorally, and morphologically diverse radiation within strepsirrhine primates. While molecular clock estimates place their divergence from other strepsirrhines between 60-50 Myr or possibly before the K-T boundary (65 Ma), the fossil record for lemurs is only a few thousand years old. In the absence of a deep fossil record, clarification of the evolutionary processes that occurred during this adaptive radiation requires analytical approaches incorporating phylogeny and branch length estimates as well as morphological and ecological information. In order to explore patterns of morphological diversification in Malagasy lemurs, we collected 3D cranial landmarks from both extant and extinct giant subfossil lemurs.

Results of our phylogenetic principal components analysis (PPCA), which corrects for non-independence in the data due to phylogenetic relatedness, did not differ markedly from traditional PCA results. Phylogenetic generalized least-squares analysis suggested that both size and dietary toughness explain differences in cranial shape along the first few components. Analysis of cranial shape disparity through time (comparing morphological variation within clades to that seen between clades) demonstrated a drop in subclade diversity around 40-50 Ma, which coincides with the estimated origin of many major lemur clades. Results also indicated that average subclade diversity is less than that predicted by neutral evolution (Brownian motion). A similar but even more striking pattern was seen in cranial size disparity through time. This pattern is consistent with theoretical work that predicts that available ecological niches are filled early in an adaptive radiation, with reduced diversification through time.

American Journal of Physical Anthropology

Monogamous owl monkeys differ in the structure of OXTR from other non-monogamous primates.

PAUL BABB1, EDUARDO FERNANDEZDUQUE1,2 and THEODORE SCHURR1. 1Department of Anthropology, University of Pennsylvania, 2Cecol-Conicet, Argentina.

The oxytocin (OT) hormone pathway is involved in a multitude of physiological processes, and one of its receptor genes (OXTR) has been implicated in increased partner preference and pair bonding behavior in mammalian lineages. This observation is of considerable importance for understanding social monogamy in primates, which is present in only a small subset of primate taxa, including owl monkey (Aotus azarai). To examine the potential relationship between social monogamy and oxytocin receptor genes we sequenced the regulatory (>2000 bp) and coding regions (2 exons transcribing 389 amino acids) of this locus in 125 owl monkeys from a wild population in the Argentinean Gran Chaco. We also assessed the interspecific variation of OXTR by sequencing the locus in 10 platyrrhine species that represent a set of phylogenetically and behaviorally disparate taxa. The resulting data revealed A. azarai to have a unique genomic structure for OXTR that varies in coding sequence relative to other primate and mammalian species. Furthermore, the A. azarai sequence exhibits four (4) amino acid changes that may putatively increase the surface area of the ligand-binding domain. In addition, the Cebidae have an increased ratio of synonymous to non-synonymous amino acid changes relative to other platyrhines, suggesting the possible occurrence of positive selection at this locus. Our findings suggest that, despite the polygenic characteristics of the OT pathway, the properties of the OXTR proteins have experienced lineage-specific evolution.

This research was supported by the University Research Fund and the Department of Anthropology at the University of Pennsylvania, and the National Science Foundation (EFD: BCS-0621020). TOS further acknowledges the infrastructural support provided by the National Geographic Society.

Cooperation confers fitness benefits in a communally nesting primate.

ANDREA L. BADEN1,2,3,5 EDWARD E. LOUIS Jr.4,5 and BRENDA J. BRADLEY5. 1Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, 2Centre VaBio, Ramanomafana National Park, Madagascar. 3Omaha’s Henry Doorly Zoo, Omaha, NE. 4Madagascar Biodiversity Partnership, Madagascar. 5Yale Molecular Ecology Lab, Department of Anthropology, Yale University.

While communal nesting and cooperative infant care are common among some avian and mammalian taxa, such
shared maternal investment is rare among primates. While some primates, including callitrichines, participate in singular cooperative breeding, in which one reproductive female has ‘helpers at the nest,’ only humans have been conclusively shown to participate in plural communal rearing, where all females within a social unit reproduce and then collectively share in maternal responsibilities. Recently, however, this division of labor has also been observed in ruffled lemurs (Varecia variegata), a diurnal, moderately-sized, litter bearing lemur, suggesting that ruffled lemurs may represent a diurnal state besides humans to converge on this unusual reproductive strategy. Here, we present data from the first systematic field study of communal rearing in the species to combine behavioral, genetic and archaeological evidence. The data included in this study represent over 1,220 observation hours of seven parous females (n = 7 litters, 19 infants) during late gestation through early infant development (September-December 2008). We demonstrate that communal nesting occurs most often among kin, and that shared maternal care benefits ruffled lemur mothers by allowing significant trade-offs between maternal responsibility and foraging effort. Moreover, the incidence of cooperative infant care predicts infant survivorship in ruffled lemurs, particularly during early infant development, thus these perceived trade-offs likely confer direct fitness payoffs to communally nesting mothers.

This study was funded by NSF-DDIG 0725975, Leakey Foundation, J. William Fulbright Foundation, Primate Conservation, Inc., Conservation International’s Primate Action Fund, Stony Brook University, Omaha’s Henry Doorly Zoo and Yale University.

Morphometric analysis and geochronology of Hominin fossils from Maba (Guangdong, China).

CHRISTOPHER J. BAE1, DONGFANG XIAO2, LICHENG QUI3, GUANJUN SHEN4, ERIC DELSON5, NOREEN VON CRAMON-TAUBADEL6, STEPHEN J. LYCETT6, JENNIE JH JIN7, and HUA TU8. 1University of Hawaii, 2Maba Museum, Guangdong Institute of Archaeology, Conservation Nanjing University, 3Lebanon/College/CUNY & NYCEP, 4University of Kent, 5Lehman College/CUNY & NYCEP, 6University of Kent, 7Joint POW/MIA Accounting Command.

The question of “replacement events” versus “transitional stages” has long been a strongly debated topic in paleoanthropology. A good example of this is the question of the nature of hominin evolution in eastern Asia during the Middle to Late Pleistocene. Two major questions relevant to the eastern Asian record are: “Did Homo erectus evolve into modern H. sapiens with archaic H. sapiens as the transitional group?” or “Was Homo erectus replaced by dispersing H. heidelbergensis, a so-called ‘early’ replacement event, only later to be replaced by modern humans from the western Old World?” In this paper, we analyze hominin fossils from the late Middle Pleistocene Maba Cave (Guangdong, China) to test these hypotheses. Maba is best known for the presence of a partial hominin cranium that has traditionally been allocated to archaic H. sapiens. We present a morphometric analysis of a hominin partial mandible and five teeth (four upper M1s and M2s and a lower M3) that were excavated from Maba in 1960 and 1984 but previously unreported in the Western scientific literature. The Maba partial mandible is compared to better known mandibles from the Middle Pleistocene Old World (e.g., Mauer, Arago, and Tighenif). The Maba teeth are compared to data collected from selected hominin fossils and Holocene Chinese and Korean dental collections. A recent dating analysis of the Maba deposits suggests that the capping flowstone may be as old as 237 ka. We discuss the meaning of these new dates in this paper.

This study was funded by the Wenner-Gren Foundation (ICRG-#82) and the National Geographic Society (#8372-07).

Thinking outside the European box: dental metrics and morphology of African Middle Pleistocene hominins.

SHARA E. BAILEY1,2 and JEAN-JACQUES HUBLIN3. 1Center for the Study of Human Origins, New York University, 2Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 3University of California, Santa Cruz.

Middle Pleistocene (MP) hominins from Europe are known to possess dental characters that are diagnostic of Neandertals. However, whether or not these characters are unique to MP Europeans is unclear because much less attention has been given to the far fewer dental remains of this age outside of Europe. This study examines metrical and morphological dental characters in MP African hominins. We present results for characters that have been previously suggested to be distinctive in Neandertals. The relatively large incisor to molar ratio that characterizes Neandertals is not seen in MP Africans, which are more similar in this regard to Homo erectus. Morphologically, the MP Africans also lack the Neandertal dental pattern. For example, none possess the derived suite of lower P4 characters (asymmetry, transverse crest, and multiple lingual cusps) or a continuous trigonid crest on the lower M3. However, one individual (Bot) does share certain morphological characteristics with Neandertals e.g., a relatively small upper M1 occlusal polygon area and a small upper M1 metacone relative to the hypocone, but not the distinctive Neandertal crown shape). A small occlusal polygon area has also been observed in one individual of the Layer TD6 in Gran Dolina (Spain), which may suggest that this pattern is not uniquely derived for the Neandertal lineage.

The preponderance of evidence suggests that MP African hominins are characterized by retention of many primitive dental characteristics shared with Homo erectus and, unlike European MP hominins, show no clear affinity to Neandertals.

Groovy teeth: unraveling patterns of dental use wear in a Medieval sample from Polis, Cyprus.

BRENDA J. BAKER and MICHAEL W. MORAMARCO. Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University.

Over 300 individuals are associated with two early sixth-century basilicas at Polis Chrysochous, on the northwest coast of Cyprus. One basilica was used to the eleventh century. The other was reused for burials from the thirteenth to sixteenth centuries. Eighty of 54 individuals (14.5%) analyzed to date exhibit alterations on anterior teeth consistent with their use as tools. All are adults and seven are female. The eighth, represented by one tooth, is unattributable to an individual burial. Three distinct patterns of dental use wear suggest teeth were used in different ways. All patterns are associated with small incisal groves on the mandibular incisors, oriented labio-lingually, but maxillary involvement differs.

Pattern 1 consists of grooves on the distal aspects of lateral incisors and lingual surface attrition of the maxillary teeth (LSAMAT) found in one woman buried with a bone needle (Baker et al. 2007). Harper (Harper and Fox 2008) found an identical pattern in five of 35 Venetian period burials at Athienou-Malloura. Pattern 2 includes five individuals with V-shaped notches on the central incisors, first observed in another woman with a bone needle. Pattern 3, found in two individuals, combines grooves or notches on the lateral and incisal aspects of the maxillary incisors. All patterns contrast with the transverse grooves on anterior dentition that Erdal (2008) related to mouth spinning. Textile and clothing production in medieval Cyprus was principally a household activity. Dental use wear suggests that women were responsible for such work at Polis.

This research was supported in part by the Princeton University Archaeological Expedition to Polis, Cyprus, the ASU School of Human Evolution and Social Change, and the National Science Foundation Graduate Research Fellowship Program.
The missing femur at the Mitla Fortress.

LINDSEY CADWELL BAKER1, GARY M. FEINMAN2 and LINDA M. NICHOLAS2. 1Department of Anthropology, Southern Illinois University Carbondale, 2Department of Anthropology, The Field Museum, Chicago, IL.

A common belief across prehispanic Mesoamerica was that an individual's power was concentrated in the femur. Several elaborate burial contexts, beginning as early as A.D. 100, contained the remains of elite rulers along with one or more femora. Further, femora have been recorded as missing in other burial contexts in Oaxaca and elsewhere in Mesoamerica, but those burials were poorly preserved. Individual skeletons were not complete, so it was impossible to know when or how the femora were removed or if they were part of a primary burial context. Burial 13 at the Mitla Fortress provides documentation of a clear donor context in which the descendants of an important person carefully reopened his burial cist after death to extract the individual's right femur. This finding provides material support for the process of femur removal that was earlier only hypothesized for Lambityeco.

Such curation of human femora has largely been considered an activity associated exclusively with rulers or those of high status. Yet the residence exca-
vated at the Mitla Fortress was not such a context, and so the removal of femora (at least in the Late Classic period valley of Oaxaca) may not have been a practice limited to rulers. The individual missing his femur at the Fortress may have been a neighborhood head and/or a lineage founder, who was revered by his descendants. His descendants may have removed his femur in an effort to establish their status in at least the confines of their local community.

Damage and mortality effects of Cyclone Fanele on sifaka food trees in Kirindy Mitea National Park, Madagascar.

KATHERINE H. BANNAR-MARTIN and REBECCA J. LEWIS. Department of Anthropology, University of Texas at Austin.

Cyclones have been suggested to play a major role in the evolutionary history of the flora and fauna of Madagascar. However, very little is known about the effects of cyclones on Malagasy ecosystems. The high wind velocity of cyclones can snap or uproot trees and cause complete defoliation. With the loss of food species, primates may shift their diets to less preferred food items and/or narrow their diets. We assessed the damage to 1184 trees that are known food resources for Verreaux sifaka (Propri-
Dental microwear and morphology correlation in Pan, Papio, and Gorilla.

CLaire Barrett and Patrick Mahoney. School of Anthropology, University of Kent.

Prior research has suggested dental microwear and oro-facial morphology may be correlated, reflecting similar aspects of masticatory loading. If this association can be confirmed in living primates, it can be extrapolated to fossil hominin studies. This could add vital information when considering possible evolutionary relationships for specimens known only by incomplete or purely dental remains. In this study we searched for correlation between microwear (on the first, second, and third mandibular molars) and biomechanically relevant measurements of the skull in Pan troglodytes (n = 20), Papio anubis (n = 20) and Gorilla gorilla (n = 20).

Dental impressions were taken from the mandibular molars. Resin casts were prepared. Digital micrographs were taken of facet 6 using a scanning electron microscope. The micrographs were analysed using Microware 4.02. Skull measurements were taken using digital callipers.

Findings indicate that striation length (mean = 50.044 μ m) was correlated with corpus depth (r = 0.766; p = 0.000) in second molars from Pan troglodytes. Pit width was correlated with mandibular coronoid height (r = 0.605; p = 0.005) and ramus height (r = 0.600; p = 0.005) in third and first molars respectively from Papio anubis. Striation length was correlated with corpus width in third molars from Gorilla gorilla (r = 0.555; p = 0.035). Results are discussed in terms of dental morphology and orofacial muscular-skeletal proportions, as well as diet.

Evaluating the efficacy of house- hold bleach in the removal of contamination from bone surfaces.

Jodi Lynn Barta1,2, Cara Monroe1,2, and Brian M. Kemp1,2.
1School of Biological Sciences, Washington State University,
2Department of Anthropology, Washington State University,
3Department of Anthropology, University of California-Santa Barbara.

While polymerase chain reaction (PCR) now routinely permits study of genetic markers contained in skeletal samples, it simultaneously represents a system that is hypersensitive to amplifying contaminant DNA. Contaminating DNA competes with degraded DNA during PCR amplification and this often leads to false positives and/or aberrant results, thus compromising these analyses.

Prehistoric human foraging in the south San Francisco Bay Area: a stable isotope perspective.

Eric J. Bartelink1, Melanie M. Beasley2, Benjamin T. Fuller3, Alan Leventhal4, and Rosemary Cambran2.
1Department of Anthropology, California State University, Chico,
2Department of Anthropology, University of California San Diego,
3Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology,
4Department of Anthropology, San Jose State University,
Muwekma Ohlone Indian Tribe.

Variation in prehistoric human diets has been explored in the San Francisco Bay Area through studies of faunal and botanical remains from several large middle sites. Recent stable isotope research in the Bay Area has demonstrated significant temporal and regional variation in ancient human diets across the late Holocene (4500-200 B.P.), with the greatest changes occurring between the Early Period and the Middle Period (ca. 4500-1200 B.P.). Previous research on stable carbon, nitrogen, and sulfur isotopes has revealed a shift from a marine-oriented diet to terrestrial plant and animal resources from C3 ecosystems; however, regional patterns are evident throughout the Bay Area, which may also reflect differential access to resources based on geography and territoriality.

This study builds on the foundation of previous research and evaluates new stable carbon and nitrogen isotope data from 85 late Holocene humans derived from eight south San Francisco Bay sites in Santa Clara County. Data from stable carbon and nitrogen isotopes of bone collagen and stable carbon isotopes of bone apatite reflect greater consumption of C3 terrestrial resources in the region compared with the more marine-oriented diets of human foragers from sites along the eastern bayshore. Mean human bone collagen values varied from -17.0 to -19.0‰ for δ13C and 6.0 to 9.0‰ for δ15N. Apatite δ13C and the apatite-colla ge isotope ratio are comparable for the same samples and the apatite-collagen isotope ratio is more similar in the variation of different dietary macronutrients among individuals. These patterns are addressed in light of late Holocene resource intensification models proposed for prehistoric California.

A craniometric investigation of biological contacts between populations of the Iranian Plateau and Central Asia during the last three millennia B.C.

Amber M. Barton and Brian E. Hempfield.
Department of Physics, Geology and Anthropology, California State University, Bakersfield.

Archaeologists have long contended that populations on and adjacent to the Iranian Plateau throughout the Bronze Age enjoyed close cultural contacts with and even migratory movements into south Central Asian populations (Masson & Sarianidi 1972). However, a recent dental analysis (Hempfield 2010) failed to identify any evidence of gene flow between the late Bronze Age populations of the north Bactrian oasis and the Bronze Age site of Tepe Hissar, located in northeastern Iran. This study employs a battery of eight craniometric variables among 154 individuals from Tepe Hissar, located at the western periphery of the Iranian Plateau and 88 individuals from Shahri-Sokhta, located on the eastern plateau. These data, complemented by data from 28 samples from Central Asia, Indus Valley, China and Nepal to determine whether claims of contacts between south Central Asian and Iranian Plateau populations during the Bronze Age involved gene flow. Inter-sample differences were examined with hierarchical cluster analysis, neighboring joining cluster analysis, multidimensional scaling and principal coordinates analysis.

Results consistently identify affinities between Iranian Plateau samples and samples from south Central Asia. However, these affinities lie with earlier
samples from the Kopet Dagh and Tedjen oasis, not the later samples from the north Bactrian oasis. Such results suggest contacts between populations in the Iranian Plateau and Central Asia likely occurred in the early Bronze Age, but then ceased. Affinities between Tepe Hissar and Hasanalu IV, located in northwestern Iran, suggest inter-regional contacts of Iranian origin. Neolithic populations shifted from south Central Asia to northern Mesopotamia.

Nasal form and function in Middle-Pleistocene human facial evolution. A first approach.

MARKUS BASTIR and ANTONIO ROSAS. Paleoanthropology Group, Museo Nacional de Ciencias Naturales, CSIC, Madrid.

Large prognathic faces of Middle and Later Pleistocene humans contrast with antemolar faces of H. sapiens. Yokley et al. (2009) [PaleoAnthropology 2009:139-40] have shown that facial prognathism decreases together with nasal breadth and body mass with the emergence and spread of modern humans. They speculated that for bioenergetic reasons large-bodied archaic humans need to inhale larger quantities of oxygen - facilitated by greater nasal breadth - than smaller-bodied modern humans. Anterior nasal breadth, however, relates to intake and pre-processing of respiratory air, whereas posterior nasal parts (choanae and epithymyx) are responsible for air transmission towards lower, non-cranial parts of the respiratory system. Thus, different nasal regions serve different aspects of respiratory physiology. But how do all these nasal regions relate to facial form? We explore these questions with 3D-simulated morphometrics in fossil and modern humans and hominoids analyzing morphological interactions between nasal and facial structures and its evolutionary implications. Results show significantly different scaling patterns in anterior and posterior nasal size. Also, levels of anterior and posterior nasal cavity shape integration are low. Integration between the entire nasal cavity and facial shape is higher. These patterns fit with mean shape comparisons. While posterior nasal structures may be more directly related to air intake, anterior nasal parts may be involved in additional respiratory functions. Evolutionary factors might act differently on anterior and posterior nasal openings, both of which interact with facial form. The respiratory apparatus may offer one example for systemic integration of cranial and non-cranial systems within human organisms. This study is funded by the Spanish Ministry of Science and Innovation (Project: CGL-2009-09013).

Aymara mtDNA variation and demographic history in the Central Andes.

KEN BATAI1, VIRGINIA J. VITZTHUM2 and SLOAN R. WILLIAMS3. 1Department of Anthropology, University of Illinois at Chicago, 2Anthropology Department and Kinesey Institute for Research in Sex, Gender, and Reproduction, Indiana University, Bloomington.

In Central Andes, exploitation of marine resources and intensive agriculture led to population increase early in prehistory. This region is characterized by constant population movement as well. These events undoubtedly affected regional genetic variation, but the exact nature of these effects remains uncertain. In this study, mtDNA HVRI sequence variation in 61 Aymara individuals from La Paz, Bolivia, was analyzed and compared to that of other Latin American populations to examine how increased female effective population size and gene flow influenced the mtDNA variation among Central Andean and other western South American populations. The Aymara and Quechua were genetically similar to Central Andean and other western South American populations. These results suggest that female effective population had a greater impact on mtDNA variation than female gene flow among subdivided populations. Spatial expansion models generally fit the mtDNA variation observed in Latin America well, especially among genetically less diverse populations, but a demographic expansion model fits the mtDNA variation found among Central Andean populations well. These results suggest that female effective population had a greater impact on mtDNA variation than female gene flow among Central Andean populations. However, migration rates and the results of AMOVA and multidimensional scaling analysis suggest that female gene flow was also an important factor, influencing genetic variation among the Central Andeans as well as lowland populations from western South America. The interaction sphere may have extended to the transitional zones between the Andes and Amazon making populations from these areas more genetically diverse and similar to Central Andeans.

Dental and mandibular integration in the common chimpanzee (Pan troglodytes verus).

MELANIE BÄUCHLE1, KORNELIUS KUPCZIK1, PHILIPP GUNZ2, OTTMAR KULIMIER1, FRIEDEMANN SCHRENK3 and JEAN-JACQUES HÜBLIN1. 1Max Planck Institute for Evolutionary Anthropology, Department of Human Evolution, Leipzig, Germany, 2Senckenberg Research Institute, Department of Paleoanthropology and Messel Research, Frankfurt a.M., Germany.

Mandibles and teeth vary greatly in size and shape among fossil hominins. Evidence from experimental and comparative studies suggests that the development of teeth and the mandibular bone are under separate genetic control. However, together they form an integrated functional unit and evolve jointly. We quantify the covariation between teeth and mandibular bone, to understand the evolutionary dynamics underlying the morphological and functional differences among fossil hominins.

As a first step towards a methodological framework we investigate the overall tooth-jaw metric relationship of P. troglodytes verus. We expect that postcanines require large and robust mandibular corpora to withstand the forces applied during mastication. We use μCT data of the mandibles of two adult populations to quantify the volume of the segmented mandible, including all of the postcanines. We also generate standardized virtual cross-sections at each postcanine to calculate the robusticity index of the mandibular corpus. Our results show a significant correlation between the postcanine tooth volume and mandibular bone volume. We also found that the M2 is the biggest tooth within the molar row suggesting that it is subjected to the highest occlusal forces. The mandibular robusticity index, however, increases from M1-M3 indicating that the posterior end of the mandible can sustain higher torsional forces. These results highlight the importance of a closer examination of robusticity related to force distribution within the teeth and the mandible. Our findings provide the basis for further studies on interspecific and intraspecific variation in the dento-mandibular complex among living and fossil hominins.

JENNIFER M. BAUDER. Binghamton University.

Scurvy has recently received a great deal of paleopathological attention and cases of infantile and childhood scurvy have been reported in skeletal collections representing a wide range of temporal and geographic contexts. This paper reports on the first bone of skeletal evidence of scurvy in samples from prehistoric West-central Illinois. Crania from 2,295 individuals from sites in both the Lower and Central portions of the Illinois River Valley were examined for osseous evidence of scurvy. Key to diagnosis was the presence of porous lesions on the greater wing of the sphenoid and on sites such as the anterior temporal, mandible, maxilla and superior orbits. Scurvy was diagnosed in a total of 79 individuals with a further 21 individuals considered likely to have had the disease. Ninety of the 100 individuals diagnosed with scurvy or
possible scurvy were infants or children. Cases of scurvy were found in both sub-regions of the valley and from all cultural horizons sampled: Middle Woodland, Late Woodland, Mississippian and Ocmoeta. The presence of scurvy and its temporal and geographic ubiquity force new considerations disease patterning and interpretations of health in prehistoric Western Illinois. This nutritional deficiency disease may be tied to an inadequate in the regular juvenile diet over the course of prehistory and/or to seasonal deficiencies which may have affect fossil samples and adults. Because the presence of scurvy predate the intensification of maize agriculture it is no longer tenable to view agriculture as the sole cause of nutritional problems in the region.

This study was funded by The Wenner-Green Foundation, Grant # 7597.

Comparative morphometric maps of virtually unrolled Neandertal and modern tooth roots.

PRISCILLA BAYLE1,2, CHRISTOPHER DEAN2, LUCA BONDIOLI3 and ROBERTO MACCIARELLI4,5

1FACEA, UMR 5199, Université Bordeaux 1, 2Research Department of Cell and Developmental Biology, University College London, 3Musée Nationale Préhistorique Étnographique “Luigi Pigorini”, Rome, 4Département de Préhistoire, UMR 7194, MNHN Paris, 5Département Géosciences, Université de Poitiers.

By using a high-resolution micromorphographic record of extant and fossil human incisor and canine teeth, we applied morphometric mapping techniques to virtually unroll the dental roots and to comparatively assess their variation in dentine thickness topography. More specifically, the analyses were run in order to evaluate if the extant pattern evolves in a predictable way through life, and to compare the fossil and the extant conditions.

The study includes the deciduous teeth of the Neandertal immature from La Chaise abri Suard and Roc de Marsal, in France, and of the Upper Paleolithic specimens from Lagar Velho, in Portugal, and La Madeleine, in France. After threshold-based segmentation and surface rendering, the dental roots have been virtually unzipped vertically along the middle of their lingual aspect and then unrolled. The region of interest has been restrained and represents the dentine thickness variation comprised between 50% and 85% (upper) of the total root length.

Preliminary results show an evolving pattern of dentine thickness distribution through life in extant humans. Also, while broad similarities in the patterns of thickness distribution are found between the extant and the fossil samples, as well as among the fossil specimens, in Neandertals these are accompanied by more marked localized contrasts, notably in proximity of the cemento-enamel junction. In this context, the early Upper Paleolithic child from Lagar Velho shows an intermediate repartition pattern between the Neandertal and the modern condition. This study was funded by Fyssen Foundation, French CNRS, Univ. of Poitiers (Centre de Microtomographie), ESRF (Grenoble), EU FES Marie Curie Actions MRTN-CT-2005-019564 EVAN, EU TNT Project, Nenspor Society (Metmann).

Stable isotopes, diagenesis and FTIR: evaluating the differences in C/P and IR-SF values from three different sample preparation methods for spectral analysis.

MELANIE M. BEASLEY. Department of Anthropology, University of California, San Diego.

Stable isotope researchers use carbon stable isotope values from bone apatite to reconstruct ancient diets. Initially, the suitability of bone apatite analysis was debated because of possible diagenetic alterations affecting the bone mineral properties. Several studies have concluded that, through appropriate sample preparation treatments, bone apatite can yield in vivo signatures. Nonetheless, it is still necessary to evaluate samples for diagenetic alterations. One standard method of evaluating diagenesis in bone apatite is to use FTIR (Fourier transform infrared) spectroscopy to measure carbonate content (C/P) and bone mineral crystallinity or IR splitting factor (IR-SF). FTIR spectroscopy is a semi-quantitative method for analyzing chemical components within a material. Advances in technology have enabled new preparation methods for FTIR samples. In this study, 455 samples of modern, historic and prehistoric bone were prepared using three different methods to load and analyze FTIR samples. The methods that were compared (ATR, DRIFT, and hydraulic press KBR pelleting) use varying optic properties to analyze a sample. According to chemists, each spectra produced by each method is equivalent. In fact, each method does identify the same chemical components for a sample. However, it was found that each spectra yielded statistically significant different values for C/P and IR-SF, as well as different correlations between the values. It is therefore concluded that the sample preparation method used for spectral analysis does affect the resulting calculations that evaluate diagenesis in bone apatite and the different preparation methods should not be used interchangeably as they have been used in recent publications.

American Journal of Physical Anthropology

Community health at Nemea, Greece: a comparative bioarchaeological approach to the impact of sociopolitical change in Byzantium.

JARED BEATRICE. Department of Anthropology, Michigan State University.

This study compares the skeletal health of two agricultural communities dating to the Early Christian (n=123) and Middle to Late Byzantine (n=139) periods at Nemea, Greece using bioarchaeological methods. The aim of this approach is the exploration of changing living conditions in the latter period, during which time southern Greece was invaded by western Europeans and the Byzantine Empire experienced changes in political administration that had lasting, disruptive effects. Skeletal indicators of non-specific stress and activity were assessed in order to test 1) the extent to which political instability and invasions diminished quality of life among the Byzantine community and 2) whether or not different spheres of activity for men and women are suggested by sex-based differences in health within the Early Christian and Byzantine communities. The association between burial location and social status was also tested by comparing lesion prevalences across burial subgroups within the mortuary space at Nemea. Certain indicators of health such as cribra orbitalia and porotic hyperostosis remained relatively constant through time, while others such as periosteal reactions, vertebral osteophytosis, and trauma were found to be more prevalent in the Early Christian period. These results do not support the hypothesized general negative consequences for health in the Byzantine period. This study adds to the growing body of research demonstrating the utility of bioarchaeology in the evaluation of historical narratives. This research was generously supported by a Food, Nutrition, and Chronic Disease Fellowship awarded by the Graduate School, Michigan State University.

Bone growth and loss in a Roman population using a multi-method approach.

PATRICK BEAUCHESNE1, SABRINA AGARWAL1 and LUCA BONDIOLI2

1Department of Anthropology, University of California, Berkeley, 2Luigi Pigorini National Museum of Prehistory and Ethnography, Rome.

Most studies investigating bone maintenance and fragility in the past use a single method of skeletal analysis. Using data from the skeletal analysis of the Imperial Roman population of Velia, this paper demonstrates that the use of multiple methodologies and data collected from different skeletal locations provide a more complete approach to
better elucidate the complex etiology of bone loss and fragility. Three methods were used in the analysis of bone fragility at Velia: metacarpal radiogrammetry (n = 79), analysis of vertebral trabecular architecture (n = 67), and cortical rib histomorphometry (n = 70), using three age cohorts (18-29; 30-45; 45+ yrs.). The pattern of bone loss differs in important ways across the three methods. The radiogrammetry results show significant age-related changes in both males and females and the pattern of bone loss differs between the sexes. Females lose bone primarily in young reproductive age, while male cortical levels remain high until old age where cortical bone values drop rapidly. This pattern contrasts what is seen in the vertebrae, where bone volume declines only slightly with age, with varying compensatory factors. In trabecular architecture, these results highlight the need for multiple approaches to the investigation of bone maintenance and fragility in bioarchaeology. This study was funded by SSHRC, grant number 752-2005-1803.

Testing Fox’s assembly rule with Bornean primates and other vertebrates.

LYDIA BEAUDROTT1. 1Graduate Group in Ecology and Department of Anthropology, University of California, Davis.

A central question in primate ecology is whether communities are structured by deterministic processes or are random assemblages of species. I investigate the role of competition deterministically shaping Bornean primate communities. Although primate communities are frequently viewed as self-contained communities, the species that compete with primates likely include non-primate taxa. Moreover, it has been argued that competition between primates and other mammalian taxa is stronger in Borneo than other regions. I therefore test the assumption that Bornean primates compete predominantly with other primates by investigating community assembly hypotheses for primates and a larger community of vertebrates. Specifically, I investigate Fox’s assembly rule for favored sites generated from a null model using Monte Carlo simulations. Across community types, the observed number of favored states was significantly greater than expected, which supports Fox’s assembly rule in Bornean vertebrates. My results therefore suggest that interspecific competition is important for Bornean vertebrate community assembly within and between taxonomic groups. This study was supported by an NSF graduate research fellowship to Lydia Beaudrot.

Estradiol as a biological measures of mood and female intrasexual competition.

LISA BECKER1, PAUL BROWN2 and MICHAEL MUEHLENBEIN1. 1Department of Anthropology, Indiana University, Bloomington; 2Department of Anthropology, Minnesota State University, Mankato.

Within human evolutionary and clinical biology, estradiol is primarily studied a) within the context of peri- and post-menopausal women, b) as an indicator of fecundability in response to environmental stressors, or c) in cases of infertility and endocrine deficiencies. Elevated estradiol levels preceding ovulation in normally-cycling women may contribute to behaviors associated with female-female competition, such as narcissism and derogation. We hypothesized that women would report an increase in feelings of self-worth and attractiveness during the pre-ovulatory period when estradiol levels are at their peak. The participants for this project were 20 women ages 18-35 who completed the questionnaire 2 times during a single menstrual cycle, both control method, current relationship status, and sexual activity. Results of the questionnaires revealed a significant difference between Rosenberg Self-Esteem scores from the luteal phase and those of the individual classified as periovulatory (T = -2.37, p = 0.037, DF = 11). However, results of the biological samples do not (T = 0.9096, p = .3981, DF 6). These results indicate that estradiol levels obtained from the biological samples do not support the hypothesis that feelings of self-worth would increase when estradiol levels are at their peak. A possible reason for these results may be the small sample size of this study. Future research is needed to clarify the role of estradiol in mediating female sexual behaviors. Supported by the David C. Skomp Fellowship, Indiana University.

How to measure dominance? Percentile vs. ordinal ranking systems.

JACINTA C. BEEHNER1,2 1Department of Psychology, University of Michigan, 2Department of Anthropology, University of Michigan.

Dominance is a fundamental feature of many social animals. Most researchers agree that agonistic dominance is a critical factor that shapes the social structure of a particular species. However, there remains less agreement on how dominance should be measured even for animals with some of the most stable and linear dominance hierarchies. While some researchers utilize a more “relative” ranking system where animals are scored based on the proportion of individuals that they dominate (percentile ranking system), others use a more “absolute” system where animals receive a rank number based on how many animals are above them (ordinal ranking system). This paper addresses the question of research questions that would benefit from one or the other measure of rank. I use geladas (Theropithecus gelada) as a model species to illustrate how the ranking systems differ. Because a gelada “group” (i.e., band) essentially comprises dozens of reproductive units (i.e., one-male units), all of varying size, each with its own stable linear dominance hierarchy among females, I am able to document the interactions between group size, research question, and ranking system. Funding for this research was generously provided by the Wildlife Conservation Society (SSF 67250), the National Geographic Society (8100-06), the Leakey Foundation, the National Science Foundation (BCS-0715179), and the University of Michigan.

Performance: A uniquely human behavior.

WILLIAM O. BEEMAN. Department of Anthropology, University of Minnesota.

This paper addresses the question of the uniquely human ability to engage in performance, broadly defined as purposeful enactment or display carried out in front of an evaluating audience. Following Alfred Schütz, Erving Goffman, Deborah Tannen and others, the paper posits that performance “works” through the creation of behavior that is imbedded in cognitive “frames” that determine the symbolic interpretation of events. The framed event then allows the performer to stimulate the emotions.
of the audience through pragmatically determined communication in a psychologically protected environment. Both performer and audience utilize the biologically-based human ability to predict the emotional states of others, currently known as "Theory of Mind," in order to generate and feel these emotions in an act of co-creation of experience. It is posited that performance has evolutionary value in allowing humans to practice the experience of emotions—crucial to critical decision making and to creating group solidarity, essential to human survival.

Advanced methods in analysis of dental remains. DANA L. BEGUN1,2,3, RACHEL CAPAR1, KRISTINA GALDES, RANNA BOKHARI1 and STEVEN GOLSTEIN1,2,3. 1Department of Anthropology, University of Michigan, 2Department of Biomedical Engineering, University of Michigan, 3Orthopaedic Research Laboratories, University of Michigan, 4Department of Anthropology, Central Michigan University, 5Department of Anthropology, University of Montana.

This study establishes the reliability of microCT and RAMAN as substitutes for destructive, less reliable techniques. Focusing on wear, root transparency, tubule occlusion, and pulp volume, potential algorithms correlating measurements to age are developed. Until recently, many methods of aging dental remains were destructive, with high inter-observer variability. The last few years have shown advancement in technology available, allowing more standardized and non-destructive methods. However, the capabilities and limitations of such approaches have not been fully explored. Maxillary incisors and canines from 30 individuals of known sex, age (24-87), and ethnicity were measured using traditional methods for measuring wear, transparency, and pulp volume. The teeth were also scanned in a microCT system, and analyzed with RAMAN spectroscopy. The project tests the hypotheses:

1. MicroCT can produce quantifiable measures of tooth morphology beyond the accuracy of hand measures.
2. RAMAN spectroscopy can quantify age-related changes through chemical analysis more accurately than visualization techniques.
3. There are consistent changes in teeth throughout aging so that regressions might be developed for age estimation.

New postcranial of Rudapithecus hungaricus from Rudabánya (Hungary). DAVID R. BEGUN1 and LÁSZLÓ KORDOS2. 1Department of Anthropology, University of Toronto, 2Geological Institute of Hungary, Budapest.

In 2009 and 2010 we recovered a nearly complete femur, the shafts of an ulna and humerus, a complete scaphoid, cen- trale, lunate, pisiform, trapezoid and several partial phalanges and metacarpals of the fossil hominid Rudapithecus hungaricus. They are consistent in size with male Rudapithecus and were found at the same elevation, in the same sediment and within a horizontal distance of less than two meters. They probably represent a single individual. Similar associations of postcranial remains of many other mammals from the same level have also been recovered. The femur and scaphoid are roughly twice the size of the same bones described previously (Kordos and Begun, 1999; Kivell and Begun, 2009). The femur has many characters typical of great apes, including a large head, low neck-shaft angle, and a robust, curved and platy-meric shaft. The lunate and scaphoid contribute equally to the radiocarpal joint. The scaphoid tubercle is strongly projecting and the surface for the trapezium is large. The lunate’s surface for the triquetrum is convex dorsopal- marly. The pisiform is large and strongly keeled, and the proximal articular end is saccular in form, corre- sponding to a sellar joint on the tri- quetrum. There is no articular surface for the ulnar styloid or for an articular disk. Overall the carpals share features with both orangutans and Afri- can apes. The scaphoid tubercle and the pisiform indicate a deep carpal tunnel, consistent with powerful digit- al flexors, and a relatively large trape- zoid, probably indicative a large and powerful pollex.

Questions, answers, and more questions: using databases to explore the taphonomy and paleoecology of the African hominid record. ANNA K. BEHRENSMEYER1 and RENE BOBE2. 1Department of Paleobiology, Smithsonian Institution, 2Department of Anthropology, University of Georgia.

Electronic databases derived from fossil collections are powerful tools for exam- ining paleobiological spatial and tempo- ral patterns as well as data quality issues affecting these patterns. It is easy to assume that numbers derived from these databases, such as the proportion of hominins or alcelaphines relative to other mammals, reflect original ecological reality to some degree. Sampling and taphonomic biases can affect this assumption, making it important to estimate ranges of error for taxonomic representation based on different field sampling methods, museum collections, and databases. Here we examine variation in the relative abundance of mammalian groups in space and time for the Turkana Basin. We utilize the Turkana Basin Database and the Evolution of Terrestrial Ecosystems (Paleobiology) Database as our primary sources for catalogued and published information on taxonomic representation, and standardized fossil surveys from East Tur- kana for comparative data on propor- tions of taxa in unbiased samples of surface fossils. Differences in the propor- tions of major taxonomic groups in these different types of samples indicate collecting biases in favor of rare or other- wise preferred taxa such as hominins, carnivorans, and suidae and against larger or abundant taxa such as probo- scidea and hippopotamidae. Assessment of hominin abundances relative to taphonomically similar taxa (Popio, Theropithecus) likely provide the most realistic estimates of relative abundance and indicate that hominins were relatively rare as well as variable in distri- bution in different sub-regions of the Turkana Basin.

Spatial and temporal analyses of rodent communities in the Middle Paleolithic of the Southern Levant and their relationship to under- standing hominin biogeography and population dynamics in the region. MIRIAM BELMAKER. Department of Anthropology, Harvard University, Cambridge, MA.

Faunal turnovers have been related to climate forcing as a cause for dispersal/ extinction of hominins in the Southern Levant. Others have suggested that the inter-site variation in Middle Paleolithic (MP) fauna reflects the environmental mosaic and spatial differences within the region. Distinction between these...
two hypotheses has implications for understanding the continuity vs. turnover in hominin taxa during this time period.

This study presents a two-tiered approach to test microfauna turnovers in the MP of the Southern Levant. First, a null model was developed by analyzing the distribution of extant rodent communities across different habitats in correlation with climatic variables. Second, the distribution of micromammalian taxa was analyzed from fossil assemblages in the Southern Levant spanning MIS 6-5 and in comparison to the modern distribution and to local paleoclimatic proxies.

Distribution of modern rodent shows that presence-absence patterns of taxa vary across a rainfall and vegetation gradient along an east-west trajectory and thus can be used to discriminate regions in the Southern Levant. Subsequent analysis of MP micromammalian assemblages suggests that inter-site differences in bones necessarily reflect regional faunal turnovers but are consistent with the spatial environmental mosaic within the Southern Levant region.

Results indicate that despite climatic fluctuations, local micromammal communities are persistent during the MP throughout the Southern Levant. These results suggest that climate forcing was not the sole factor in the process of hominin turnover during the Upper Pleistocene in the Southern Levant. This study was funded by generous grants from the Irene Levy Salá Grant and the Harvard University American School of Prehistoric Research.

Combining 3D finite element method and occlusal fingerprint analysis for developing dynamic loading scenarios in molars.

STEFANO BENAZZI1, OTTMAR KULLMER2, and GERHARD W. WEBER1. 1Department of Anthropology, University of Vienna; 2Department of Palaeoanthropology and Messell Research, Senckenberg Research Institute – Frankfurt.

The masticatory cycle in humans combines a strong vertical mandibular movement with a varying lateral component. Finite Element Method (FEM) was applied for simulations of load in earlier studies, however without considering changes in contact pattern during the occlusal sequence. The contacts among antagonistic teeth create attritional wear facets on the crown surfaces. Based on dynamic occlusal information and wear facet pattern we investigated the stress/strain dispersion in a lower first molars (M1) using 3D FEM. The left lower M1–M2 and the left upper P–M2 of a dried modern human collection specimen were scanned by μCT in maximum intercuspal contact. The 3D models for enamel and dentine tissue were segmented and refined using Amira and Rapidform XOR. A virtual simulation of chewing patterns for Mn–M2 and P–M2 was carried out in the Occlusal Fingerprint Analyser software. Contact areas per time-step were located. Stress/strain distributions of the M1 in selective occlusal stages were analyzed in Straus 7, considering occlusal information for individual loading direction and loading area.

Our results show that the stress/strain pattern is changing considerably during the masticatory cycle. Our combination of FEM and OFA also demonstrates how changing force distributions during occlusion might explain the creation of interproximal wear facets. This suggests to study the dynamic scenario such as ours rather than applying unidirectional forces to the entire occlusal surface to understand functional aspects of evolutionary adaptations, such as enamel thickness.

Supported by National Science Foundation Physical Anthropology Hominid program (NSF BCS 0725219, 0725183, 0725147, 0725141, 0725136, 0725126, 0725122, 0725078), and by the German Research Foundation (DFG-POR 771).

Stable isotopes (13C and 15N) track socioeconomic differences among urban Colombian women.

RICHARD L. BENDER1, DARNÁ L. DUFOUR1, LUCIANO O. VALENZUELA2, THURE E. CERLING2, MATT SPONHEIMER1 and JAMES R. EHLERINGER2. 1Department of Anthropology, University of Colorado; 2Department of Biology, University of Utah.

The stable isotope composition of mammalian tissues, such as hair, can serve as an indicator of dietary composition. Here, we present stable isotope data for hair samples taken from 38 urban Colombian women from two different socioeconomic status (SES) groups. The goal is to determine whether the two SES groups differ in stable isotope composition, and whether these differences track with long-term indicators of nutritional status, including BMI, five body circumference measures, and six skinfold measures. Hair samples were analyzed for δ13C and δ15N.

There is a significant positive, but weak, correlation between δ13C values and δ15N values (r = 0.23, p = 0.01). The higher SES group has significantly greater mean δ13C (-16.4 ± 0.5%) and δ15N (10.3 ± 0.4%) values than the lower SES group (-17.2 ± 0.8% and 9.6 ± 0.6%, Kruskall-Wallis, p < 0.05). Discriminant function analysis using only δ13C values and δ15N values correctly classifies 79% of subjects into the two SES groups, further indicating a substantial difference in isotope composition along socioeconomic lines. On the other hand, there are no SES differences in any of the 12 anthropometric measures. Moreover, neither δ13C nor δ15N values are significantly correlated with any of these variables. Contrary to expectations, stable isotope composition is a stronger predictor of SES than traditional indicators of long-term nutritional status in the sample. The observed differences reflect either variation in the isotopic composition of the diet, or variation in the isotopic spacing between diet and tissues as a result of varying dietary quality or nutritional status.

Supported by the University of Colorado Innovative Grant Program and NSF SGER 070705.

A non-invasive method for collecting salivary testosterone in socially-housed captive monkeys.

MARCELA BENITEZ1, STEPHANIE ANESTIS2, LAURIE SANTOS2, RICHARD BRIBIESCAS2 and JACINTA BEEHNER1. 1Department of Anthropology, University of Michigan; 2Department of Anthropology, Yale University; 3Department of Psychology, Yale University.

Saliva collection is an easy and non-invasive way to measure steroid hormones. However, salivary hormone measurements have yet to be routinely incorporated into studies of primate endocrinology. This is largely due to the difficulties of validating collection methods for the analysis of multiple hormones. Studies in humans have indicated, for instance, that methods used to collect saliva for cortisol analysis are not appropriate for analyzing testosterone. Here we devise a method of saliva collection for the analysis of testosterone that has been particularly difficult to measure accurately in saliva with common collection techniques. We collected saliva from brown capuchin monkeys (Cebus apella) socially-housed at the Comparative Cognition Laboratory at Yale University. First, we collected samples by allowing subjects to chew on non-flavored oral swabs, and second on oral swabs flavored with marshmallow fluff. Last, we validated the measurement of capuchin salivary testosterone with a commercially-available enzyme immunoassay kit. We found that while saliva collection using non-flavored oral swab was successful after training, subject cooperation was highest when marshmallow fluff was used. Although marshmallow fluff artificially decreased testosterone values, it did so in a linear and consistent manner. Moreover, we found a significant correlation between samples collected without flavoring and those collected using marshmallow fluff (r = 0.85, p < 0.01). Because capuchin monkeys are a model species in...
Reproduction by follower male geladas supports transactional model.

THORE J. BERGMAN,1,2 NOAH SYNDER-MACKLER3 and SUSAN C. ALBERTS4. 1Department of Psychology, University of Michigan, 2Department of Anthropology, University of Michigan, 3Department of Psychology, University of Pennsylvania, 4Department of Biolog, Duke University.

Male primates can increase their reproductive success only at the expense of other males. Nonetheless, males often tolerate subordinate males who may achieve some mating success. Models attempting to explain this tolerance typically fall into two categories: transactional (where dominant males concede some proportion of mating to the subordinate) and compromise (where dominant males are unable to monopolize all reproduction in the group). Here we test these models in geladas (Theropithecus gelada) living in the Simien Mountains, Ethiopia. Gelada society is based on reproductive units comprising one leader male, several adult females, and occasionally one or more subordinate follower males. We utilize variation in the number of males in a unit (1 vs. >1) to test these models. For leader males, a transactional model predicts that follower males deliver a net fitness benefit, while a concession model predicts a net fitness cost. We use behavioral observations and molecular genetic paternity analysis of 49 infants born across 28 units to characterize reproductive skew. We use longitudinal behavioral data to document differences in tenure length. Leader males sired 100% of offspring in units without followers, while followers sired 18% of offspring in multi-male units. Critically, the presence of a follower was associated with a 61% increase in tenure for leader males. These results suggest that follower males provide a net benefit to leader males (given a constant rate of reproduction) and are consistent with the hypothesis that leader males offer staying incentives to follower males in the form of reproductive concessions.

Funding for this research was generously provided by the Wildlife Conservation Society (SSF 67250), the National Geographic Society (8100-06), the Leakey Foundation, the National Science Foundation (BCS-0715179), Duke University, and the University of Michigan.

A life course perspective on reproductive health among migrant Bangladeshis in the UK.

GILLIAN R. BENTLEY1, SHANTHI MUTTUKRISHNA2, ALEJANDRA NUNEZ-DE LA MORA1, KHRUSHIDA BROUGH, KESSON MAGID1, TANIYA SHARMA1, ROBERT T CHATTERTON1, OSUL CHOWDHURY2, and LYNETTE L SIEVERT4. 1Department of Anthropology, Durham University, UK, 2Department of Obstetrics and Gynaecology, University College Cork, Ireland, 3Department of Anthropology, University College London, UK, 4Department of Obstetrics and Gynecology, Northwestern University, 5M.A.G. Osmani Medical College, Sylhet, Bangladesh, 6Department of Anthropology, University of Massachusetts, Amherst.

In several cross-sectional studies, we have applied a life course approach to examine reproductive function and health in later life in different generations of UK migrant Bangladeshis. Despite recent improvements in development indices, Bangladesh still ranks as one of the poorest countries in the world. The environment in Sylhet, NE Bangladesh, from where 95% of UK migrants originate, has relatively high levels of infectious disease exposure, and poor nutrition and health care, even for middle class Bangladeshis (our subjects) who enjoy good nutrition and low levels of energy output. Migrants who move to the UK as children therefore experience a significant environmental improvement. South Asian migrants generally have higher rates of metabolic syndrome (MetS), obesity and risks for cardiovascular diseases compared to Europeans, all of which interact with reproductive hormone levels and conditions such as polycystic ovarian syndrome (PCOS).

Our data consistently show that the childhood environment impacts later reproductive health, suggesting life history trade-offs between growth, maintenance and reproduction. Both men and women who grow up in the UK have significantly higher age-matched reproductive hormone profiles. Bangladeshis who migrate as children attain puberty at significantly earlier ages, and women reach menopause at significantly later ages compared to those who grow up in Bangladesh. While these developmental differences may reduce risks for disease conditions currently associated with South Asians (such as PCOS and MetS), the risk for other conditions such as reproductive cancers will increase in later generations of Bangladeshi migrants in the UK.

Supported by: Commonwealth Foundation (TS), Conacyt (AN), ESRC (KM), NSF 0548393 (GB, KB, SM, LS), Royal Society (GB), Wolfson Research Institute, Durham University (GB).

New remains of Australopithecus sediba from the Malapa site, South Africa.

LIEE BERGE12, JOE KIBI1, STEVE CHURCHILL1, PETER SCHMID1, KRIS CARLSON1, BONITA DE KLKR1, DARRYL DE RUTTER1, TRENT HOLLIDAY2, TRACY KIVELL7, JOHN GURCHIE3, BERNHARD ZIPPEL9, GARY DE LA VEGA10, and ROBERT KIDD1. 1Institute for Human Evolution, University of the Witwatersrand, South Africa, 2School of GeoSciences, University of the Witwatersrand, South Africa, 3Evolutionary Anthropology and Anatomy, Duke University, 4Department of Anthropology, Texas A&M, College Station, 5Max Planck Institute for Evolutionary Anthropology, 6Department of Anthropology, Tulane University, New Orleans, 7Department of Anthropology, Texas A&M University, 8Bernard Price Institute for Palaeontological Research, New York, 9Department of Palaeontological Research, 10Department of Geosciences, University of the Witwatersrand, South Africa, 11Department of Anthropology, University of the Witwatersrand, South Africa, 12Department of Anthropology, Duke University.

The newly recovered material includes a substantially augmented collection of postcranial elements of the holotype and paratype skeletons, including well-preserved bones of all aspects of the skeleton not previously described. These include a well preserved pelvis, a virtually complete hand, parts of the foot, a well preserved head, virtually complete hand, parts of the foot, a well preserved head, and additional elements associated with other individuals have also been recovered. This new material assists in precluding the hypothesis that leader males offer staying incentives to follower males in the form of reproductive concessions.

This research was in part funded by the National Research Foundation, South Africa, The Department of Science and Technology, South Africa, The Gauteng government, South Africa, The University of the Witwatersrand, the Palaeontological Scientific Trust and the Ford Foundation, the Andrew W. Mellon Foundation.
Assessing molecular and morphological variation in the Americas: a comparative approach.

DANilo V. BERNARDo, TATIANA F. ALMEIDA and WALTER A. NEvES, LaboratóRIO de Estudos Evolutivos Humanos, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brasil.

Several studies conducted recently have explored whether morphological and molecular variations obey to similar micro-evolutionary forces. Most of these studies suggest that with very rare exceptions, cranial morphology seems to evolve primarily by means of stochastic mechanisms. In this study we assessed the biological variation of 22 Native Americans by using matched molecular and morphological data in order to contribute to this debate. The assessment involved the construction of three different matrices calculated for all populations: one composed of Fst for the molecular data, one composed of Mahalanobis’s Distances for the morphological data, and one composed of linear geographic distances. The three matrices were compared by means of Pearson’s correlation, followed by Mantel’s Test to detect significance. The correlations obtained were 0.57 (p=0.0001) for molecular and geographic distances; 0.32 (p=0.002) for morphological and geographic distances; and 0.27 (p=0.012) for molecular and morphological distances. Contrary to recent evidences, our results suggest that variation at the cranial level does not strictly correspond to variation at the molecular level.

Hormonal correlates of divergent growth trajectories in male anubis, hamadryas, and hybrid baboons.

ROBIN BERNSTEIN1,2, HEATHER DROUGHT, JANE PHILLIPS-CONROY1, and CLIFFORD JOLLY1, 1Department of Anthropology, The George Washington University, 2Center for the Advanced Study of Human Paleobiology, The George Washington University, Department of Anatomy and Neurobiology, Washington University School of Medicine, 4Department of Anthropology, New York University.

The Awash National Park Baboon Research Project (ANBRP) has gathered extensive behavioral and physiological data from baboon groups distributed across a geographical gradient along the Awash River. These groups are comprised of anubis, hamadryas, and hybrid baboons, which differ in a number of ways, both social and developmental. Adult male anubis baboons are larger than hamadryas, and have much larger testes. Male hybrids are smaller than either parental species, but have large testes. These differences result from divergent ontogenetic trajectories, which themselves are clearly linked to aspects of reproductive strategies. However, age-correlated variation in underlying physiological controls of growth and maturation remains to be elucidated.

Using serum samples (N = 476) collected from these populations over fourteen years, we employ enzymo immunosay techniques to measure four hormones known to play key roles in processes of growth and maturation. Levels of insulin-like growth factor-1 (IGF-I), insulin-like growth factor binding protein-3 (IGFBP-3), growth hormone binding protein (GHBP), and testosterone (T) are examined for their significance in age-related patterns of these hormones. These results are discussed in the context of variation in patterns of growth and maturation, and the hormones measured are suggested to provide important mechanisms by which these patterns may be modified in closely related taxa.

This research was funded by the National Science Foundation, BCS# 0851130.

Sensitivity of stresses and strains to variability in isotropic, orthotropic, and non-homogeneous material property values: a finite element model of a hominin skull.

MICHAEL BERTHAUME1, IAN GROSSE1 and DAVID STRAIT2, 1Mechanical and Industrial Engineering Department, University of Massachusetts, Amherst, 2Department of Anthropology, University at Albany.

Finite element models (FEMs) of biological systems are becoming widely used in evolutionary biomechanics. The material properties of bone are fundamental inputs for such models, but these are difficult to measure, and are stochastic in nature, anisotropic and spatially non-homogeneous. To date, no formal probabilistic analysis techniques have been applied to assess how uncertainty in material property values affects stress and strain values in complicated cranial FEMs. The lack of such information is an impediment to interpreting such models.

We used a probabilistic approach and FE analysis to assess how variability in material property values affect stress and strain in a cranial model of Australopithecus africanus. The behavior of cortical bone was varied in three ways: isotropic and homogeneous, isotropic non-homogeneous, and orthotropic non-homogeneous. Material property values were then randomized using Latin hypercube sampling to approximate Gaussian distributions with CVs of 20% and means based on human data. In total, one hundred and ninety separate FE analyses were executed.

Variability in modulus had a statistically significant effect on variability in von Mises strain. Variability in von Mises stress decreased in high stress regions, but a similar association was not observed regarding von Mises strain. Thus, regions of high stress are relatively insensitive to variability in material properties, anisotropy, and nonhomogeneity, but high strain are comparatively sensitive to these variables. Thus, when there is uncertainty regarding craniofacial cortical bone material properties, it is best to model the cranium with low anisotropy and high homogeneity.

This project was funded by grants from the National Science Foundation Physical Anthropology HOMINID program (NSF BCS 0725078 and 0725126) and the Biomech grant (NSF BIO 0743480).

Temporal Trends in Diet and Oral Health in Prehistoric East Tennessee.

TRACY K. BETSINGER1 and MARIA OSTEENDORF SMITH2, 1Department of Anthropology, State University of New York, College at Oneonta, 2Department of Anthropology, Illinois State University.

Patterns of consumption are reflected by the oral health of a population and are often linked to sex, status, and subsistence. Previous studies of late Mississippian (AD 1300-1600) populations from Tennessee have demonstrated that dietary differences are related to socially significant burial patterns. Contrary to late Mississippian period research elsewhere, previous studies in this region do not exhibit sex differences in oral health. In this study, we continue to test this pattern at the Hiwassee Island site, which includes an incipient agriculturalist (AD 600-900) sample. The orthogonal archaeological interpretation of less subsistence and more ritual use of maize in the earlier horizon predicts sex differences in consumption.

Various lesions, antemortem tooth loss, and dental calculus were documented in the dentition of 130 adults, 82 from the Late Woodland (29 males, 29 females), and 48 from the Late Mississippian (19 males, 29 females). The results are socially and economically interesting. Consistent with previous research, there are no sex differences in the Late American Journal of Physical Anthropology
Mississippian sample. The frequency of oral pathological conditions is predictably higher in the Late Mississippian maize-intensive sample. However, in the Late Woodland, females have a higher rate of carious lesions (chi-square, $p<0.05$). If maize consumption is indeed non-subsistence based, then a sex-based ritual for the Earth Mother ("mother of corn") deity is possible and anticipates further research exploring this hypothesis.

This study was funded by an Individual Development Award of the New York State/United University Professions Joint Labor-Management Committees.

A test of the Out-of-Africa hypothesis using the pelvis and long bones reveals differential preservation of ancient, comprising signature in the postcranium.

LIA BETTI1, NOREEN VON CRAMONTAUBADEL1, and STEPHEN J. LONG2

Recent studies of cranial morphological variability have revealed a strong geographic pattern related to ancient and more recent demographic history. A worldwide pattern of decrease in within-population diversity has been detected for both genetic and cranial morphometric data, and it has been associated with a serial founder effect following the human expansion out of Africa and the colonization of the other continents. The presence of such demographic signature on the skull contradicts a purely adaptationist view of global cranial shape variation. No such study, on the other hand, has been undertaken on the postcranium, which is often considered to have been under strong selective pressure and subject to high plasticity.

Taking advantage of a freely available dataset of linear postcranial measurements, the Goldman dataset (http://web.utk.edu/~auearch/GOLD.htm), we tested the presence of the Out-of-Africa demographic signature on intra-populational diversity of the pelvis, humerus and tibia. 26 worldwide distributed population samples were selected from the dataset, minimizing a minimum of 13 male individuals for each sample. All measurements were size-adjusted using the geometric mean. Differences for standardization of substrate measures across field studies of primate locomotion.

Using signals of natural selection at immune response genes to identify susceptibility loci for viral infection.

ABIGAIL W. BIGHAM1,2, KRISTINA DAHLSMOTR3, MARK RIEDER2, DEBORAH A. NICKERSON4 and MICHAEL RAMSHAD1

Infectious disease has been a major selective force during the evolution and differentiation of modern humans. In fact, many of the genes exhibiting the strongest signatures of positive selection in the human lineage encode proteins involved in immunity. Furthermore, many genes subject to local positive or balancing natural selection are associated with susceptibility to infectious diseases. Therefore, the effects of natural selection can be inferred from the loci of variation and used to identify alleles contributing to disease susceptibility. Here, we evaluated a panel of immune genes using 31 African, 31 European, and 31 East Asian individuals. Twenty-nine innate and adaptive immune genes were sequenced in the three populations to detect evidence of local adaptation. We applied three tests that detect departures from neutrality including Tajima’s D, Fu and Li’s D^*, and D^* to assess population specific patterns of variation. Next, in order to identify susceptibility alleles for modern infectious diseases, single nucleotide polymorphism (SNP) - specific FST values were computed for each individual and allele. The results indicated that Africans showed evidence of putative balancing selection. For the East Asians and Europeans, evidence of both balancing selection and directional selection was detected. Over all, the results displayed a different spectrum of alleles, suggesting local adaptation to specific pathogens. In the future, these results can be used to 1) find functional alleles, 2) determine which alleles might be most useful in association studies, and 3) identify alleles that contribute to disease susceptibility.

This study was funded by the Rocky Mountain Regional Center of Excellence NIH, grant number U54 AI065257 and the National Institute of Health/National Human Genome Research Institute, grant number T32 HG00035.

Differences in subadult pubic body widths and the implication for sex determination.

KATHLEEN A.S. BLAKE, Department of Anthropology, University of Pittsburgh.

Osteologists consider the pubic ventral arc to be a reliable-sexing method; however, most studies concentrate on ventral pubis development but not pubic body width broadening. This study tests the hypothesis that pubic body widening and a pubic body width to pubic length index will be dimorphic among subadult individuals. The pubic bones of 52 individuals of a majority of sexed one to 19, from the Haam-Todd collection were examined. Sliding calipers were used to evaluate pubic body width (most narrow part of the pubic body from pubic symphisis to obturator foramen on the dorsal side), pubic length, and the pubic body width/pubic length index. Analyses show a significant correlation in the differences between male and female pubic body broadening in subadults. Pubic bone size differences did not significantly correlate between the sexes when all individuals were analyzed. However, when teens were separated from non-teens, significant...
Reproductive opportunism in unpredictable environments: the comparison of two wild mouse lemur species (Microcebus rufus and M. griseorufus) from eastern and western Madagascar.

MARINA B. BLANCO1,2, EMILIENCE RASOAZANABARY1 and LAURIE R. GODFREY1. 1Department of Anthropology, University of Massachusetts, Amherst, 2Centre ValBio Research Station, Ranomafana, Madagascar.

The diverse mouse lemur species (Microcebus) of Madagascar are found in a variety of habitats, including areas unoccupied by other lemurs, showcasing unique behavioral flexibility and resilience to environmental change. Although a myriad of studies have described mouse lemur reproductive behavior, only a few have addressed interspecific reproductive variation in non-sympatric mouse lemur species.

The number of litters that mouse lemur females have per season varies among populations and/or species. Habitat seasonality and climate predictability have been invoked as environmental factors that correlate with regular polyestry, i.e., multiple successful litters per season, as well as the duration of the reproductive season in mouse lemurs. Simply put, the “polyestry-seasonality” hypothesis states that more litters are expected in less seasonal habitats where there is a wider window of resource availability for females to acquire and invest energy into reproduction; the “unpredictability” hypothesis proposes that duration of reproduction is positively correlated with climate unpredictability rather than seasonality.

To test these hypotheses, we present reproductive and population data from two mouse lemur species: the eastern brown mouse lemur (M. rufus) from the rainforest of Ranomafana (n = 130), and the western redish-gray mouse lemur (M. griseorufus) from the dry deciduous and spiny forests of Beza Mahafaly (n = 400). Our results show that neither hypothesis captures the reproductive variation we found between species. We propose that reproductive opportunism is an important strategy in mouse lemurs, particularly for M. griseorufus at Beza Mahafaly, who face frequent energetic constraints and display shorter life spans than M. rufus at Ranomafana.

This work was partly supported by: MMBF/CI Primate Action Fund, The Rufford Foundation to MBB; International Foundation for Science, Wildlife Conservation Society, National Geographic Society, Primate Conservation Inc., American Society of Primatologists to ER; National Science Foundation BCS-0721233 to P.C. Wright, LRG, and J. Jernvall.

Status and the lower class: Health, disease, and biological affinity of the Late Classic Maya suburban community of Guerra, Benavista del Cayo, in the Western Belize Valley.

ERIN BLANKENSHIP-SEFCZEK. Department of Anthropology, San Diego State University.

As part of the San Diego State University Mopan-Macal Triangle Archaeological Project (MMTAP), both large urban centers and small, rural Maya communities were excavated in order to gain a comprehensive understanding of Maya social structure and daily life (Ball and Tascheck, 1991). This study focuses on the low status community of Guerra, which surrounds the site of Benavista del Cayo in the Western Belize Valley. Previous analysis has been done on the royal elite individuals (Mitchell, 2006) and the sub-elite individuals (Black, 2007) of Benavista concluding that the groups were not biologically related. The major question of this study centered on whether the low-status individuals of Guerra were related to the sub-elite individuals, showing both ascribed and achieved status existing simultaneously in this Maya community. Standard protocol data collection was used for age, sex, and pathological assessment. Using non-metric dental traits Guerra individuals exhibit similar characteristics to the sub-elite population suggesting a biological relationship between the two sub-groups, and the possibility of achieved status. Additionally, this study looked at overall health, as well as pathological assessment. Using non-metric dental traits Guerra individuals exhibit similar characteristics to the sub-elite population suggesting a biological relationship between the two sub-groups, and the possibility of achieved status. Additionally, this study looked at overall health, as well as pathological assessment. Using non-metric dental traits Guerra individuals exhibit similar characteristics to the sub-elite population suggesting a biological relationship between the two sub-groups, and the possibility of achieved status. Additionally, this study looked at overall health, as well as pathological assessment.

Let’s talk about sex: principal component analysis of sexually dimorphic traits in the human pelvis.

SAMANTHA H. BLATT and ANA MARIA CASADO. Department of Anthropology, The Ohio State University, Columbus.

The pelvis is considered the most reliable skeletal element for sex determination, as sexual dimorphism in the human pelvis is inherently related to...
parturition. Most morphological traits used to distinguish sex from the pelvis are qualitative; therefore, results rely on experience of the observer and accuracy of the traits used. Principal component analysis (PCA) increases accuracy of sex estimation by reducing trait redundancy and determining which observed variables account for the most variance.

We scored 10 standard sexually dimorphic traits (sub-pubic concavity, ventral arc, medial aspect of the ischio-pubic ramus, obturator foramen, preauricular sulcus, greater sciatic notch, parturition pits, iliac crest shape, robusticity, and ischio-pubic index) of 50 adult male and female osa coxae and sacra (aged 18-93 years old) of known sex from the Hamann-Todd Collection (n=100). PCA and "leave-one-out" cross validation were carried out with the traits accounted for most of the morphological variance between sexes and would therefore serve as criterion variables in accurate determination of sex from the pelvis. Inter-observer error was also determined to account for trait scoring precision. When combining all 10 traits, sex was determined with 97% accuracy. PCA results indicate that sub-pubic concavity score accounted for 55.1% of the variability when the sexes were combined. Between sexes, 73-85% variance was attributable to only 4 principal components using the minegen criterion: sub-pubic concavity, ischio-pubic ramus, obturator foramen, and greater sciatic notch. The other 6 traits are redundant and do not account for a meaningful amount of variance between the sexes.

Differential treatment of neonatal and infant remains in the Anglo-Saxon period: evidence from the early medieval cemetery of Church End, Cherry Hinton, Cambridgeshire.

KATHLEEN BLUE. Department of Anthropology, University of Utah, 5Department of Geology and Geophysics, University of Utah, 1Department of Earth and Planetary Sciences, Johns Hopkins University.

Church End, Cherry Hinton is an Anglo-Saxon Christian cemetery dating to approximately 900-1100 AD. Excavation of the cemetery in 1999 yielded the remains of nearly 700 individuals, of which 40% were juveniles under the age of 18 years. A total of 201 juveniles were examined in this analysis, of which 37 (18%) were found to be between the ages of 22 gestational weeks and 6 months postnatal. This figure contrasts markedly with reported data from 12 early Anglo-Saxon cemeteries, where less than 1% of the total remains belong to individuals identified as neonates. While in later cemetery populations infants are more likely to die in the postnatal period, the Church End, Cherry Hinton data shows a more even distribution of deaths occurring in the neonatal and post-neonatal periods.

This, however, differs from several contemporary cemeteries where more deaths occurred from endogenous causes (at <40 gestational weeks) than in the months following birth. Although preservation biases may account for some of the differences between the above mentioned sites, it seems likely that differential burial practices, in conjunction with discrepant risk factors, may explain the divergent data. The Anglo-Saxon period (ca. 400-1200 AD) saw changes in religious practices, while differences in cemetery locale (rural vs. urban) and conditions in the exogenous environment also likely play a role. This analysis examines both the osteological data as well as the possible biocultural factors affecting inclusion of neonates and infants in the Church End, Cherry Hinton cemetery.

Stable isotopes in wild gorilla feces document seasonal dietary change and rainfall patterns.

SCOTT A. BLUMENTHAL1,2, KENDRA L. CHRITZ2, THUIRE E. CERLING3,4, and JESSICA M. ROTHMAN1,2,5. 1Department of Anthropology, The Graduate Center, City University of New York, 2New York Consortium in Evolutionary Primatology, 3Department of Biology, University of Utah, 4Department of Geology and Geophysics, University of Utah, 5Department of Anthropology, Hunter College, City University of New York.

Stable carbon and nitrogen isotope composition of gorilla feces and plant foods is used to quantify short-term intra-animal and inter-seasonal diet changes in four wild gorillas from Bwindi Impenetrable National Park, Uganda. Gorillas have a diverse diet including herbaceous leaves, fruit, tree leaves, pith, and peels, and are known to live in fruit-rich environments. Carbon isotope analysis of staple foods, cumulatively comprising ~96% of dietary intake, demonstrates that fruits consumed by these gorillas exhibit more enriched 13C values relative to other dietary items. Stable carbon isotope values of gorilla feces from these individuals, each represented by at least two samples per month, exhibit several distinct peaks. These isotope peaks are interpreted as recording seasonal shifts in frugivory. Stable nitrogen isotope values of gorilla feces correspond in time to seasonal rainfall patterns. Correlation of isotope patterns from multiple individuals suggests that isotope data from a single animal records the behavior of the group. Previous work on the diets of these same gorillas provides a rare opportunity to compare a high-resolution isotope record of known seasonal changes in dietary composition in a wild primate with variation in nutrient intake and dietary quality. In addition to supporting isotope values for an enriched sampled taxon, this work highlights the limitations of bulk tissue analysis for reconstructing activity of life forms at very fine temporal scales.
and basin-wide scales at a time when hominin species were diversifying and, in some areas, exhibiting new patterns of behavior.

Phylogenetic analysis reveals relaxed constraints in primate encephalization during mammalian descent.

AMY M. BODDY1, CHET C. SHERWOOD2, MORRIS GOODMAN1,2,3 and DEREK E. WILDMAN1,4,5 Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, 2Department of Anatomy & Cell Biology, Wayne State University School of Medicine, 3Department of Obstetrics and Gynecology, Wayne State University School of Medicine and Hutzel Women’s Hospital, Detroit.

Encephalization is an increase in brain mass relative to body mass. Humans are the most encephalized mammal and this high degree of encephalization is associated with the evolution of cognitive abilities, including the skills needed for complex language and culture. Encephalization is not exclusively human and there is evidence for degrees of encephalization in non-human lineages. To provide insight into the timing of major changes in encephalization during mammalian descent, ancestral state reconstruction of brain mass, body mass, and encephalization quotient (EQ) was performed using squared-change parsimony. We examined brain and body mass in 601 mammalian species. Linear regression confirms a significant relationship \(r^2 = 0.954, p < 0.0001 \) between body mass and brain mass, and the relationship remains significant \(r^2 = 0.881, p < 0.001 \) after correcting for non-independence of character traits by standardizing contrasts. To perform ancestral state reconstructions, phylogenetic relationships were taken from a published supertree. We considered species to be encephalized when EQ > 1. The ancestral node EQ for all mammalian species is 0.874 and the EQ ranged from 0.139—6.292. Primates (n = 76) emerged as outliers among all mammalian orders, with a crown node EQ of 1.984 and they encompassed the most diverse range of encephalization (EQ = 0.898-6.292). Haplorrhines demonstrate both expansion and reduction of variable EQ, and we present evidence that Haplorrhines demonstrate the most diverse patterns of behavior.

Project MINA explores the relation between Migration, Nutrition, and Ageing of Bangladeshi women. The Bangladeshi community in the United Kingdom (UK) is thriving; however, many of its members are socially disadvantaged and suffer from high levels of disability, obesity, diabetes, and cardiovascular disease. Little is known about the causes. We use a Life History Theory perspective to analyze trade-offs in health and reproduction for females in their 20s, for females in their 30s, and for females in their 50s. Comparisons between captive Pan paniscus and captive P. troglodytes confirm a general uniformity in the absolute timing in their skeletal fusion patterns. Therefore, like the case in captive versus wild P. troglodytes, we posit that captive P. paniscus skeletal growth is accelerated compared to that of wild populations.

Evaluation of secretion vs. maturation in human dental enamel from LA-ICPMS compositional profiles.

LUCA BONDIOLI1, WOLFGANG MÜLLER2,6 and PAOLA F. ROSSI1. 1Museo Nazionale Preistorico Etnografico 'L.Pigorini', I-00144 Rome, Italy. 2Department of Earth Sciences, Royal Holloway University of London, Egham, U.K.

The appositional process of human tooth enamel formation stores time-series information of environmental proxies including mobility, palaeodiet or heavy-metal exposure, potentially readable at daily resolution. However, in mature enamel, the protracted mineralization processes may have partially erased environmental signals initially laid down. We used laser-ablation inductively-coupled-plasma mass spectrometry (LA-ICPMS) to analyze profiles of compositional changes through enamel thickness on thin sections under historical control. The sample includes human permanent molars and deciduous teeth (n = 6) from archaeological and modern collections. Chemical data are combined with enamel histology to determine the chronological sequence of the profiles. Time-equivalent tracks in enamel are analyzed 1) parallel (and very close to) the enamel-dentine-junction (EDJ) and 2) parallel to enamel prisms, which both are connected along 3) isogrowth.
lines (NNL or other Retzius lines). This approach facilitates an evaluation of the topographical effect of secondary maturation and offers clues on the reliability by which varying environmental signals are stored in and can be retrieved from enamel. Results suggest that different elements show very different responses to secondary enamel maturation. Notably Zn shows an enrichment of >10x from the EDJ towards outer enamel. Sr and Mg concentrations uniformly decrease (approx. 1.5x) parallel to prisms and along NNL/Retzius towards outer enamel, but not along the EDJ. In contrast, bioapatite unaffected by maturation because it shows up similarly along EDJ and parallel prisms, and appear ‘frozen-in’ along NNL/Retzius. Enamel closest to the EDJ appears to escape some of the enamel maturation process and may better preserve environmental signals.

The coxo-femoral joint: insight from the three-dimensional analysis of the labrum.

NOEMIE BONNEAU1, CAROLINE SIMONIS1, JULIE BOUHALLIER1, MICHEL BAYLAC2, OLIVIER GAGEY3 and CHRISTINE TARDIEU1.1 Museum National d’Histoire Naturelle, Paris, 2Hôpital Bicêtre, Le Kremlin Bicêtre.

Humans are characterized by a permanent bipedalism which entails a decrease of the base of support and a rise of the body centre of mass implying a loss of stability. To ensure a stable equilibrium configuration, the skeleton of our ancestors was modified in the course of evolution in response to the constraints imposed by gravity. Some biomechanical models such as the one proposed by Paulewits described this stable equilibrium configuration and pointed out the crucial role of the coxo-femoral joint. We explored the origin of this joint by analysing the three-dimensional orientation of the acetabulum and its relation with the orientation of the femoral neck.

An innovative cadaver study of the labrum was developed to shed light on the questions surrounding the proper quantification of the three-dimensional orientation of the acetabulum. Digitalisations on 20 cadavers using a MicroScribe were performed and data were analysed using custom-made library in R. Our results suggest that the anterior and posterior rims of the acetabulum form an angle of 23.8° on average, rather than being in the same plane. The value and the orientation of this angle allow us to predict (p < 0.0001) the orientation of the labrum, a fibrocartilage not present in fossil material. Moreover, a new plane was established and its biomechanical implications were investigated.

The three-dimensional orientation of the acetabulum is a fundamental parameter to understand the locomotor system and has applications for THA surgeries. Currently, we are expanding our study on a large sample of dry skeletons.

New interpretation of a standard statistic for principal components in physical anthropology.

FRED L. BOOKSTEIN. University of Vienna, University of Washington.

Inside many applications of principal component analysis (PCA) to landmark location data in physical anthropology and paleoanthropology a serious logical fallacy may be concealed. Such studies usually exploit PCA via an ordination combining the first principal component, probably representing size allometry, with the next one or two in a search for trends or clusters. This practice typically ignores the issue of whether those successive components are well-defined. The issue is particularly salient in applications to geometric morphometric analyses of landmark location data and often involves the use of diffusion-like (spherical) noise is always present and may account for most of the variance of shape. As prolyphaxis one can apply a classic Anderson approach for testing sphericity of successive components. His standard formula can be modified into an assessment of whether a specific high-order component, such as the second, can be treated as interpretable or must instead be seen as "more likely than not" inextricable from the following component(s). For samples of 50 specimens, the PC1-PC2 plot is declared uninterpretable if the ratio of the second eigenvalue to the third is less than 1.5. For larger samples, this critical ratio drops as 1 plus a multiple of the reciprocal square root of sample size. The problem becomes more serious as samples become smaller, which is typically the case for applications in paleoanthropology. Examples of published data are shown where this approach permits interpretation of the conventional ordinations, and also examples where interpretation should be prohibited on strictly statistical grounds.

The indirect nature of male bonobo aggression.

KLAREE J. BOOSE and FRANCES J. WHITE. Department of Anthropology, University of Oregon, Eugene.

Male chimpanzees increase their reproductive success through aggression in agonistic contests, coalitions and alliances, male dominance interactions and coercive mating. Aggression in male bonobos, in contrast, is described as less intense and less effective. However, male bonobos do engage in agonistic conflicts over dominance and male rank is still correlated with mating success. This study presents both wild and captive data to examine the function of male aggression within the female-centric social system of bonobos. In both wild and captivity, male aggression often occurred away from females. Male aggression against females was directed at low-ranking, peripheral, or juvenile females significantly more than adult or core females (captive: r = 0.971, p < 0.05). Male aggression against females was directed at low-ranking, peripheral, or juvenile females significantly more than adult or core females (captive: r = 0.971, p < 0.05).

Molecular regulation of tooth versus jaw morphogenesis.

JULIA C. BOUGHNER. Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada.

To understand the origins of developmental variation in primate dentitions it is important to know how embryonic tooth and jaw development are coordinated in time. Do these systems self-regulate their developmental timing or does an external factor set the pace? A sensible starting place is to tease apart the signaling networks that regulate tooth versus jaw morphogenesis in the presumptive mandible. As such I contrasted gene expression in the first pharyngeal arches (PA1) of two mouse models, one (p63+/−) in which miyuds and ddy develop the dyads of a rival male with a female (captive: G = 0.05, p < 0.001). These interventions may have replaced direct male-male contest competition in bonobos because females often stop male-male contests. Our results suggest that factors related to female cohesion reduce the benefits of male direct and coalitionary aggression and instead have selected for alternative individual male strategies utilizing indirect agonism.

Research was supported by NSF grants BNS-8311252, SBR-9600547, and BCS-0610233 and The Leakey Foundation.

American Journal of Physical Anthropology
p63+/- embryos aged GD10-13 I saw no significant difference in the expression of genes known to be important to mandibular development. In p63+/- embryos aged GD13, by which time tooth morphogenesis had failed, I saw significantly decreased expression of genes known to be important to tooth morphogenesis, such as keratin and collagen genes, as well as genes with no direct link to dental development. Expression was increased for only one gene, claudin6, directly implicated in tooth development. This work begins to disentangle the molecular regulation of dental and mandibular morphogenesis.

This study was funded by the University of Calgary Research Grants Committee, the Skeletal Regenerative Medicine Team (CIHR), with support from Génome Québec Innovation Centre.

An ancient DNA study of tuberculosis in Europe.

ABIGAIL BOUWMAN1, ROMY MULLER1, CHARLOTTE ROBERTS2 and TERRY BROWN1. 1Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, UK, 2Department of Archaeology, Durham University, UK.

In 2008 there were an estimated 20 million cases of tuberculosis (TB) with 1.92 million deaths. TB is thought to infect one-third of the world’s population. Some infected individuals develop skeletal lesions (3-5%) such as destruction and deformation of the lower spine. These have been identified in European skeletal remains from as early as the 6th millennium BC. Some remains contain ancient DNA (aDNA) derived from the bacterium *Mycobacterium tuberculosis*. The objective of this research is to examine aDNA in skeletal remains to study the evolution of TB in Europe over the last 3000 years. Previous work on TB aDNA has been hampered by false-positive detections due to the presence of related bacteria from soil in skeletal samples. We have designed specific tests and used these to screen 488 skeletons from 136 European sites, the largest set ever studied in this way. Positive results for TB aDNA were obtained for 144 skeletons (29.5%), with a correlation between aDNA presence and the extent to which a skeleton displayed TB indicative lesions; some skeletons with no lesions gave positive results. Using a new methodology for aDNA sequencing, we are currently typing the genetic variations between the *M. tuberculosis* strains present in the positive skeletons. The results are enabling us to test hypotheses regarding the spread of TB in prehistoric Europe, the differential evolution of the disease in urban and non-urban regions, and the relationship between European TB and the less virulent disease present in the New World before Contact.

This study was funded by the UK Natural Environment Research Council (Grant 210035) and the University of Manchester.

Dental topographic variables (Orientation Patch Count, Relief Index, Dirichlet Energy) of platyrrhine second mandibular molar.

DOUG M. BOYER1-4, SIOBHÁN B. COOKE1,3, JONATHAN BUNN2, and ELIZABETH M. ST. CLAIR2. 1Departments of Anthropology and Archaeology, Brooklyn College, City University of New York (CUNY), 2New York Consortium of Evolutionary Primatology, 3Department of Anthropology, The Graduate Center, CUNY, 4Inter-departmental Doctoral Program in Anthropological Sciences, Stony Brook University; 5Department of Anthropology, Duke University.

Recent work with 3D digital imagery of teeth of non-anthropoid euarchontans and other mammals suggests Orientation Patch Count (OPC), Relief Index (RFI) and Dirichlet Energy (DE) can, in several ways, be more effective for capturing dietarily significant variation than molar shearing-crescent measurements. Here we evaluate whether such variables also reflect differences in diet among platyrrhines using a pilot sample of 40 m2/2s representing *Alouatta, Brachyteles, Ateles, Callicebus, Aotus, Cebus, Lagotrichia*, and *Saimiri*. We predicted that OPC, RFI, and DE are highest in folivores and insectivores. Samples were laser-scanned as dentitions using an LD1 RPS-120 and then cropped to m/2 and patched using Geomagic.

Results of ANOVA on OPC do not show significant differences by taxon or diet groups. ANOVA’s on RFI are modestly significant, yet *Ateles* exhibits significantly higher RFI than *Alouatta*, contrary to predictions. In contrast, DE is highly significant, differentiating taxa utilizing different diets.

Previous findings of significant variance in OPC and RFI among primate taxonomic and diet-groups used microCT scans of isolated teeth, creating concern that low variance found here is due to using models cropped from laser scans of tooth rows. Measuring six microCT-generated models of atelids reveals *Ateles*’ average RFI to be 5% lower than *Alouatta’s*, but non-significant. Furthermore, this difference is dwarfed by 22-23% differences separating the two in both DE and quantifications of relative crest length, using laser-scan or microCT data. We suggest that *Ateles* exhibits high RFI, despite low crest development (as captured by DE and shearing ratios/quotients) due to increased hyposodonty.

This study was funded by Brooklyn College CUNY, which provided a laser scanner.

A 2010 AAPA Professional Development Grant to D.M.B. and a NSF DDIG 0726134 to S.B.C. provided funds for scanning platyrrhine dentitions. Finally, NSF DGE 0333415 (NYCEP IGERT) helped make this research possible.

Does prenatal androgen exposure in mixed-sex litters of non-human primates affect later reproductive fitness?

BRENDA J. BRADLEY1, WILLIAM C. MCGREGOR2, CHARLES T. SNOWDON3, RICHARD R. LAWLER1, and ANNICK MCINTOSH1. 1Department of Anthropology, Yale University, 2Department of Anthropology and Archaeology, University of Cambridge, 3Department of Psychology, University of Wisconsin, 4Department of Anthropology, James Madison University.

Sex hormones, such as testosterone, can diffuse through amniotic fluid and fetal membranes, and developing fetuses can receive substantial hormone doses from adjacent littermates. Females with male littersmates can risk exposure to high levels of fetal testosterone, and such exposure has been shown to have masculinizing effects and fitness consequences in some mammals, including humans. While most primates give birth to single offspring, several New World monkey and prosimian species regularly give birth to twins or small litters. We examined whether neonatal testosterone exposure might be detrimental to females in these mixed-sex litters, and if so, whether primate mothers litter sex ratios to avoid mixed-sex litters. We compiled data from long-term breeding records of seven species that regularly have multiple births, including one monkey species (*Saguinus oedipus*; 822 individuals, 401 litters) and six prosimian species (*Varecia variegata*, *Varecia rubra*, *Microcebus murinus*, *Mirza coquereli*, *Cheirogaleus medius*, *Galago moholi*; 97-250 individuals, 57-173 litters). For all seven species, measures of reproductive success, including survivorship, latency to first birth after pairing, inter-birth interval, birth rate, and offspring-survivorship rate did not differ significantly between females born in mixed-sex vs. all-female litters. Similarly, litter sex ratios did not differ from the expected 1:2:1 ratio in twins and 1:2:2:1 ratio in triplets. These data on sex ratios and reproductive success indicate that litter-producing non-human primates successfully avoid the detrimental effects of prenatal androgen exposure in mixed sex litters, and we are now examining the possible proximate mechanisms underlying this capability.

American Journal of Physical Anthropology
Evolutionary perspectives of bony labyrinth in humans, chimpanzees and baboons: high resolution three-dimensional comparisons.

JOSE BRAGA¹, MARC Fournier²,³,⁴, BENOIT COMBES²,³,⁴, DIDIER DESCOCQUES¹, GERARD SUBSOL¹, VERONICA PEREDA-LOTH¹, SYLVAIN PRIMA²,³,⁴. ¹Laboratory of Anthropobiology, FRE 2960 CNRS, University Toulouse (Paul Sabatier), Toulouse, France, ²INRA, VisAGeS Project-Team, F-35042 Rennes, France, ³INSERM, U746, F-35042 Rennes, France, ⁴University of Rennes I, CNRS, USMB, F-35042 Rennes, France, ⁵Laboratory of Computer Science LIIRM, CNRS/University Montpellier 2, France.

The bony labyrinth consists of three parts (the two vestibular sacs, the three semicircular canals and the cochlea) and houses two functional systems. The vestibular system provides one way of motion detection in a three-dimensional space. The cochlea is specialized for sound detection. The close anatomical relationship between the bony labyrinth and the corresponding receptor endorgans provides an opportunity to study osteological specimens (including fossils). The investigation of the three-dimensional (3D) anatomical variation of the bony labyrinth in extant species represents a prerequisite for the interpretation of their fossil closest relatives. This prerequisite has not been completely fulfilled yet due to (i) the 3D geometry complexity of the labyrinth; (ii) the difficulty to acquire high resolution data; (iii) the few proposed expert-independent comparative methods.

Here, we use 3D geometrical models of 40 bony labyrinths reconstructed from micro-CT scans of extant humans, chimpanzees, baboons and baboons. We recently developed automated computational tools allowing to process 3D free-form surfaces, and more specifically to assess the metric anatomy within a sample, the pattern of variability around this mean, and to compare samples. Our results allow us to identify the most common features and most striking differences within and between species. The use of such automated, 3D and objective techniques, coupled with standard linear, surface or volume measurements, may allow to gain further insight into the co-evolution of the two functional systems housed in the inner ear of the extant and extinct higher primates.

Research supported by the French Institute for Research in Computer Science and Control (3DMMORPHINE Concerted Research Action), the HOPE (Human Origins and Past Environments) International Program and the French Ministry of Foreign Affairs.

American Journal of Physical Anthropology

Genetic diversity of Native Americans in the multilingual area of Vaupés-Guaviare, Colombian Amazon.

YAMID BRAGA, LEONARDO ARIAS and GUILLERMO BARRETO. Laboratorio de Genética Molecular Humana, Departamento de Biología, Universidad del Valle, Cali, Colombia.

Amazon region in Colombia harbor a lot of different ethnic groups, some of these belonging to East Tucano and Guahibo language families. With the goal to estimate biological diversity in this multilingual area, we sequenced 546 pb of the mtDNA control region, typing 5 Y-STR and the Q-M3 SNP of two Tucano groups (Vaupés and Guaviare n=66) and one Guahibo group (Guaviare n=23). Tucanos of Vaupés presented 40 polymorphic sites (according to rCRS) and 29 haplotypes, Tucanos of Guaviare 34 and 19 haplotypes and Guahibos of Vaupés and 4 polymorphisms in 4 haplotypes, all belonging to the major Native American haplogroups A-D. The Guahibo mtDNA haplotype diversity is low, which is typical of Hunter – Gatherer groups, likely representing a drastic reduction of population size and the latter fixation of the present haplotypes. The Tucano scenario is different, represented by higher gene diversity (average 0,900) and higher number of haplotypes. All Y Chromosomes belong to Q-M3 lineage; Tucanos do not share Y-STR haplotypes with Guahibos. The data show that Tucanos and Guahibos are different groups, the Tucanos exogamous practices respect to the language, probably generate a more biological and linguistic diverse populations in the Vaupés area, Southeast of Colombia. We are reporting DNA data of two linguistic families that improve our knowledge about the biological diversity of Amazon ethnic groups.

We thank to ethnic groups and the volunteers who donated the samples.

Aquatic resources use by Pleistocene hominins in the Turkana Basin.

DAVID R. BRAUN¹, JOHN W. K. HARRIS¹, JACK T. MCCOY² and BRIAN O. DEPARTMENT OF ARCHAEOLOGY, UNIVERSITY OF CAPE TOWN, ¹DEPARTMENT OF ANTHROPOLOGY, RUTGERS UNIVERSITY, ²DEPARTMENT OF ANTHROPOLOGY, GEORGE WASHINGTON UNIVERSITY.

The incorporation of animal tissue into the diet of early Pleistocene hominins is often considered to be a key attribute that distinguished the later members of our genus from earlier ancestors. The expansion of the brain during this time is likely linked to a suite of other adaptations such as reduction in tooth and gut size. Current evidence of animal tissue acquisition by hominins is some what lacking compared to the abundant evidence for tool manufacture found throughout East Africa. This dearth of evidence has sometimes been associated with the increased risks associated with a carnivorous diet (i.e. competition with large mammalian carnivores). Here we present evidence from archaeological assemblages from the Koobi Fora Formation (Turkana Basin) that supports the hypothesis that an array of aquatic resources was part of a dietary adaption for Pleistocene hominins. In particular, we review the evidence from high density sites where the archaeological data suggest hominins incorporated a diversity of aquatic resources in their diet. These resources are high in critical brain-selective nutrients that may have relaxed selective pressures for the expansion of hominin brain size. These specific nutrients would have been important given the physiological constraints of increasing brain and body size. Evidence of aquatic resource use in many Pleistocene localities is sparse and we explore possible scenarios for this. We believe the data from the Turkana basin suggest that an increase in the diversity of dietary adaptations was important to the success of our ancestors prior to the appearance of H. erectus.

This study was funded by a National Science Foundation Graduate Research Fellowship and the Center for Human Evolutionary Studies.

The chemistry of omega-3 fatty acid, docosahexaenoic acid (DHA), is critical for human brain function.

J. THOMAS BRENNER. Division of Nutritional Sciences, Cornell University, Ithaca, New York.

The omega-3 DHA is special among fatty acids. It comprises more than 1% of the dry weight of brain of many species including that of humans. When dietary omega-3 fatty acids are absent during brain development, they are replaced by the closest structural analogues that can be made from omega-6 fatty acids. DHA is found as a component of phospholipids in neuronal cell membranes, particularly the synapses. We hypothesized that a lack of DHA in specific modern diets leads to cognitive deficits, and that redundant molecular systems would be limited in their ability to synthesize DHA from plant-based precursors. Supporting this hypothesis are dozens of studies including our own showing that omega-3 deficiency causes visual, cognitive, motor, and mood-related deficiencies, indicating that DHA is especially crucial for proper higher neural function. These observations predict that molecular mechanisms for upregulating DHA synthesis would be limited in humans. This hypothesis is supported by our data showing that the key biosynthetic enzymes, the desaturases, are upregulated when...
diet DHA is limiting but unable to support brain DHA at the same levels that are achieved by consuming preformed DHA. The omega-6 DHA analogue, docosapentaenoic acid (DPA) replaces DHA in membrane phospholipids, compromising retinal and brain function. We conclude that the ability of humans to biosynthesize DHA from plant-based omega-3 precursors is very limited, thus suggesting that the growth of a run-away brain depends on a steady dietary supply of DHA during human brain expansion, and consistent with frequent consumption of shore-based foods.

A geometric morphometric approach to the question of open social networks in the European Upper Palaeolithic and Mesolithic.

CIARA N BREWSTER. Department of Anthropology, Yale University.

It has been proposed that open social networks over vast areas of the European continent offered Late Pleistocene hunter-gatherers an adaptive strategy that allowed them to maintain contact and biological continuity. Open social networks were further advanced as an explanation of the relative homogeneity of material culture across wide geographic regions of the continent during the Early Upper Palaeolithic. It is generally thought that there is a shift to more closed social networks towards the end of the Late Pleistocene as population density increased and human groups became more sedentary. Digitised cranial landmarks were analysed using geometric morphometric analysis to examine whether there is a shift towards greater regionalisation of cranial traits from the Early Upper Palaeolithic to the Late Mesolithic periods. Landmarks were generated by Genrad, digitally analysed and analysed using multivariate statistics. The degree of cranial variation in the Upper Palaeolithic is consistent with the presence of open social networks. In contrast, there is increased regionalisation of cranial traits in Mesolithic populations. While the cranial variation of all populations in this study are relatively homogeneous through time and space, there is evidence of closure of long distance social networks during the Mesolithic. This study was funded by the Irish Research Council for the Humanities and Social Sciences.

Hormones, life history trade-offs, and male reproductive health.

RICHARD G. BRIBIESCAS. Department of Anthropology, Yale University, New Haven.

Hormones are key agents that regulate life history trade-offs in all vertebrates, including human males. Moreover, non-pathological hormone variation in males between and within populations is considerable, suggesting that ecological factors such as diet, lifestyle, energetic expenditure, and so on may shape these burdens significantly. This presentation will illustrate recent empirical and theoretical developments regarding the role of reproductive, metabolic, and stress hormones in regulating life history trade-offs in human males and subsequent ramifications on reproductive health in men. The overarching hypothesis is that hormone fluctuation and differences incur distinct costs and benefits on survivorship and reproductive effort, often resulting in the emergence and prevalence of health challenges. In particular, issues such as the associations between prostate cancer, aging, somatic condition, and risk taking will be examined in light of non-pathological hormone variation between and within populations living under different ecological circumstances. Recent comparative metabolic hormone results from chimpanzees will also be presented to exemplify male life history trade-offs that are unique to Homo sapiens. Results support the assertion that variation in hormones such as testosterone is reflective of adaptive functional mechanisms that optimize trade-offs between the health costs and benefits of hormone variation, as well as investment in survivorship and reproductive effort in human males.

Innate immune function has evolved differently in old world monkeys, apes and humans.

JESSICA F. BRINKWORTH1,2, KATE PECHENINKA1,2, JACK SILVER3 and SANNA M. GOYERT1. 1Department of Anthropology, City University of New York, 2New York Consortium in Evolutionary Medicine, Department of Microbiology and Immunology, Sophie Davis School of Biomedical Education, City University of New York.

Innate immunity is the initial host defense against invading pathogens and involves activation of innate immune cells via Toll-like receptors (TLRs). Humans, chimpanzees and baboons are estimated to share ~92% genomic identity, yet very differently manifest diseases that are, in humans, characterized by overt activation of innate immunity (HIV, hepatitis). These species are hypothesized to have divergent histories of pathogen exposure due to differences in geographic distribution and behaviour. To examine if humans, chimpanzees and baboons have evolved different innate immune responses to environment-specific infectious agents, fresh whole blood from these species was stimulated with TLR-detected molecular components from pathogens unevolvedly distributed across primate evolutionary habitats (i.e. Mycobacterium, Yersinia pestis). Blood was stimulated for 90 minutes. Immune activation was assessed by measuring RNA expression levels of cytokines and chemokines by real-time PCR. Strong inter-species differences in cytokine/chemokine expression (IL1B, IL1RN, TNFa, CXCL2, CCL3) were detected, suggesting divergence in innate immune function among catarhines over the last 23-29 million years. Surprisingly, baboons and humans express very different innate immune responses to Mycobacterium, a presumed Savannah-originated pathogen with which both species are assumed to have had close ecological interactions in the past. Furthermore, chimpanzees which share 98.6% genomic identity with humans express significantly stronger pro-inflammatory responses to LPS than humans or their more distant relative, baboons. These observations suggest that the evolutionary divergence of innate immunity among catarhines cannot be explained solely on the basis of their geographical environment and pathogen exposure but may be the result of more complex evolutionary interactions.

This study was supported by the NSF (BCS-0752297 to JFB), the Wenner Gren Foundation (7845 to JFB), the NIH/NIAID (R01AI023859 to SMG) and the NIH/NCR (G12RR03060 to CCNY).

The use of foramen magnum dimensions for sex determination in an indigenous South African population.

DESIRE BRITS1, BRENDON BILLINGS1, MANISHA DAYAL2 and MUHAMMAD SPOCET1. 1School of Anatomical Sciences, University of Witwatersrand, Medical School, Johannesburg, South Africa, 2School of Biomedical and Health Sciences, University of Western Sydney, Australia.

Determining the sex of an individual is a critical step in routine biological profiling. While the occipital bone has proved useful for this purpose in other population groups, discriminant function equations based on the cranial base and applicable to a South African black population are as yet to be derived. In this study we examined sex differences in the cranial base data of 120 (60 males, 60 females) randomly selected adult skulls, aged between 20 and 60 years of age, from the Raymond Dart Collection of Human Skeletons. Significant sexual dimorphism was detected in the cranial base of this sample population. Univariate discriminant function analyses revealed that the percentage of correctly classified crania within this population group ranged from 80.8% to 85.6%. Cross validation producing fairly similar results. A bivariate discriminant function using foramen magnum length and foramen magnum breadth yielded...
a percentage accuracy of 62.5%, with 65% of males being correctly classified while only 60% of females were correctly classified. A preliminary investigation into the use of artificial neural networks for sex determination based on the foramen magnum revealed that percentage accuracies could be marginally increased in males to 68.9% whereas percentage accuracies in females tended to drop to just above 50%.

Overall these results indicate that there is significant expression of sexual dimorphism in the cranial base of a fossil bovid tooth is often imprecise and subjective. Biasing factors such as age and degree of occlusal attrition complicate identifications and often result in considerable overlap in the shape and size of teeth of different species. Previous work suggests that bovid teeth can be reliably identified based on the occlusal surface of their teeth (Brophy, 2010). This study expands on that research and investigates whether the average shape of the occlusal surface of a tooth remains consistent over the life-span of a bovid regardless of age and attrition. This research assesses intra-tooth variation by taking computed tomography (CT) scans of a sample of teeth from the bovid tribes most commonly recovered from South African fossil sites. I applied Elliptical Fourier Function Analysis (EFFA) to specific increments of CT scan slices from the same tooth and used discriminant function analysis to compare the results of the EFFA across the different scans from the same tooth with a dataset of known teeth. Results indicate that the shape of the tooth throughout an animal’s life does not change significantly enough to impede identification of that tooth using the occlusal surface. The findings support the use of occlusal outlines as reliable indicators of bovid species. Accurate taxonomic diagnoses of fossil bovid teeth will aid in producing more precise reconstructions of hominin paleoenvironments than are presently available.

GABA ABSTRACTS

Going to extremes: body size and obstetrical adaptation.

KIRSTEN BROWN, VALERIE B. DELEON AND CHRISTOPHER B. RUFF.
Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, MD.

Sexual dimorphism of the modern human pelvis is generally attributed to obstetrical adaptations in females. While females are larger than males for obstetrically critical dimensions, new research suggests that there are dissimilarity patterns of dimorphism between populations, particularly with gross differences in body size. Smaller-bodied women may even be absolutely larger for obstetrically critical dimensions. This study tests the idea that populations with different body types exhibit dissimilar patterns of sexual dimorphism. The obstetrical dimensions between the relatively wide-bodied Native American Arikara and the relatively narrow-bodied Medieval Kulubnarti were analyzed using 3D geometric morphometrics. Landmarks (k = 43) were collected on the assembled pelvises of male and female Arikara (N = 29.32) and Kulubnarti (N = 29.30) individuals. Generalized Procrustes Analyses (GPA) and Euclidean Distance Matrix Analysis were used to localize shape differences between the two populations. GPA identified significant shape differences between the populations (p < .05); relative to other landmarks, the ischial spines and sacrum move posteriorly; the pubis moves superiorly, the ischial tuberosities move medially, and anterior superior iliac spine move anteriorly in Kulubnarti individuals. However, a two-way, full-factorial MANOVA found no significant interaction between sex and population, suggesting patterns of sexual dimorphism are comparable. EDMA analyses identified linear distances with significant differences between the two samples, localized morphological changes may still provide complimentary methods. This study was funded by grants from the PA State System of Higher Education and the National Science Foundation (# BCS-0820751).

Neurocranial evolution in Middle Pleistocene: a paleoneurological study of Jebel Irhoud 1.

EMILIANO BRUNER1 and OSBORN PEARSON2. 1Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain, 2University of New Mexico, Albuquerque.

The late Middle Pleistocene human fossil record is rather scanty and geographically fragmented. In Europe, after archaic morphotypes like Ceprano and Saccopastore 1 display clear Neandertal traits. In Africa the situation is more heterogeneous, and evolutionary hypotheses must be more tentative. Despite its good preservation and possible relationship with the origin of the modern humans, the phylogenetic position of Jebel Irhoud 1 remains debated. Here we compare the neurocranial and
endocranial shape and features of this specimen with other Middle and Upper Pleistocene specimens to provide further paleoneurological information on the early stages of the evolution of modern human brain. Although facial traits suggest a phylogenetic relationship with early modern human dispersals, the neurocranial and endocranial morphology of this specimen is definitely non-modern, resembling instead the contemporary European morphotypes. The fossil's slight bulging of the frontal squama is probably associated with bone's orientation and facial reduction rather than actual changes of the frontal profile. The mid sagittal neurocranial geometry fits comfortably within African and European Middle Pleistocene human variation; lateral proportions are somewhat similar to those of Neandertals. If Jebel Irhoud robustus is assigned to the Paranthropus genus (i.e., it is a robust hominin), it is not possible to determine whether this specimen is assigned to Paranthropus robustus or A. africanus. Further analysis of this specimen is required to resolve this issue.

Diet and polyspecific associations affect nearest-neighbor distances of redtail monkeys in Kibale National Park, Uganda

MARGARET A. BRYER1, COLIN A. CHAPMAN2, and JESSICA M. ROTHMAN1,3. 1Department of Anthropology, Hunter College of the City University of New York. 2Department of Anthropology & School of Environment, McGill University, 3New York Consortium in Evolutionary Primatology (NYCEP).

The possibility of predation and the need to consume shared foods are central to understanding primate social organization and affect spatial patterns of individuals within groups. Fruit, typically a clumped resource, is predicted to bring individuals in closer proximity during feeding than leaves and insects, which are more widely dispersed. Polyspecific associations are also expected to affect spatial patterns because the presence of multiple resource types presumably provides increased protective effects. We examined the effects of food type and polyspecific association on nearest-neighbor distances of redtail monkeys (Cercopithecus ascanius) in Kibale National Park, Uganda by observing adult males and females in one group from November 2008-May 2010 (N=3916 scans). When redtails consumed fruit, they were closer in proximity to their nearest neighbor than when they consumed leaves or insects. Other monkey species (n=5 species) were present within the group, redtail monkeys were farther from their nearest neighbor than when alone; however, this effect was apparently driven by redtail associations with red colobus monkeys (Procolobus Rufomitratus) and grey-cheeked mangabeys (Lophocebus albigena) specifically, as when neither mangabeys nor red colobus were present, nearest-neighbor distance was not affected. Prior research suggests that mangabeys and red colobus are more aggressive towards predators than the other monkey species, which may account for this result. Our results support expectations regarding the ways in which food distributions and predation affect primate spatial patterns and suggest mechanisms to study predation risk.

Comparing estimated ontogenetic molar wear rates of Australopithecus africanaus and Paranthropus robustus.

JONATHAN M. BUNN. Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University.

Differences in the masticatory apparatuses of Australopithecus africanaus and Paranthropus robustus have been hypothesized to result from broad dietary differences, with A. africanaus consuming a diet of relatively softer and/or less abrasive foods relative to P. robustus. Recent comparative analyses suggest instead that these hominins consumed similar diets differing primarily in critical resources. Molar macrowear may assist in addressing this question. Experimental studies indicate that harder foods cause relatively higher rates of wear in molar teeth. Wear rates can be estimated by sampling wear from multiple individuals of assessed age. I examined casts of 23 deciduous second molars and 39 permanent first molars attributed to juvenile A. africanaus and P. robustus for which age-at-death had been estimated in the literature using an ape-like development schedule. Area of exposed dentin and tooth type wear scores were quantified. For each species and tooth type wear scores and the square root of dentin area were regressed separately on age and slopes were compared with a GLM. A second analysis was completed with variables multiplied by a relative enamel thickness constant to control for enamel thickness. Wear rates between these species do not differ significantly for either dentin area or wear score, regardless of controlling for enamel thickness. Additionally, wear rates for second deciduous molars are significantly higher than for permanent first molars in both species. These results do not support the hypothesis that A. africanaus and P. robustus had broadly different diets, but are consistent with suggestions that these species exploited different critical resources.

This study was funded by an NSF GRF.

Fertility theory and evolutionary games.

KEVIN M. BURKE1, CLAUDIA R. VALEGGLIA1,2 and HANS-PETER KOHLER3. 1Department of Anthropology, University of Pennsylvania, 2Population Studies Center, University of Pennsylvania, 3Department of Sociology, University of Pennsylvania.

Traditional life history theory models how natural selection shapes the timing of particular life course events such as age and size at maturity, number and size of offspring, and reproductive senescence. However, these models often assume that individual fitness is unaffected by population density and the frequency of strategic interactions between individuals. Under these assumptions, it is thought that parents invest in offspring quality (e.g. investment in education) at the expense of offspring quantity (i.e. total number of offspring) at the point at which fitness is maximized as a budget constraint. Parental investment decisions are considered to be unaffected by the social environment. When social interactions play an important role in fitness, the proper mathematical language is game theory rather than optimization. Recent advances in eco-evolutionary feedback and adaptive dynamics model evolutionary processes that are density and frequency dependent. In particular, they model the social environment as an important background against which life histories evolve. Here we advance a model of human life history that embeds evolutionary dynamics in social interactions. In doing so, we show that if parental investment decisions are contingent upon the investment decisions of other parents, then observed fertility may not rest at a fitness maximizing equilibrium. Rather, the possibility of multiple equilibria emerges under certain conditions. This model has implications for a deeper evolutionary understanding of human demographic trends.

Inferring the dispersal behavior of the Kinda baboon (Papio kindae) from multilocus genetic data.

ANDREW BURRELL1, CLIFFORD JOLLY2, JEFF ROGERS2, JANE PHILLIPS-COOGY1, and TODD DISOTELL1. 1Department of Anthropology/Center for the Study of Human Origins, New York University, & NYCEP, 2Baylor College of Medicine & Southwest Foundation for Biomedical Research, 3Department of Anthropology, Washington University, St. Louis, & Department of Anatomy and Neurobiology, Washington University Medical School.

Dispersal -- the migration of individuals from their natal group -- is a key behavior that affects not only the structure of social groups but also how alleles are distributed spatially and (via demo-
graphic processes) temporally within and between populations. Here we present genetic data on the dispersal behavior of the little-known Kinda baboon, *Papio kindae*, from south-central Africa. Kinda baboons display a range of dispersal behaviors, from the strict female philopatry and male dispersal of *Papio anubis* to the male philopatry and limited, involuntary female dispersal of *Papio hamadryas*. Kinda baboons are much smaller than other baboon species and appear to have a unique suite of behaviors, including unusual patterns of grooming and affiliation between adult males and females.

To investigate kinda dispersal behavior, we used mitochondrial sequence data (~350bp of HV1), as well as allele frequency data from eight autosomal and two Y-chromosomal microsatellites to probe patterns of genetic variation in a set of ~50 baboons from five localities in Zambia. Our results show that maternally inherited mitochondrial genetic variation is highly geographically structured (e.g., *FST* = 0.948, *p* < 0.05), while Y-chromosomal variation (*FST* = 0.033, *p* < 0.001, 0.038, *p* > 0.05, respectively) is not suggesting that females are philopatric and that gene flow is predominantly driven by male intergroup dispersal. This finding has implications for our understanding of the behavioral evolution of *Papio*, and aids studies of hybridization between kinds and other baboon species.

This research was supported by NSF grant BCS0452835, the National Geographic, New York University, and Washington University, St. Louis.

Fiber-type characteristics of the primate orbicularis oris muscle: evolutionary divergence of lip function.

ANNE M. BURROWS, BETH A. DOCHERTY, TIMOTHY D. SMITH, and LISA A. PARR. 1Department of Physical Therapy, Duquesne University, 2Department of Anthropology, University of Pittsburgh, 3School of Physical Therapy, Slippery Rock University, 4Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University.

It has been shown that mammalian skeletal muscles have heterogenous fiber-type composition to meet functional demands. Such data are important to understanding the often subtle relationship between muscle morphology and function and their evolution. The purpose of the present study was to assess fiber-type characteristics in the orbicularis oris muscle of primates in order to elucidate its structural basis for function across wide phylogenetic and behavioral ranges. Sections of the upper lip were sampled from human, chimpanzee, rhesus macaque, and black lemur cadavers and were studied using myosin heavy chain immunohistochemistry for either type I (slow-type) or type II (fast-type) fibers. Percentages of slow- and fast-type fibers were assessed in each slide and compared across species. Preliminary results suggest that the percentage of fast-twitch fibers is highest in the black lemur (96%) and lowest in the chimpanzee (19%). Results for slow-twitch immunohistochemical procedures reveal that the orbicularis oris muscle of chimpanzees has proportionally more slow-twitch fibers (50%) compared to either humans (27%) or black lemurs (4%). Present results were inconclusive for fiber type distribution in the rhesus macaque. Macaque muscle fibers were either non-reactive or weakly reactive to the slow-type marker and moderately reactive for the fast-type marker. These preliminary results suggest that the fiber type distribution in the orbicularis oris muscle of the primate species sampled reflects the particular functional demands of this muscle in each species' facial displays and feeding methods, use of the upper lip as a prehensile tool in chimpanzees, and in human speech. This study was funded by RR-00165 from the NIH/NCRR to the Yerkes National Primate Research Center, and R03-MH08282 to LA Parr.

A new method of dentine microsampling of deciduous teeth for stable isotope analysis.

NICOLE M. BURT and SANDRA GARVIE-LOK. Department of Anthropology, University of Alberta.

Carbon and nitrogen stable isotope analysis is used to reconstruct diet. Serial sampling of the dentine can reconstruct an individual's changing diet and the diet of the population. Previous serial studies have used homogenized samples that give broad results. This study presents a new microsampling technique for use with stable isotope analysis that reconstructs diet associated with specific and important juvenile life stages: fetal life, breastfeeding, and weaning. A sample of 23 modern deciduous teeth was collected in collaboration with the Department of Pediatric Dentistry, University of Alberta. The teeth were longitudinally sectioned. One half of each longitudinally cut tooth was examined histologically to find the level of the neonatal line. The other half was sampled for isotopic analysis. Microsamples of dentine were collected exclusal to the neonatal line, directly apical to the neonatal line, and from the growing edge of the tooth. Collagen was extracted from the samples using standard procedures. The formation schedule of deciduous dentine suggests that these samples will reflect the diet of the mother during pregnancy, breastfeeding diet, and weaning diet. The results of the isotopic assay on this modern sample can be reasonably explained in terms of modern infant feeding practices and demonstrates the potential value of the technique for research on archaeological remains.

The method created by this study is simple and utilizes readily available equipment. While the technique will be useful to many stable isotope researchers, it is particularly suited for studying the changing diet of a single individual.

Fracture and pathological analysis of a high velocity train accident through skeletal reconstruction.

ALYSSA BUTLER and HEATHER WALSH-HANEY. College of Professional Studies, Division of Justice Studies, Florida Gulf Coast University.

We present one forensic anthropology case involving a train versus pedestrian accident to highlight (1) the fracture mechanics of bone and (2) how antemortem skeletal pathologies affected perimortem fracture propagation.

Train accidents produce skeletal injuries that are similar to those induced by car versus pedestrian accidents; although, the former produces more severe damage. Our analysis of an unidentified male provided an opportunity for skeletal reconstruction and categorization of perimortem fractures relative to the observed antemortem skeletal pathology. The remains were radiographed, macerated, dried, and reconstructed. We examined the skeletal remains focusing upon fracture margins, crack propagation, and categorization (i.e., comminuted, transverse, burst, avulsed, and butterfly). Antemortem observations included periostitis, hallux valgus, diffuse idiopathic skeletal hyperostosis (DISH), healed sternal and maxillary fractures, and an intradiploic epidermoid cyst inferior to the crumef orm eminence. Approximately 90% of the skeletal remains were fractured with most fractures being comminuted. As expected and in keeping with the biomechanical properties of bone, the perimortem fractures did not transect the sites of the healed antemortem fractures or the DISH-related hypertrophic bone. In addition, fractures were observed running through, the intradiploic epidermoid cyst.

Ethical currents in anthropological genetics: introduction to the AAAG symposium.

GRACIELA S. CABANA and BRANNON I. HULSEY. Department of Anthropology, University of Tennessee, Knoxville.

Last year, the American Association of Anthropological Genetics (AAAG) sponsored a symposium on the technological, methodological and analytical challenges associated with today's "genomics era." This year, we turn to the potential ethical challenges posed by large-scale genetics and genomics research and ask, what do these challenges mean for today's anthropological genetics? Recent advances in genetics and genomics reveal two significant trends: (1) the emergence of large-scale population studies and genomic databases and (2) the commercialization of genetic and genomic information.
Both trends challenge established notions of informed consent. Traditionally, the protection of human subjects has rested on three principles: respect for persons, beneficence, and justice. How do we continue to honor these principles when research in genetics and genomics is requiring the acquisition of, and access to, a tremendous number of human DNA samples? Private companies and public institutions currently maintain (or are moving toward creating) population-based biobanks. The storage and broad sharing of biospecimens and data at such an unprecedented large scale make it impossible to foresee the future research for which they might be used. Therefore, future risks for individuals and groups are impossible to assess. What is the meaning of individual privacy and informed consent in this context?

In many respects, the “genomics era” offers a future of expanded opportunities in anthropological genetic research. However, we must recognize that our present definitions and future ethical concerns — whether proactive or retroactive — will undoubtedly impact our ability to take advantage of those opportunities.

And thanks for asking! some answers to “What makes us human?” from biological anthropology.

JAMES M. CALCAGNO1 and BENJAMIN C. CAMPBELL2. 1Department of Anthropology, Loyola University Chicago, 2Department of Anthropology, University of Wisconsin-Milwaukee.

Not long ago, the question “What Makes Us Human?” was most commonly addressed by “the humanities”, with an emphasis on literature, art, history, and language. Biological anthropology was thought to have little to contribute. Even within anthropology, defined as the study of humanity, biological anthropology has had a hard time gaining a receptive audience on this fundamental issue. More recently, and given major scientific advances in human biology, genetics and neuroscience, an increasing number of non-scientists have recognized that discussing what makes us human without some grounding in these areas leaves a vast void. Biological anthropologists are not only well-equipped to provide such information, but encouragingly, are more likely to be asked by colleagues far outside our field for our thoughts. Yet ironically, although the very issue of “what makes us human” initially attracted many of us to the discipline, comprehensive answers are difficult to formulate, given that our individual research requires more narrowly defined projects. Thus, it is an appropriate time for our subfield to assess what we can and cannot say about human nature, from paleoanthropology, primatology, human biology, neuroscience, and related perspectives. While we recognize there certainly is no single answer, there should be some common themes, and perhaps more consensus exists than expected. As biological anthropologists, we should welcome and be well-prepared to advance multidisciplinary theoretical discussions and useful applications of understanding of who we are as a species. If not, investigations of this fundamental question of our subfield will certainly go on without us.

Housing conditions and stress in a captive group of male baboons (Papio sp.).

JOSEPH CALIFF. Department of Anthropology, New York University, New York Consortium in Evolutionary Primatology (NYCEP).

Psychological well-being is a crucial component of primate management and welfare in captivity. Two variable aspects of group housing are available space per individual (total relative to needs and group composition (sex and number of cage mates). In addition to behavioral investigation, physiological indicators of stress, such as elevated levels of glucocorticoids (GCs), are useful in attempts to assess the effect of housing conditions on the psychological welfare of captive groups. Baboons are socially complex primates whose psychophysiological health may be particularly susceptible to the effects of differences in housing arrangement. This study investigates the connection between modes of social housing and GC concentration across a large, captive population of male baboons (Papio sp.) maintained at the Southwest National Primate Research Center. Most study subjects (n=221) lived in 13 separate all-male enclosures, five measuring 93.0m2 (1000ft²) and eight measuring 46.5m2 (500ft²). The remaining individuals (n=19) occupied 46.5m2 enclosures and were housed in single-male groups with multiple females. Fecal samples (n=907) were collected and GCs were extracted and measured by radioimmunoassay in the Altmann Laboratory (Princeton University). Controlled conditions minimized or eliminated variation in diet and other external factors while individual differences in other important variables (age, body weight) were incorporated into analyses. Group composition had no effect on GCs. Unexpectedly, males in 500ft² enclosures exhibited significantly lower GCs than males in 1000ft² enclosures (p<0.02). These results challenge common assumptions and suggest that psychosocial welfare of captive groups should be assessed on a species-specific or, even, case by case basis.

This research was funded by the National Science Foundation (BCS-0827570), Rotary International (Walter D. Head Foundation), the New York Consortium in Evolutionary Primatology (NYCEP), and the Center for the Study of Human Origins (CSHO) at New York University.

The contribution of the Fels longitudinal study to European auxology.

NOEL CAMERON. Centre for Global Health and Human Development, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.

The Fels Longitudinal Study has a remarkable and unique place within the history of research in human auxology. It was not the first longitudinal study of human growth and development but was preceded by studies initiated in the universities of Chicago in 1904, Iowa (1917), Harvard (1922), Minnesota (1926), Yale (1927), and Colorado (1927). In 1929, however, the Fels Longitudinal study was founded privately by the Fels Foundation and became the world's longest running research project, pioneering many of the methods we now use to undertake longitudinal studies. In the summer of 1948 James M Tanner, the British physician and physiologist, was awarded a travel fellowship by the Viking Fund to visit the existing American growth studies. The Fels study formed a significant and profound influence on Tanner and on his return to the UK he was to describe "the volume ... and excellence of the American growth studies...as an inspirational...and a stimulus to all biologists of whatever variety who realise the overwhelming importance of form of child growth and the seemingly overwhelming problems raise by it." This call to action resulted in the initiation of the Harpenden longitudinal study in 1949 and over the next two decades an exponential increase in European research in human growth and development which was accompanied by the formation of regular international research meetings at the Centre Internationale de l'Enfance in Paris, and the International Association of Human Auxology as a global society for research in human growth and development.

Influence of occupational activity on the rate of degenerative change of the pubic symphysis in a sample of 19th-20th century Portuguese male individuals.

VANESSA CAMPANACHO1,2, ANA LUISA SANTOS3 and HUGO F. V. CARDOSO2,3. 1ICIAS - Research Center for Anthropology and Health and Department of Life Sciences, University of Minho, Portugal, 2Museu Nacional de História Natural – Departamento de Zoologia e Antropologia & Centro de Biologia Ambiental. Universidade de Lisboa, Portugal, 3Faculdade de Medicina, Universidade do Porto, Portugal.

The various existing approaches for age estimation from the pubic symphysis have
been criticized for their low reliability. Among the arguments is the influence of occupational activity in the aging process. This study wishes to determine if occupation influences the aging process in the pubic symphysis. We analyzed 161 male individuals (18 to 96 years) of known age from two Portuguese identified skeletal collections. The sample was divided into two groups according to the occupation of the individuals (manual and non-manual) and to the index of femoral robustness (robust and gracile). The manual and robust groups represent individuals with physically demanding occupations, whereas the non-manual and gracile groups represent less physically demanding occupations.

Absence and presence of characteristics associated with the degenerative process of the pubic symphysis, as described by Brooks and Suckey (1990), were recorded and the influence of occupation was determined by comparing the age of transition from absent to present using logistic regression. Median ages for the presence of characteristics were also compared between the two groups using a Mann-Whitney test. Our results show that, overall, individuals of manual occupations and robust individuals show younger ages of transition, suggesting a faster rate of aging. Although differences between the groups rarely reach statistical significance, the findings are very consistent across all characteristics observed. Mann-Whitney tests do not support this result. Overall, the statistically significant results show that robust individuals have a slower rate of aging (older median ages) compared to gracile individuals.

Survival is in the balance? Asymmetry in obstetric dimensions and mortality.

MEADOW L. CAMPBELL1, RYAN M. CAMPBELL1, BENJAMIN M. AUERBACH2, KATHRYN A. KING3, and ADAM D. SYLVESTER4. 1Department of Anthropology, Southern Illinois University - Carbondale, 2Department of Anthropology, The University of Tennessee, 3Department of Sociology and Anthropology, University of Arkansas at Little Rock, 4Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology.

Directional asymmetry is minimal in the lower limbs of humans: it is slightly left-biased and exhibits cross-symmetry with the more asymmetric upper limb. In addition, it has also been demonstrated that the scarum exhibits left-biased asymmetry in its alar dimensions. Given this precedent, though some asymmetry may be present in pelvic dimensions, it would be anticipated that this would be minimized by developmental constraints imposed by locomotor efficiency and, in females, obstetric sufficiency.

This study explores directional asymmetry in pelvic dimensions among seven archaeological North American indigenous groups. Individuals were placed into two broad age classes for comparison in order of stature asymmetry and mortality. Measurements were taken on bilateral dimensions related to obstetrics. In addition, we measured femoral dimensions with documented patterns of asymmetry in human populations. Measurement error was assessed to be low (<2%) for all measurements. Results show no sexual dimorphism in any observed asymmetries, matching previous findings. No significant correlations (or greater than $\rho = 0.25$) between femoral and pelvic dimension asymmetries were found. Nonparametric analyses further demonstrate no significant directional asymmetry in any dimensions with the possible exception for pubic length, which has a significant right bias. Further analysis demonstrates the right bias is found in young individuals and is greater in females, who also show right bias in a proxy for sacrospinous ligament length. Older individuals exhibit small (<1%) asymmetries that are more likely the result of fluctuating asymmetry. Though preliminary, this implies possible associations between obstetric dimension asymmetry and younger female mortality. This study was funded by a National Science Foundation Collaborative Research Grant, BCS division, #0962752.

Quantifying a twisted curve: 3D digitization of sciotic notch shape using a microscribe.

RYAN M. CAMPBELL1, MEADOW L. CAMPBELL1, ADAM D. SYLVESTER2, BENJAMIN M. AUERBACH1 and KATHRYN A. KING3. 1Department of Anthropology, Southern Illinois University – Carbondale, 2Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 3Department of Anthropology, The University of Tennessee, 4Department of Sociology and Anthropology, University of Arkansas at Little Rock.

Obstetrically related sexual shape dimorphism has long made the pelvis highly useful for estimating sex in skeletal remains. Sciatic notch shape is regularly used as a diagnostic feature. Traditionally, the shape of sciatric notch has been assessed qualitatively or with linear metrics, and more recently captured from digital images. Here we present a novel methodology for capturing the shape of the sciatic notch using a 3D digitizer. The sciatic notches of 20 (10 male/10 female) modern human os coxae were captured digitally using an Immersion microscribe. This was done by collecting three specific landmarks (two Type II and one Type III) that define the plane of the sciatic notch and then 500-1000 additional points by dragging the digitizer stylus across the sciatic notch while continuously capturing data points. Custom software was written to project vertices onto the plane defined by three specific landmarks and then to extract the shape of the sciatic notch from the digitized points. Sciatic notch shape was compared to the shape obtained from 3D surface models (generated from CT images) of the same 20 bones. Extracted curves were aligned and root-mean-square values calculated to compare the two methods.

We found that the novel methodology accurately captures the shape of the sciatic notch as compared to the surface models. Advantages of this methodology are that it can be used when collecting other lower limb data with digital image distortion. The method could easily be extended to capture other biological shapes (e.g., cranium). This study was funded by a National Science Foundation Collaborative Research Grant, BCS division, #0962752.

New evidence concerning the emergence of tuberculosis in South Africa.

TESSA J. CAMPBELL and REBECCA R. ACKERMANN. Department of Archaeology, University of Cape Town, South Africa.

Numerous studies suggest an African origin for the Mycobacterium tuberculosis complex, yet, with the exception of Egypt, little is known about the emergence and spread of tuberculosis on the continent. In South Africa, a review of the literature has produced no evidence of pre-colonial tuberculosis; however, the archaeological record has not been examined in this context. Here we present results of ongoing research into the emergence and spread of tuberculosis in South Africa. Of the 1484 Holocene and historical specimens examined thus far, eleven show pathology suggestive of tuberculosis. Preliminary results from ancient DNA analysis support these diagnoses. Five of these specimens have been reported on previously; at least one specimen dates to the late 1700’s (possibly earlier), a time of limited European contact. For the remaining six specimens, two show lytic lesions of the lumbar vertebrae and four show abnormal bone deposition on the pleural surface of the ribs. All of these specimens appear to date to the colonial period. Three specimens are from an urban context, but the context is unknown for the remaining three specimens. Eight of the eleven specimens identified thus far with tuberculosis were unearthed in the Northern Cape Province. With the discovery of diamonds in the late 1800’s, the region became an early focus for the commercial exploitation of the indigenous population.
Google Earth and ArcGIS Server as database sharing tools for research and education in paleoanthropology: examples from the Hadar Geoinformatics Project.

CHRISTOPHER CAMPISANO1,2, SHEA LAMAR3, AYN MITRA4, RAMON ARROWSMITH5, ERIN DIMAGGIO1, KAYE REED1,2 and WILLIAM KIMBEL1,2. 1Institute for the Study of Human Origins, Arizona State University, 2School of Human Evolution and Social Change, Arizona State University, 3Institute for Social Science Research, Arizona State University, 4School of Earth and Space Exploration, Arizona State University.

The goal of the Hadar Geoinformatics Project (HGP) is to merge disparate data sources into a paleoanthropological geodatabase for research, education, and conservation in the greater Hadar region of Ethiopia. In cooperation with the Dikika Research Project, we have developed an ArcGIS and Microsoft Access-based geodatabase that provides the geospatial framework critical for addressing fundamental questions concerning hominins and their paleoenvironmental context. Although detailed research queries require desktop versions of the geodatabase, technological advances in easy-to-use GIS-based web applications allow large and detailed datasets to be shared and manipulated by a wide range of users. Such databases abound in the geosciences, but are exceptionally rare in paleoanthropology.

Starting with the Hadar faunal catalog, the HGP is in the process of making more than three decades of field collected data freely available to the public for scientific or education use via Google Earth and ArcGIS Server. Custom-built scripts in both applications parse the HGP database so that the user has a multitude of search options. Queries and map displays are not limited simply to localities, but can be used to explore specific taxa, stratigraphic intervals, fossil density and taxonomic diversity (or specific combinations in ArcGIS Server). Web-links embedded in each locality “pin” redirects the user to the complete locality-specific faunal catalog that can be exported as a worksheet for additional data manipulation. The HGP aims not only to make a tremendous collection of data easily accessible for research and education, but also to set a precedent in paleoanthropological data sharing.

The HGP is funded by the Late Lessons from Early History initiative at Arizona State University.

Life and death in the Middle Bronze Age. The case study of the necropolis of Olmo di Nogara, Verona (Italy).

ALESSANDRO CANCI1, MARY ANNE TAFUR1,2, GINO FORNACIARI3, MICHELE CUPITO1 and LUCIANO SALZANI1. 1Department of Archaeology, University of Pisa, Italy, 2McDonald Institute for Archaeological Research, University of Cambridge, UK, 3Department of Oncology, Transplants and Advanced Technologies in Medicine, Division of Palaeopathology, University of Pisa, Italy, 4Archaeological Superintendency of Veneto, Italy.

The cemetery at Olmo di Nogara (Verona, northeast Italy) is one of the most important prehistoric burial sites that have come to light in Italy during recent years. The anthropological sample considered in this study includes all adult males buried in the cemetery consisting in a total of 116 individuals and 65 adult women. From the palaeopathological point of view, 11 cases of perimortem lesions, which may be interpreted as the results of injuries inflicted during life by metal blades and arrows, were found on the males. This corresponds to a prevalence of 9.5% of the male sample thus suggesting a considerable degree of conflict involving the community.

The composition of grave goods, with armed individuals, and the archaeological evidence of conflict at Olmo di Nogara imply social complexity that founds little comparisons in coeval sites of other areas of the Peninsula. We have carried out an isotope study on several skeletal series from northern Italy to test for further differences in the dietary practices of these Bronze age communities; stable carbon and nitrogen data reveal an interesting dichotomy in the use of resources between the two areas of the Peninsula, with the reliance on extremely diverse plant species. We associate such differences not only to the traditional pattern of diffusion of domesticated crops, but mostly to cultural practices that might only partially be connected to environmental constraints and more likely associated with the habitus of these human groups.

This study was funded by MIUR and Department of Archaeology, university of Padua.

Early Y chromosome lineages in Africa: the origin and dispersal of Homo sapiens.

CRISTIAN CAPELLI1,2, CHIARA BATINI1,2, GIANMARCO FERRI3, GIOVANNI DESTRO-BISOL1,2, FRANCESCA BRISIGHELLI1,2, DONATA LUISIELLI1,2, PAULA SANCHEZ-DIZ6, JORGE ROCHA7, LYNN JORDE9, ANTONIO BREHM10, VALERIA MONTANO2, NASR ELDIN ELWALI11, GABRIELLA SPEDINI4, MARIA E. D’AMATO12, NATALIE MYRES13, PETER EBBESEN14, and DAVID COMAS1. 1Institute of Evolutionary Biology (UPF-CSIC), CEX-UPF-PRBB, Barcelona, Spain, 2Department of Biologia Evolucionista Sperimentale, Unità di Antropologia, Universitá di Bologna, Italy, 3Istituto di Patologia e Immunologia Molecular (IPATIMUP), Universidade do Porto, Portugal, 4Department of Human Genetics, University of Porto, Portugal, 5Department of Biotechnology, Forensic DNA Lab, Cape Town, South Africa, 6Sorenson Molecular Genealogy Foundation, Salt Lake City, 7Department of Health Science and Technology, Aalborg University, Denmark.

The study of Y chromosome variation in extant populations has provided significant insights into the genetic history of Homo sapiens. Focusing on sub-Saharan Africa, demographic events associated with the spread of languages, agriculture and pastoralism have been targeted but little is known on the early history of the continent. The first two branches of the Y chromosome genealogy, namely haplogroup A and B, are African specific, with average continental frequencies of 14-34%, reaching up to 65% in groups of foragers. Despite the potential of such lineages in revealing signatures of the ancient peopling of the continent, an exhaustive investigation of their distribution and variation is currently missing. Here we show that their systematic dissection provides novel insights into the early history of our species. We highlighted complex pattern of populations’ dynamics among hunter-gatherer communities, evidence for the peopling of western and southern Africa, and showed the retention of the very early human Y chromosome lineages in eastern and central but not southern Africa. These results open new perspectives on the early African history of Homo sapiens, with particular attention to areas of the continent where human fossil remains and archaeological data are scanty.
Fracture analysis of historical long bones.

NADINE CARLICH1, FLORIAN FISCHER2, KRISTIN VON HEYKING1, and GISELA GRÜPE1. 1LMU Biocenter, Department Biology I, Anthropology and Human Genetics, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany, 2Institut of Legal Medicine in Munich, Germany.

In the course of archaeological excavations traumatic injuries are often found, especially fractures, which can be detected relatively well in human bone. Fractures are defined as a disruption of the continuity of a skeletal element, exceeding the maximum limits of the structures elasticity under the forces of percussion, tension or bending. The identification of such lesions leads to important information about the interaction of a prehistoric population with warfare, interpersonal violence and other aspects of daily life (Auffderheide and Rodriguez-Martin 1998).

Because of a long exposure to the burial environment or through the impact of environment or through the impact of pH-value or mechanical deformation by the soil, some fractures cannot be recognized as such (Wahl 2001).

In most published studies, a warlike past is in the main focus. Skeletal series-covering fracture types are seldom determined and compared with each other.

The object of this study is a comparison between modern clinical data from the Institute for Legal Medicine in Munich and ancient fracture types, to check whether certain fracture patterns are phenomena of recent times or whether fracture types occur intertemporally and irrespective of the prevalent forces. For this, long bones from different medieval, spatiotemporally defined skeletal series of historical long bones are harvested for microCT scan, x-ray and CT-scan is used to identify the fracture type.

Isotopic nutritional ecology at Ngogo, Kibale National Park, Uganda.

BRYCE CARLSON and JOHN KINGSTON. Department of Anthropology, Emory University.

Despite the acknowledged significance of dietary shifts in human evolution, anthropologists today are only marginally closer to understanding dietary niches of early hominin lineages. The use of stable isotopic analyses to reconstruct paleodiet has largely been limited to gross distinctions of C3 versus C4 consumption and hampered by a poor understanding of ecological factors controlling isotopic variability. This project is the first to utilize bulk as well as compound specific isotopic analyses within a forested East African environment resident to over 7 species of large and small bodied herbivores. This project seeks to create a methodological baseline from which to begin refining previous and future analyses of tissue δ13C and δ15N in the reconstruction of early hominin dietary patterns.

The author's Phase III randomized clinical trials of growing BALB/cByJ female mice (n = 30), and a second experiment (n = 35) using growing C57BL/6J female mice, I compare structural effects of movement regimes amongst them, and by lineages. Femoral cross-sectional properties (e.g., cortical areas, second moments of area, polar moment of area, shape ratios) and activity profiles were compared. C57BL/6J groups differed amongst themselves in activity level more than BALB/cByJ groups. Zig-zag mice tended to have more elliptical diaphyses in both groups. Linear and control mice differed less often in many properties. Distinctiveness of shapes in zig-zag mice across the lineages supports the idea that non-linear movements (e.g., turning) likely have a recognizable effect on long bone structure.

Supported by the NYCOM Office of Research.

Ramifications of insufficient DHA: evidence from studies during pregnancy and infancy.

SUSAN E. CARLSON. Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS.

The 22 carbon n-3 fatty acid, DHA, accumulates rapidly in forebrain beginning around the 24th week of gestation and the concentration increases at a near linear rate through the first 2 years of age. Although the increase in brain DHA in the last trimester is quite dramatic, it is small compared to accretion in a) adipose tissue of the fetus and b) forebrain in the first 2 years of postnatal life. The DHA that accumulates in adipose tissue during fetal life is believed to be a reservoir for postnatal DHA needs of the newborn; e.g., the amount of DHA as a percent of total fatty acids in adipose tissue declines rapidly after birth. Studies of postnatally administered DHA have asked, Is DHA a conditionally essential nutrient for infants or can adequate amounts be synthesized from its essential fatty acid precursor, α-linolenic acid? Not surprisingly, given the inability of the preterm fetus to accumulate normal brain or adipose tissue DHA, DHA supplementation has been shown to benefit cortical visual acuity and outcomes related to cognition. Results of term supplementation studies are more variable, possibly reflecting differences in maternal DHA status due to dietary intake of DHA and genetic differences in DHA biosynthesis by both mother and fetus/infant (individual alleles for fatty acid desaturases (FADS1/2) have been correlated with 20 and 22 carbon PUFA status). There are only a few DHA supplementation trials during pregnancy, however, numerous observational studies find benefits of higher maternal DHA intake.

The author's Phase III randomized clinical trials (RCTs) are funded by NICHD and Mead Johnson Nutrition.
More valuable meat: energetic effects of cooking on a key hominin resource.

RACHEL N. CARMODY, GIL S. WEINTRAUB and RICHARD W. WRANGHAM. Department of Human Evolutionary Biology, Harvard University.

The relative contributions of meat consumption and food processing in supporting increased energy budgets in early Homo are poorly understood and are sometimes presented as alternatives. However food processing could in theory increase the energy gained from a meat diet. Literature reviews suggest several mechanisms by which food processing might improve the energy value of meat, but no studies have quantified the net effects experimentally. To start to fill this gap, we conducted feeding trials in a model animal to test the hypotheses that thermal and non-thermal food processing increase the net energy value of meat. Adult mice (n = 16) were fed beef in four treatments, based on a counterbalanced within-subjects study design: raw/whole, raw/pounded, cooked/whole, cooked/pounded. Two-way repeated-measures ANOVA revealed that cooking (p < 0.001), but not pounding (p = 0.138), improved energy gain as indexed by body mass. Changes in body mass were neither attributable to food intake, which was higher for raw treatments, nor to activity level, which was similar across diets. Preference tests indicate that nutritional benefits influenced perception: after exposure to cooked, pounded and raw meat diets, fasted mice presented with equal rations of the four treatments concurrently selected cooked treatments at rates exceeding chance. Combined with recent data showing that cooking also yields increased energy from starch-rich foods, our results indicate for the first time that the energetic effects of cooking would have been positive and significant regardless of the level of meat consumption at the time that cooking was adopted.

This study was supported by the Department of Human Evolutionary Biology, Harvard University and by an NSF Graduate Research Fellowship to RC.

Patterns of selection on hominoid seminal protein coding genes.

SARAH J. CARNAHAN and MICHAEL I. JENSEN-SEAMAN. Department of Biological Sciences, Duquesne University, Pittsburgh, PA.

In primates there is a general trend of rapid evolution of reproductive proteins. What remains unclear, however, is the driving force behind this trend. Hypotheses include post-mating reproductive isolation, sperm competition, or reduced antagonistic pleiotropy. Humans and the great apes are a group of closely related species, but yet exhibit large variation in socio-sexual behavior. As such, distinguishing among the above hypotheses in hominids in particular may help understand such variation.

From publicly available genome sequence data of human, chimpanzee, gorilla, orangutan, and macaque—supplemented with in-house sequence data—we obtained DNA sequences for 848 genes that code for proteins found in human semen. We calculated pairwise estimates of the nonsynonymous to synonymous nucleotide substitution ratios (Ka/Ks), as well as maximum likelihood branch-specific estimates, for these homologs. We compared Ka/Ks to annotated protein function, cellular location, tissue origin, tissue specificity, and relative protein abundance.

Of the 554 homologs with gap-free alignments, we identified 87 genes suggestive of positive selection in either the chimp or human lineage (branch-specific Ka/Ks > 1), with 15 evolving rapidly in both lineages. Proteins with higher Ka/Ks ratios along the chimpanzee branch are disproportionately secreted extracellular proteins (p < 0.001), while protein-lipid remodeling proteins are overrepresented among rapidly evolving proteins in humans (p < 0.01). The different patterns observed between human and chimpanzee suggest that species-specific factors may be driving selection in different lineages. These and other results are discussed in the context of the evolution of hominid social and sexual behavior.

This research was supported by the National Science Foundation (BCS-0922525).

The advantage of standing up to fight and the evolution of habitual bipedalism in hominina.

DAVID R. CARRIER. Department of Biology, University of Utah, Salt Lake City.

Many quadrupedal species stand upright on their hindlimbs to fight. This posture allows the forelimbs to strike an opponent with the range of motion that is intrinsic to high-speed running, jumping, rapid braking and turning; the range of forelimb motion over which peak force and power are produced. To test the hypothesis that bipedal posture provides a performance advantage, we measured the force and energy produced when human subjects struck from quadrupedal and bipedal postures. Down- and upward directed striking energy was measured with a custom designed transducer consisting of 31 kg pendulum with a rotational inertia of 1.79 kg m². Side and forward strikes were monitored with a 45.4 kg punching bag instrumented with an accelerometer placed at the bag's center of mass. When subjects struck downward from a bipedal posture the work was 48 % greater than when they struck from a plantigrade posture. In side and forward strikes the force impulses were 45 % and 43 % greater from a bipedal posture than a quadrupedal posture. Importantly, subjects did 240 % more work in downward than in upward directed strikes. Thus, bipedal posture provides a performance advantage for fighting with the forelimbs. The mating systems of great apes are characterized by intense male-male competition in which conflict is resolved through force or the threat of force. Great apes generally fight from bipedal posture. These observations, plus the findings of this study, suggest that sexual selection may have contributed to the evolution of habitual bipedalism in hominins.

Perceptions of black Americans toward medical research and racial health disparities: a focus group approach.

TAMAR CARTER; M. MIAISHA MITCHELL; CLARENCE GRAVLEE, AND CONNIE J. MULLIGAN.

Department of Anthropology, University of Florida, Greater Frenchtown Revitalization Council, Tallahassee, FL.

The percentage of Black participants in medical research studies is typically lower than that of White participants. One reason this occurs is that many studies do not investigate variation across racial groups and focus on a single group, typically White Americans. However, low percentage of Blacks in medical research studies is also related to potential participant mistrust towards medical research and researchers. This mistrust reflects centuries of mistreatment towards Blacks in medical settings. Based on our ongoing study in Tallahassee to examine genetic and sociocultural risk factors for hypertension in Blacks, we are particularly interested in Black Americans’ perceptions of research into racial disparities in complex diseases. Our approach in the study, suggest that sexual selection may have contributed to the evolution of habitual bipedalism in hominins.

American Journal of Physical Anthropology

AAPA ABSTRACTS

105
warys in which minority participation in medical research can be improved. This work was supported by the National Science Foundation through a Graduate Research Fellowship.

Being human means that “being human” means whatever we say it means.

MATT CARTMILL,1,2 and KAYE BROWN3. 1Department of Anthropology, Boston University, 2Department of Evolutionary Anthropology, Duke University.

“What does it mean to be human?” is not an empirical question. If it were, its answer would consist of a list of autapomorphies of the Homoines or some included subtaxon. “What does it mean to be human?” is a question about symbolic meaning. It asks which of our species’ apomorphies we should canonize as markers or justifications for drawing a status boundary between people and beings. Throughout most of Western history, the ability to speak and reason has been at the top of the humanistic canon, followed closely by our cognitive and technical abilities. Recent writers have tended to stress our intrinsic niceness as uniquely “prosocial” animals, innately predisposed to sharing and generosity. It is not clear that these new formulations are more realistic than their predecessors.

Some conventional ways of thinking about these issues mistakenly confuse properties of sets with properties of their individual members. Some of the things that we think of as making our species special (e.g., language, cultural norms, exchange of goods, aggregation of knowledge) are properties of human groups, societies, or collectives, not individuals. Others (biomass, environmental impact) are properties of multispecies aggregates that involve and depend on co-evolved nonhuman populations. We suggest that the tendency to confute these different sorts of attributes reflects a desire to inflate the moral importance of “humanness” as a property of individuals.

Tooth ablation and social identity in North Africa.

CHARISSE L. CARVER and CHRISTOPHER M. STOJANOWSKI. School of Human Evolution and Social Change, Arizona State University.

The practice of body modification has long been recognized as one method that groups can use to distinguish themselves from others. One such form of body modification, tooth ablation, consists of the purposeful removal of healthy teeth from individuals. Here, we extend the geographic and chronological distribution of tooth ablation to the Central Sahara Desert where this practice is documented among Early Holocene foraging and Middle Holocene pastoral communities that lived near a freshwater lake (Gobero). We focus on describing the practice and evaluating its presence in light of cranio metric variation from these time periods. Results for the Early Holocene indicated 50% of the adult sample was affected by ablation and individuals with ablation typically had between 15% and 25% of incisors removed. During the Middle Holocene period, fewer individuals presented incisor ablation (approximately 25%) but those individuals that had ablation removed more teeth (~60% of incisors). This difference is statistically significant (p = .01). Intra-site analysis of cranio metric variability indicates a common phenotype among those individuals with ablation regardless of time period. This suggests that population continuity across the 8.2kya arid spike, followed by aggregation of a greater diversity of peoples at the drying lake. These autochthonous peoples can ultimately be associated with a Pleistocene inhabitants of the Maghreb where incisor ablation was ubiquitous (Taforalt). The combination of cranio metric and ablation analysis documents the development of a multi-ethnic community where a minority element intensified the expression of a cultural practice by removing more dental elements, thus marking their group identity. This work was supported by the Wenner Gren Foundation for Anthropological Research (GR7747) and the National Science Foundation (0820805).

Life in Imperial Rome: a multivariate approach to detect relationships among several necropoleis.

PAOLA CATALANO1, FLAVIO DE ANGELIS2, VALENTINA BENASSI3, CARLA CALDARINI1, STEFANIA DI GIANNANTONIO3 and WALTER PAN TANO3. 1Soprintendenza Speciale per i Beni Archeologici di Roma – Anthropology Service, Rome, Italy, 2Department of Biology, University of Rome "Tor Vergata", Rome, Italy, 3External collaborator of Anthropology Service, Soprintendenza Speciale per i Beni Archeologici di Roma, Rome, Italy.

A valuable contribution to the understanding of how people lived in Imperial Rome is provided by the anthropological analysis of large Suburbanum necropolis like Castel Malnome, Collatina, Casal Bertone, Via Padre Semeria, Ostiera del Curato and Quarto Cappello del Prete (Rome, Italy). Each cemetery was analyzed and the skeletal individual profiles were recorded in two open access databases. The field data were, if possible, complemented by archaeological informations. The demographic profile were outlined by sex determination and age at death estimation, according to classical methods. The oral health was analyzed: caries, tartar and abscesses have been scored. Moreover inflammation processes were noted and fractures and injuries were also taken into account. The application of the correspondence analysis allowed us to explain the huge amount of qualitative data related to an overall sample of 1100 individuals from the six necropoleis. While the experience of the operators is critical to better understand the features of a single site, the comparison between different necropoleis is complex and only the statistical analysis of the raw data can overcome this difficulty. The five cemeteries are unlinked themselves, and three of them (Castel Malnome, Casal Bertone and Ostiera del Curato) lie to the "extremes", reflecting the peculiarities of the singles sites. Castel Malnome is strongly influenced by the high frequency of infants, like Quarto Cappello del Prete. Better conditions existed at Ostiera del Curato, while Col latina, was characterized by the presence of a wide range of social classes. The cemetery of Via Padre Semeria takes place in an intermediate position, reflecting the lack of characteristic qualitative variables.

This study was funded by Soprintendenza Speciale per i Beni Archeologici di Roma to P. Catalano.

Do brain size and body size explain variation in the pace of dental development within the indriid-palaeopropithecid clade?

KIERSTIN K. CATLETT1, GARY T. SCHWARTZ2,1 and LAURIE R. GODFREY3. 1School of Human Evolution and Social Change, Arizona State University, Tempe, 2Institute of Human Origins, Arizona State University, Tempe, 3Department of Anthropology, University of Massachusetts, Amherst.

The Indriidae comprises three genera (Avahi, Propithecus, Indri) while their close extinct relatives, the Palaeopropithecidae, comprise four (Mesopropithecus, Bababotia, Palaeopropithecus, and Archaeoindris). All members of the indriid-palaeopropithecid clade for whom the pace of somatic and dental development have been characterized exhibit a characteristic pattern: dental development is fast and cranial and body growth are relatively slow. Reconstructions of dental development using histological methods exist only for one indrid: Propithecus verreauxi. We provide new histological data on dental development in Indri indri, the largest living lemur, and combine that with observations on Avahi laniger, the smallest indrid, to assess the relationships among body and brain size and the pace of dental development. We then assess how ecological factors may have shaped these relationships. Within extant
indriids, associations among brain/body size and dental development (using M1 crown formation time, % crown completion at birth, age at M1 crown completion or estimated age at eruption) are patterned such that smaller-brained taxa (Avahi) possess accelerated dental development compared to P. verreauxi and I. indri. When extinct palaeopropithecids are included, both body and brain size fail to explain variation in the pace of dental development: while Avahi is the fastest, the larger-bodied and larger-brained Palaeopropithecus develops faster than the smaller-bodied and smaller-brained Propithecus and Indri. Our analysis suggests that the rate of dental development is tied to ecological factors such as early age at weaning, perhaps as part of a strategy of bet-hedging, and only weakly, if at all, to considerate variation in the risk factors among individuals from different ethnic and racial groups; however, few comparative studies exist that examine differences between groups; 2) compare cardiovascular disease response trends between the two populations; and 3) discuss possible mechanisms responsible for these differences between the two populations and environmental adaptations. Anthropometric, health, and lifestyle data was collected from Shuar and Yakut (Sakha) adults (≥ 18 years). Results indicate different patterns of cardiovascular response to market integration. The Shuar sample shows higher percentage of clinically elevated cholesterol levels, while the Yakut sample has higher percentage of clinically elevated blood pressure. These differences in cardiovascular symptoms are likely based on regionally specific environmental and cultural factors, associated with specific types of market foods consumed, levels of psychological stress, and metabolic adaptation.

Variation in cardiovascular disease risks in response to market integration in two transitioning populations.

T. J. CEPON1, M. A. LIEBERT1, F. C. MADIGER1, L. S. SUGIYAMA1, A. D. BLACKWELL2, 3, W. R. LEONARD3, L. A. TARSKAIA1,4, J. T. KLIMOVA1, V. G. KRIVOVISHAPKIN1, and J. J. SNODGRASS1. 1Department of Anthropology, University of Oregon, Eugene, 2Integrative Anthropological Sciences, University of California, Santa Barbara, 3Department of Anthropology, Northwestern University, Evanston, 4Department of Anthropology, University of Kansas, Lawrence, 5Institute for Molecular Genetics, Russian Academy of Medical Sciences, Moscow, Russia, 6FSRI Institute of Health, Republic of Sakha/Yakutia, Yakutsk, Russia.

Cardiovascular and metabolic disease risks have been shown to increase as populations transition from traditional subsistence economies to market-integrated lifestyles. Despite multiple studies documenting the effects of this transition on cardiovascular and metabolic health, our understanding of specific mechanisms responsible for these effects remains incomplete. There is considerable variation in the risk factors among individuals from different ethnic and racial groups; however, few comparative studies exist that examine different cultural patterns of market integration (MI) and pre-existing, regionally-specific genetic adaptations. The present study compares trends in cardiovascular disease responses to MI in two indigenous groups—the Shuar of Amazonian Ecuador and the Yakut (Sakha) of northeastern Siberia—with the following objectives: 1) examine the relationship between MI and cardiovascular disease risk (blood pressure, cholesterol [total cholesterol, LDL, HDL, triglycerides], glucose) within the two groups; 2) compare cardiovascular disease response trends between the two populations; and 3) discuss possible mechanisms responsible for these differences between the two populations and environmental adaptations. Anthropometric, health, and lifestyle data was collected from Shuar and Yakut (Sakha) adults (≥ 18 years). Results indicate different patterns of cardiovascular response to market integration. The Shuar sample shows higher percentage of clinically elevated cholesterol levels, while the Yakut sample has higher percentage of clinically elevated blood pressure. These differences in cardiovascular symptoms are likely based on regionally specific environmental and cultural factors, associated with specific types of market foods consumed, levels of psychological stress, and metabolic adaptation.

Support: NSF (ARC-0802390); FSRI Institute of Health; Northwestern University; University of Oregon; NIH (#5DP1OD006516-04, via Center for Evolutionary Psychology, UCSB); NSF BCS-0925910; NSF BCS-0824602; University of Oregon; Ryoichi Sasakawa Young Leaders Fellowship Fund; L.S.B. Leakey Foundation; Wenner-Gren Foundation.

Feeding behaviors and food mechanics during Cebus libidinosus ontogeny.

JANINE CHALK1, 3, BARTH W. WRIGHT2, PETER W. LUCAS3, BRIAN G. RICHMOND4, 5, DOROTHY FRAGASZY3, 6, MYRA VISALBERGHI7, PATRICIA IZAR1, 6 and EDUARDO B. OTTONI1. 1Hominid Paleobiology Doctoral Program, Center for the Advanced Study of Hominid Paleobiology, Department of Anthropology, University of California, Santa Cruz, 2Department of Anatomy, Kansas City Medical College, Kansas City, MO, 3Institute of Aging and Mortality, University of California, San Diego, 4Psychology Department, University of Georgia, 5Hominid Paleobiology Doctoral Program, University of California, Santa Barbara, 6Hominid Paleobiology Doctoral Program, Center for the Advanced Study of Hominid Paleobiology, Department of Anthropology, The George Washington University, 7Department of Experimental Psychology, Institute of Psychology, University of São Paulo.

The extended juvenile period observed in capuchins has been explained as a means to acquire the skills and physical strength needed to exploit high-quality foods eaten in mechanically challenging tissues. Recent research has demonstrated that by age three to five wild juvenile tufted capuchins (Cebus apella) attain foraging success rates similar to adults when accessing mechanically challenging foods. However, little is known about the relationship between age-related changes in feeding behaviors and food mechanical properties. Here we examine differences in total feeding time and the mechanical properties of foods eaten at various stages during tufted capuchin development. Data were collected from adults (n=17), subadults (n=3), and weaned juveniles (n=8) from two groups of wild tufted capuchins (C. libidinosus) at Boa Vista, Brazil during a period of ripe fruit scarcity. Behavioral data were collected using continuous sampling methods from focal individuals focusing on food processing behaviors. Food mechanical property data were collected using a portable universal mechanical tester. When the capuchins breached multiple tissues within a food, the food tissue with the highest mean and maximum food tissue toughness and stiffness across age groups. These results suggest that C. libidinosus juveniles and adults breach foods of comparable toughness and stiffness, with the exception those foods (e.g., palm fruits) requiring significant physical strength to access.

This study was funded by NSF-IGERT (# DGE 0801634), Leakey Foundation, and Lewis N. Cotlow Fund.

Gibbons perform exceptional amounts of work when leaping.

ANTHONY CHANNON1, 2, JAMES USHERWOOD2, ROBIN CROMPTON1, MICHAEL GUNTER1 and EVIE VERVEECKE1. 1Institute of Aging and Chronic Disease University of Liverpool, UK, 2Faculty of Life Sciences, University of Liverpool, UK, 3Feeding Behaviours and Nutrition, Royal Veterinary College, UK, 4Faculty of Medicine, Katholieke Universiteit Leuven Campus Kortrijk, Belgium.

In addition to being remarkable brawchiators, gibbons are excellent leapers. We used high definition video sequences to analyse the leaps of two white handed gibbons leaping about their enclosure. We report standing-start squat leaps and robust jumps in gibbon locomotion, with the exception those foods (e.g., palm fruits) requiring significant physical strength to access. We report standing-start squat leaps and robust jumps in gibbon locomotion.
Heavy density liquids as a method for extracting microfaunal remains from sediments.

MATTHEW CHIMERA. Department of Anthropology, The University of Texas at Austin.

Microfaunal analyses provide important insight in paleoanthropological reconstructions. Microfauna have a limited range, so the presence and abundance of a particular species is indicative of a particular climate. However, sorting through microfauna can be very tedious due to the small size of skeletal elements and they very easily blend in with the surrounding soils. A method that can expedite this process will greatly improve microfaunal studies. One such method, heavy density liquid flotation, has been used for sorting phytoliths from soil samples. This technique can be applied to microfaunal analyses by limiting the amount of time sorting through sediments. This study uses material excavated from Grotte des Contrebandiers, Temara, Morocco. The soils sediments were screen-washed at 5, 2 and 1 mm. Using the heavy liquid Lithium Metatungstate solution, these samples were separated into high density (stones, pebbles and some high density teeth) and low density (bones, pollens, woods) materials. The heavy density materials sink to the bottom while the low density materials float to the surface, sorting the materials for the researchers. This separation occurs in a funnel and upon the separation of high versus low density materials, the heavy density materials are released into one beaker and the lighter density materials are released into another beaker. Preliminary results have demonstrated that large amounts of microfauna can be sorted in a shorter amount of time than sorting by hand. This methodology can greatly improve microfaunal analyses by decreasing the amount of time a researcher must spend sorting through sediments.

Intraskeletal variability and bone remodeling dynamics in a modern Mexican cemetery population.

HELEN CHO1, VERA TIESLER2 and SHINTARO SUZUKI2. 1Department of Anthropology, Davidson College, 2Facultad de Ciencias Antropológicas, Universidad Autónoma de Yucatán, Mexico. The rate of age-associated bone loss is inconsistent among skeletal elements of an individual and dependent on the proportion of cortical and trabecular bone and their habitual loading environments. Thus, intraskeletal variation in age-associated bone loss is problematic in the clinical field for discriminating between normal and osteoporotic bone. We employ histomorphology on a preliminary skeletal sample from Xoclán, a modern cemetery population in the Yucatan peninsula, to compare the mid-shaft rib and clavicle from the same individuals to investigate intraskeletal variability in the histomorphometric variables. Through bone histomorphology, microstructural such as osteons are quantified to derive variables that are indicative of bone remodeling dynamics and patterns of age-related bone loss. The mean age of the sample is 50.75 years with 22 males and one female. Osteon Population Density (OPD), the density of intact and fragmentary osteons per unit area of bone and an accumulated product of bone remodeling, differs significantly between the rib (mean 30.320 SD 8.320) and clavicle (mean 17.743 SD 5.299) in the t-test for dependent samples and Wilcoxon Matched Pairs test (p<0.001). The average cross-sectional area of the intact osteons, a molecular evolution for deriving bone remodeling dynamics, did not differ significantly between the two skeletal elements in the t-test (p = 0.205) and Wilcoxon Matched Pairs test (p = 0.191). Rib and clavicle are abundant in cortical bone, the habitual loading environment for respiration and upper limb function may be distinct enough to produce different remodeling dynamics and histomorphometric values.

Gene gain and loss of protein expression driven by sexual selection, revealed by comparative proteomics of human and chimpanzee seminal plasma.

PETER CHOVANECC1, MARCUS LOUIS2, STEPHANNIE RUIZ2, DANA L. HASSELSCHWERT2 and MICHAEL L. JENSEN-SEAMAN1. 1Department of Biological Sciences, Duquesne University, Pittsburgh, PA; 2University of Louisiana at Lafayette New Iberia Research Center, New Iberia, LA.

Numerous anatomical and physiological traits have evolved in chimpanzees due to their presumed high levels of sperm competition, resulting from high female promiscuity. These traits include large testes, high sperm count, and the presence of a copulatory plug. As with most phenotypic differences between humans and chimpanzees, the molecular basis for these adaptations are not known. In order to investigate the molecular evolution of homid seminal proteins, we subjected the seminal plasma of three humans and three chimpanzees (including the solidified plug) to two-dimensional gel electrophoresis followed by spot identification with liquid chromatography/tandem mass spec (LC-MS/MS), one dimensional SDS-PAGE gels with peptide identification by LC-MS/MS, and gel-free (or "shotgun") proteomic characterization with LC-MS/MS. This comprehensive proteomic characterization of seminal plasma revealed the complete absence of semenogelin 2 (SEMG2) in chimpanzees, despite being one of the most abundant human proteins, along with upregulation of prostate-specific transglutaminase (TGM4) and fibronecin (FNI1) in chimpanzees. Most surprisingly, chimpanzees express at high levels in their semen an extracellular secreted protein not found in human semen, and not previously reported to be expressed in reproductive tissues. Together, our data suggest that chimpanzees have evolved unique aspects of their reproductive physiology, including the acquisition of a copulatory plug, through up- and down-regulation of many proteins, and through the gain and loss of the expression of specific seminal proteins. The abundance and structure of these proteins allows us to hypothesize a mechanistic model to explain the origin of the chimpanzee copulatory plug in response to sexual selection.

The history of anthropometry within the Fels Longitudinal Study: growth, development and aging in the 20th Century.

W. M. CAMERON CHUMLEA. Departments of Community Health and Pediatrics, Lifespan Research Center, Boonshoft School of Medicine, Wright State University, Dayton, OH.

Anthropometry has a long history, but its use in describing growth and development flourished with the establishment of the “longitudinal” growth studies in the United States in the early 20th Century such as the Fels Longitudinal Study. Early measurements were limited in their descriptive scope and borrowed from osteological measurement methodology. Increased interest in anthropometry occurred with World War II and the need for “standardized” uniforms and equipment. The increased prevalence of obesity furthered the development of methodology and equipment to measure body fatness such as skinfold calipers. Similarly, the greater proportion of older adults living to older ages in the world’s population has increased the available equipment and specialized methodology for anthropometry in the elderly. The use of anthropometry within the Fels Longitudinal Study has been found to be of application in the National Health Surveys of the United States and the World Health Organization. This work was funded by grant HD-12252 from the National Institutes of Health, Bethesda MD.

A reappraisal of the effects of phylogeny on social behavior.

KRISTA CHURCH. Department of Anthropology, University of Texas, Austin.

The socioecological model has been used extensively to identify correlations...
between the behavior and ecological context of a species. However, this method often carries the inherent assumption that convergence is the sole factor responsible for this correlation, regardless of the evolutionary history of the species. Phylogenetic approaches, on the other hand, view the behavior of extant taxa within an explicitly historical framework. In 1994, Di Fiore and Rendall conducted a novel phylogenetic analysis to identify underlying constraints on the derived similarities of primate social behavior, revealing that social structure and female relationships may have been conserved in some primate lineages, namely the cercopithecoids. However, fifteen years of new field research on primate social behavior have generated a substantial amount of data that remain to be integrated into such an analysis. In this study, 34 behavioral traits encompassing three aspects of primate social behavior (social structure, social organization, and mating system) are compared across genera not previously included in previous phylogenetic analyses. Incorporating these new genera into the existing phylogeny yields a more comprehensive picture of the evolutionary history of primate social behavior, suggesting additional phylogenetic conservation of behavioral traits within the ceboids and strepsirrhines. Further, these results provide a framework for investigating the interplay between phylogenetic constraints and ecological adaptation in the social organization of primates, and have important implications for our understanding of behavioral evolution within primates and future methods of behavioral reconstruction in the fossil record.

Pro- and anti-inflammatory food proteins and their impact on maternal ecology.

KATHRYN B.H. CLANCY1, KATHERINE E. TRIBBLE2, and LAURA D. KLEIN2.1Department of Anthropology, University of Illinois, Urbana-Champaign, 2School of Molecular and Cellular Biology, University of Illinois, Urbana-Champaign, 3School of Integrative Biology, University of Illinois, Urbana-Champaign.

Undiagnosed gluten intolerance can lead to a number of serious fertility issues, including recurrent pregnancy loss and infertility. Independent of an immune response to gluten, diets high in refined carbohydrates, trans and saturated fatty acids, and sugar promote inflammation through the overproduction of pro-inflammatory cytokines. The overconsumption of refined carbohydrates (processed cereal grains as well as sugar) leads to high selectin-carbohydrate interactions that promote adhesion mechanisms that then help direct leukocytes to regions of inflammation.

This suggests that a high carbohydrate diet may produce inflammation even in individuals who do not have food intolerances. In contrast, prebiotics and probiotics (soluble fiber and bacteria in the digestive system, such as those found in yogurt) promote an anti-inflammatory response. Prebiotics, or soluble fiber, stimulate growth and activity of bacteria in the digestive system and have a local anti-inflammatory effect. Fermentation of soluble fiber by GI bacteria generates short-chain fatty acids (SCFAs), some of which are histone inhibitors and thus have the greatest potential role in immunity and inflammation.

This work reviews the potentially contrasting effects of many cereal grains and fiber content on local inflammation, which likely impacts pregnancy success. However, the relationship between systemic inflammation and cereal grains has not been tested. Thus, we also report the initial results from a pilot study to examine the relationship between these SCFAs, a biomarker for inflammation used in clinical work and shown to correlate with pregnancy loss, and autoantibodies to gluten, as the first examination of this relationship.

This study was funded by the University of Illinois Hewlett International Travel Grant.

Holes in the record: millipedes as a source of disturbance at prehistoric sites.

JAMIE L. CLARK1,2 and JOSHUA R. ROBINSON1.1Department of Anthropology, Southern Methodist University, 2Institute for Human Evolution, University of the Witwatersrand, 3Department of Anthropology, Emory University.

Over the last two decades, archaeologists and physical anthropologists have dedicated increasing attention to the myriad of ways that the archaeological/fossil records can be disturbed post-depositionally. This work has demonstrated that a detailed understanding of the taphonomic history of a site is critical to the development of accurate interpretations of site formation processes, stratigraphic relationships, and artifact patterning. Within this larger framework, it has become clear that the activities of even the most diminutive creatures can have an impact on the composition/preservation of prehistoric deposits. While the potential effects of termites, earthworms, and ants have been relatively well documented, one macroinvertebrate that has not received attention in this regard is the millipede. Millipedes are common throughout the globe and occupy both open-air habitats and caves/rockshelters; given their tendency to burrow into subsurface sediments, a detailed consideration of the types of disturbance caused by these invertebrates seems warranted. In this paper, we explore the aspects of millipede life history, ecology and behavior that are most likely to impact the preservation of archaeological deposits. We then discuss several signatures of millipede activity and disturbance, using the Paleolithic site of Mughr el-Hamamah (Jordan) as a case study. This example illustrates the need for greater attention to the potential impacts of millipede activity on the integrity of buried deposits; as such, we close with a consideration of planned experimental work that is aimed at more directly quantifying the impact of millipedes on stratigraphy, the mobility of artifacts/ecofacts within the sediment, and soil chemistry.

Research at Mughr el-Hamamah was funded by NSF grant #1025532 to Aaron J. Stutz and Liv Nilsson Stutz.

Microhabitat differences affect frequency of social behavior in two populations of Lemur catta living in similar rocky-outcrop forest fragments in south-central Madagascar.

TARA A. CLARKE1, LISA GOULD2 and ALEX CAMERON1.1Department of Anthropology, University of Victoria, Victoria, BC Canada.

Within-species variation regarding time spent in social behavior in primates can be dependent upon microhabitat variables. Two populations of Lemur catta, one occupying a sympatric, high population density primate, were observed in July of 2009 and 2010 in two rocky-outcrop forest fragments in south-central Madagascar: Tsaranoro Valley and Anja Reserve. Habitat and fragment size is similar at both sites, but distribution of resources and L. catta population density differs markedly, with widely distributed food resources and a smaller population (~60 animals) at Tsaranoro, compared with highly artifactual, easily accessible food resources and high population density (~216) at Anja. Behavioral observations were collected utilizing five-minute scan samples, and we conducted between-site comparisons of instances of social behavior. In 2009, 14% of scan records at Anja and 18% at Tsaranoro involved social behavior, whereas in 2010, 22% of scans (Anja) and only 2.1% (Tsaranoro) were recorded as social behavior. The between-year difference at Tsaranoro is significant (χ² = 8.79, p < 0.01) and relates to groups studied: in 2009, two groups spent a large proportion of time feeding in the garden of a tourist resort, where food was plentiful, thus allowing more time for social interactions, whereas strictly forest-dwelling groups were observed in 2010. 2010 between-site difference in frequency of social behavior is also significant (χ² = 16.43, p < 0.01). At Anja L. catta had access to closely distributed, clumped resources while at Tsaranoro resources were patchily distributed. The difference in
resource distribution meant that Tsara-noro lemurs traveled farther to obtain daily nutrient requirements, ultimately allowing less time for sociality.

Examination of *Escherichia coli* populations in a captive zoological collection of nonhuman primates.

JONATHAN B. CLAYTON1, TIMOTHY J. JOHNSON1 and AVA M. TRENT1,2

1University of Minnesota, Saint Paul, MN, 2Como Park Zoo & Conservatory, Saint Paul, MN.

Chronic enterocolitis in captive primates has long been a problem in both zoo settings and research colonies. The most common clinical symptom observed with chronic enterocolitis is diarrhea, making it a public health concern as well as an animal health and welfare concern. Management of chronic enterocolitis is confounded by its complexities, including the lack of a consistently identifiable causative agent.

A pilot study was performed during the summer of 2009 in collaboration with a local zoo in Saint Paul, MN, which was experiencing an increased incidence and severity of diarrhea among their nonhuman primate collection. Fecal samples were collected on a weekly basis from 33 animals representing 8 different species within the primate collection and *Escherichia coli* was isolated using previously published techniques. We recorded the fecal consistency of each sample, noting when abnormally watery diarrhea or bloody diarrhea occurred. Suspect *E. coli* were assessed for phylogeny, virulence genotype and drug susceptibility and these data were combined with observational data in an effort to identify genetic or phenotypic traits that correlated with disease. Our findings suggest that a pathogenic strain of *E. coli* could be contributing to the incidences of enterocolitis observed in this nonhuman primate collection. Overall, our results suggest that the manifestation of enterocolitis in this nonhuman primate collection is indeed complex and likely involves multiple microbial agents in combination with environmental causes.

This study was funded by the University of Minnesota College of Veterinary Medicine.

Between-group variation in the activity patterns of cathemeral owl monkeys (*Aotus azarai*) under similar temperature and light conditions.

DENA CLINK1, MAREN HUCK2 and EDUARDO FERNANDEZ-DEZ2

1Fundación E.C.O., Formosa, Argentina, 2Department of Anthropology, University of Pennsylvania, Philadelphia.

The owl monkeys of the Argentinean Chaco are one of the few primate species that regularly exhibit both nocturnal and diurnal activity. Although their activity patterns are known to be generally influenced by moonlight availability and ambient temperature, it has proven difficult to predict the onset and offset of bouts of activity for any given group on a particular day. To understand intergroup differences in activity patterns, we examined the predictive power of moonlight and temperature together with ecological and social factors (e.g. group size, season, food availability). Group activity was recorded during 17 full-day (24 hr) follows conducted on five owl monkey groups during 12 months (408 total observation hours). Hourly temperature and luminosity measurements were gathered automatically during the period of study. There was a positive correlation between luminosity and nocturnal activity (Spearman rank correlation test, rho=0.54). Still, activity levels at low luminosity were highly variable among groups. Temperature had a lesser effect on activity levels than luminosity, and the effect was only present on nights with moonlight (Spearman rank correlation test, rho=0.40). Groups differed in the timing of the onset and offset of activity even when under the same temperature and light conditions. Contrary to the highly predictable nocturnal activity pattern of other owl monkey species, cathemerality seems to be a more flexible activity pattern influenced by a range of abiotic and biotic factors.

Dental metric variation in *Homo erectus sensu lato*.

THEODORE M. COLE III1, DEBORAH L. CUNNINGHAM2, FREDERICK E. GRINE3, ANDREW KRAMER4 and MILFORD H. WOLPOFF5. 1Department of Basic Medical Science, Stony Brook University, 2Department of Anthropology, Stony Brook University, 3Department of Clinical Science and Medical Education, Florida Atlantic University, 4Department of Anatomy, Midwestern University, 5Department of Anthropology and Archaeology, Brooklyn College, CUNY.

Fossils of *Homo erectus sensu lato* have been found in Africa, China, Indonesia, and Europe. Pronounced cranial differences among regions have led to differing taxonomic interpretations. Two of these are: (1) *H. erectus* was a polymorphic species that exhibited temporal, as well as geographic, population-level morphological differences; or (2) the morphological variation in *H. erectus sensu lato* is ascribable to taxonomic heterogeneity. This analysis considers whether the dentition of *H. erectus sensu lato* exhibits its metric variation suggestive of multiple taxa. We test the single-species hypothesis using measurements of the permanent teeth of fossils from Africa, China, and Indonesia. As an alternative to using univariate coefficients of variation, we assess overall levels of relative variation using a nonparametric multivariate approach, where the commingling of fossil assemblages (randomly-generated fossil and modern assemblages (N=1000 for both) using multivariate rank statistics.

Our results indicate that the combined regional samples of *H. erectus sensu lato* are slightly more variable than the combined samples of modern humans, with a greater proportion of outlying observations. Therefore, there is some support for rejecting the single-species hypothesis of relative variation in randomly-generated fossil and modern assemblages (N=1000 for both) and predicting significant variation present in the fossils.

The evolution of hearing sensitivity and vocal communication in primates.

MARK N. COLEMAN2 and DOUG M. BOYER2-4. 1Department of Anatomy, Midwestern University, 2Department of Anthropology and Archaeology, Brooklyn College, CUNY, 3New York Consortium of Evolutionary Primatology, 4Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University.

Extant primates, like most mammals, generally show good sensitivity to low-frequency sounds but are also able to hear frequencies in the ultrasonic range (>20 kHz). This wide range of sensitivity is not characteristic of any group of non-mammalian vertebrates and several hypotheses have been advanced to explain how mammals (including primates) evolved this unique hearing pattern. In this study, we examined the ear region in 17 species of fossil primates (60-20 Ma) and predicted their sensitivity to evaluate proposed evolutionary hearing scenarios.

To predict hearing sensitivity, we used high-resolution CT data to measure dimensions of the stapes footplate and cochlea. Using these measurements, we estimated high- and low-frequency sensitivity using predictive equations taken from the literature. These predictions suggest that stem primates from the Paleocene and Early Eocene (pliopitheciforms) had good high-frequency but relatively poor low-frequency hearing, similar to extant tree-shrews. Fossil primates from the Mid-Eocene also show good high-frequency sensitivity but later forms indicate increased low-frequency hearing on par with living strepsirrhines. For anthropoids, a possible eosimil petrosal from...
the Mid-Eocene suggests poor low- but good high-frequency hearing. Those from the earliest Oligocene and Early Miocene exhibit morphology suggesting hearing sensitivity similar to modern anthropoids, with relatively good high- and low-frequency hearing. These findings suggest that primates went through a poor-low-frequency phase during the development of modern hearing patterns. By combining these results with data on ambient acoustics and vocalization frequencies in extant primate communities, we argue that early primates were likely limited to using high-frequency, short-range calls.

White-faced saki (Pithecia pithecia) vocalizations in relation to ambient noise at Brownsburg Natuurpark in Suriname.

JOSHUA COLES2 and DELANIE HURST3. 2Department of Organismal Biology, University of Chicago; 3Department of Anthropology, Indiana University.

The bulk of primate vocalization research in relation to the environment has focused on long call adaptations; however, maximizing the transmissible distance for all calls would be detrimental to an individual. This would be both energetically costly and increase predator detection. It is likely that some primates have evolved vocalizations that camouflage short distance calls within ambient noise to reduce eavesdropping by predators. However, signals requiring transmission over long distances should contain frequencies outside of ambient noise to increase detection by potential receivers. Research was conducted on two groups of P. pithecia at Brownsburg Natuurpark in Suriname. Data collection included all occurrence digital recordings of vocalizations, as well as group spread at the time each call was produced. Short distance calls were classified as most commonly occurring during normal intra-group behavior, while all individuals were within short distance detection (<30 meters). Long distance calls were classified as occurring when group spread was greater than 30 meters or in the context of inter-group encounters. Peak frequencies of 475 recordings were analyzed for both the call and of ambient noise 0.1 seconds prior to the call. Our results show P. pithecia have adapted signaling behavior that maximizes the detection of long calls by avoiding ambient noise frequencies while minimizing predation risk by masking short distance calls within ambient noise. These findings are important in future studies of complex vocal and social relationships, and how animals may alter their signals in order to conform to the constraints of the environment.

Automatic, landmark-free quantification of 3D endocranial asymmetries in extant and fossil species: new insights into paleoneurology.

BENOIT COMBES1,2,3, MARC FOURNIER1,2,3, JOSÉ BRAGA4, GÉRARD SUBSOUL4, ANTOINE BALZEAU5,6, EMMANUEL GILLESSEN7,8, FRANCIS THACKER9, and SYLVAIN PRIMA1,2,3, INSERM, U746, F-35042 Rennes, France; 4INRIA, VisiAgeS Project-Team, F-35042 Rennes, France; 5University of Rennes 1, CNRS, UMR 6074, IRISA, F-35042 Rennes, France; 6Laboratory of Anthropology AMIS, CNRS/University Toulouse (Paul Sabatier), Toulouse, France; 7Laboratory of Computer Science LIRMM, CNRS/University Montpellier 2, France; 8Equipe de Paléontologie Humaine, CNRS, UMR 7184, Département du Muséum national d'histoire naturelle, Paris, France; 9Department of Animal Ecology, Royal Museum for Central Africa, Tervuren, Belgium; 10Université Libre de Bruxelles, Laboratory of History and Neuropathology, Brussels, Belgium; 11Institute for Human Evolution, University of the Witwatersrand, South Africa.

The study of endocranial asymmetries of hominids is a central topic in paleoneurology. However, our knowledge about the emergence of these asymmetries during human evolution is still limited. This is partly due to the fact that, so far, these 3D asymmetries have been mostly analyzed using landmarks-based methods. Such methods are limited as they only provide a partial description of the anatomy and thus of the possible asymmetries. The endocranial anatomy may be better described by its whole contour, and the recent advent of computational tools allowing to process 3D free-form surfaces opens the track for automated and objective characterization of 3D endocranial asymmetries. One key problem before assessing the evolution of patterns of asymmetry in hominids is the identification of confounding factors such as age, sex and intra-specific variability. For this purpose, we use a new method for the automated quantification of 3D virtual endocranial shape of 68 Pan species and 50 Pan troglodytes of different dental age and sex. 3D statistical analyses are led to assess significantly asymmetrical areas on the endocasts within each population, and a comparison is made between the two populations. Several fossil hominid endocasts (such as Australopithecine species and fossil Homo species) are then reexamined in light of the previously estimated variability with these two extant Pan species. These new computational tools may offer a new way to address the question of how the typical endocranial asymmetries within modern humans (e.g. protrusions of the frontal and occipital lobes) emerged during evolution. This work is funded by INRIA (http://www.inria.fr) within the 3D-MORPHINE collaborative research initiative (http://3dmorephine.inria.fr) and the HOPE (Human Origins and Past Environments) International Program of the French Ministry of Foreign Affairs.

The first complete fourth metatarsal of Australopithecus afarensis from Hadar, Ethiopia.

KIMBERLY A. CONGDON1,2, CAROL V. WARD1, WILLIAM H. KIMBEL2, and DONALD C. JOHANSON3. 1Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO; 2Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University.

The first known complete fourth metatarsal (AL 330-160) of Australopithecus afarensis was recovered in 2000 from Hadar, Ethiopia. This 5.2 myr-old fossil provides the opportunity to investigate whether the foot of A. afarensis had well developed pedal arches and was characterized by metatarsophalangeal dorsiflexion, attributes unique to humans among hominoids. AL 333-160 was compared to a sample of N=10 each Homo sapiens, Pan troglodytes and Gorilla gorilla MT4s. Novel non-landmark-based morphometrics using 3D laser-scan data with Polyworks software were used to quantify and compare articular surface orientation and distribution, as well as its linear and angular geometry. Normals to articular surfaces were fit, and surface curvatures compared using deviations from spheres and planes. Results indicate that this specimen had roughly 17° of torsion, comparable to that of humans and Dmanisi Homo erectus, clearly indicating the presence of a transverse arch. The proximal end of the bone is dorso- plantarly elongated, with an expanded ligamentous attachment area near the base, and is less dorso-plantarly concave than in extant apes, thus resembling the MT4 of other hominins including A. ramidus, A. afarensis, and other hominins, the plantar surface of the distal articular surface faces more distally than in apes. AL 333-160 also exhibits the dorsal doming of the head, reflecting habitual loading of the metatarsophalangeal joint in dorsiflexed postures that accompany toe-off during the human striding gait. This metatarsal shows that in its possession of both longitudinal and transverse arches the A. afarensis foot was fundamentally similar to that of modern humans.

This work was funded in part by a Life Sciences Fellowship from the University of Missouri- Columbia.

American Journal of Physical Anthropology
Comparison of Ateline limb bone biomechanical properties.

JACQUELINE RUNESTAD CONNOUR, 1 Department of Natural Sciences, University of Findlay.

Humeral and femoral parameters were compared for Alosaatta, Atelhes, and Lagothrrix. Atelhes was expected to have the largest values because Atelhes exhibits the highest frequency of suspensory behaviors and is very active, followed by Lagothrrix (Cant et al., 2003). Alosaatta is a generalized quadruped (Gebo, 1992).

Radiographic measurements were used to calculate midshaft humeral and femoral J. Humeral and femoral head surface areas were calculated following Runestad (1997). Lengths were measured from X-rays. Sample sizes were 39 Alosaatta, 13 Atelhes, and 13 Lagothrrix individuals. Statistical analyses was complex due to narrow body size ranges and use of individuals as data. A mixture of t-tests, ANCOVA, and visual inspection of bivariate graphs was employed. Results indicate that Atelhes has the largest femoral properties and longest humeri. Lagothrrix is slightly greater in these properties than Alosaatta, excepting femoral head surface area which does not differ. Alosaatta has greater humeral J and slightly greater femoral head size than the others.

Femoral results and humeral length results match expectations for Atelhes, the most active and suspensory. Lagothrrix has intermediate values, corresponding to intermediate locomotory behavior. Low Atelhes humeral J may be explained by a kinesiological study (Hirasaki et al., 2000) suggesting Atelhes uses hindlimbs more than forelimbs for propulsion, compared to quadrupedal macaques. Results for humeral head size do not suggest greater shoulder mobility for Atelhes. However, humeral head shape was not investigated and it may be a better indicator of motion range.

Paranthropus was not a sea otter; convergent adaptation to hard object feeding.

PAUL J. CONSTANTINO1, JAMES J.-W. LEE2, PETER W. LUCAS3, ADAM HARTSTONE-ROSE2, NATHANIEL J. DOMINYS, ANDREW CUMMNGHAM5, and BRIAN R. LAWN3. 1Department of Biology, Marshall University, 2National Institute of Standards and Technology, Ceramics Division, 3Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, 4Department of Biology, Pennsylvania State University, Altoona, 5Department of Anthropology, Dartmouth College, 6Department of Human Evolutionary Biology, Harvard University.

The large, bunodont postcanine teeth in living sea otters (Enhydra lutris) have been likened to those of certain fossil hominins, particularly the 'robust' australopiths (genus Paranthropus). We examine this evolutionary convergence by conducting fracture experiments on extracted molar teeth of sea otters and modern humans (Homo sapiens) to determine how load-bearing capacity relates to tooth morphology and enamel material properties. In situ optical microscopy and x-ray tomography during simulated occlusal loading reveal the nature of the fracture patterns. Explicit fracture relations are used to analyze the data and to extrapolate the results from human to earlier hominins. It is shown that the molar teeth of sea otters have considerably thinner enamel than those of humans, making sea otter molars more susceptible to fracture. At the same time, the base diameter of sea otter first molar is diminishing the fracture susceptibility in a compensatory manner. We also conduct nanoindentation tests to map out elastic modulus and hardness of sea otter and human molars and molar thickness, and microindentation tests to measure toughness. We find that while sea otter enamel is just as stiff elastically as human enamel, it is a little softer and tougher. The role of these material factors in the capacity of dentition to resist fracture and deformation is discussed. From such comparisons, we argue that early hominin species like Paranthropus most likely consumed hard food objects with substantially higher biting forces than those exerted by modern humans.

This study was funded by the National Science Foundation, grant number 0851351.

Positional behavior of Cercobus torquatus (red-capped mangabey) at Sette Cama, Gabon.

CATHERINE COOKE and SCOTT MCGRAW. Department of Anthropology, The Ohio State University.

Positional studies of extant taxa are vital for reconstructing behaviors of extinct primates. Nevertheless, the degree that locomotion and posture vary both ontogenetically and across different habitats is contested. Here we present data collected from May – September 2009 on the positional behavior of Cercobus torquatus ranging across two structurally distinct forests in Sette Cama, Gabon. Our null hypothesis is that locomotion, posture, and habitat use do not vary significantly across habitat types or sex classes. We used scan sampling methods to record information on maintenance activity, positional behavior, habitat type, and support characteristics for members of all age and sex classes. Age and sex comparisons were made using Fisher Exact tests (p = 0.05). The data (N=1,519 scans) indicate that C. torquatus spend approximately 44% of their time on the ground. Overall locomotion is primarily quadrupedal (81.8% of scans) followed by climbing (11.1%) and leaping (6.7%). Siting is the most common posture (73.9%) both on the ground and in the trees. There is no significant difference between adult male and female locomotion (p=0.91), but the locomotion of juveniles differs significantly from that of subadults (p=0.001). Positional behavior and habitat use does not change with habitat type (p=0.000). These data suggest that positional behaviors are maintained across different habitats and that younger individuals display more locomotor flexibility than adults. C. torquatus at Sette Cama is less terrestrial than other Cercobus species; additional research is needed to determine whether this habitat difference is reflected post-cranially.

Study supported by an IPS Research Grant.

Strontium isotopes from early hominin sites in South Africa can provide new insights in paleoecology and taphonomy.

SANDI R. COPELAND1,2, MATT SPONHEIMER2, JULIA A. LEE-THORP3, DARRYL J. DE RUITER4 and MICHAEL P. RICHARDS1,2. 1Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany, 2Department of Anthropology, University of Colorado at Boulder, 3Research Laboratory for Archaeology and the History of Art, University of Oxford, UK, 4Department of Anthropology, Texas A&M University, College Station, 5Department of Anthropology, University of British Columbia, Vancouver, Canada.

Strontium isotopes (87Sr/86Sr) in tooth enamel reflect the geological substrate on which an animal lived during tooth development. As such, strontium isotopes are often used in archaeology to assess residence or migration of ancient humans. In our studies of Plio-Pleistocene fossils from the Cradle of Humankind cave sites in South Africa, we found that strontium isotope analysis is useful for addressing a broader scope of issues, including behavioral, taphonomic, and paleoecological questions. We documented biologically available 87Sr/86Sr in the region by collecting and analyzing strontium isotopes in over 150 plants at 25 sampling sites representing 8 geological zones within 50 km of Sterkfontein and Swartkrans. We used laser ablation MC-ICP-MS for analyzing 87Sr/86Sr in >130 modern and fossil teeth. Results indicate that strontium isotopes can be used as a taphonomic tool by indicating the presence and proportions of non-local individuals, as we show in a case study of modern and fossil rodents from Gladysvale. Analyses of 19 australopithecines from Sterkfontein and Swartkrans suggest that strontium isotopes can be used to address early hominin dispersal patterns. We propose that strontium iso-
Experimental investigations of the effects of exercise, hormones, and diet on cranial vault thickness.

LYNN E. COPE1, HEIDI SCHUTZ2, ELIZABETH DLUGOSZ2, THEODORE GARLAND, JR.3, MARGARET R. BROWN2, ALEKSANDRA OLDAK1 and KATIE WHITMORE1. 1School of Human Evolution and Social Change, Arizona State University, 2Department of Biology, California Polytechnic State University, San Luis Obispo, 3Department of Biology, University of California, Riverside.

In 1996, Lieberman found that exercising animals had thicker cranial vaults relative to their unexercised sibling controls. One mechanism that could lead to such a finding is exercise-induced increases in growth hormone causing a systemic increase in skeletal robusticity. In order to test this hypothesis against one of localized masticatory strains affecting cranial vault thickness, we undertook two experiments. In the exercise study, 50 mice from lines artificially selected over 60 generations for endurance running ability and 50 controls were split between cages with wheel access and no wheel access. After 3 months, all skeletal elements were harvested at the conclusion of the experiment, and the humerus, femur, mandible, parietal and interparietal bones were CT scanned. Wheel access correlated with thick parietal bones in the selected but not control lines, while interparietal thickness varied by line type but not activity type. A second experiment with similar parameters used 50 inbred and 50 wild-type mice, divided into three dietary groups: soft, cold, and control. The soft diet group was fed food the consistency of dough, while the cold group was housed in a 10°C room in order to manipulate their food consumption by decreasing resting metabolic rate. All inbred mice showed relatively thicker cranial vaults than the outbred mice, while the soft diet groups had significantly thinner vaults than the other groups. It appears genetic background has a greater effect on cranial vault thickness in mice than do the material properties of their diet or their exercise levels.

Season at death for the Moche giants.

ALANA CORDY-COLLINS1 and VICKI L. WEDEL2. 1San Diego University, San Diego, CA, 2Western University of Health Sciences, Pomona, CA.

Dys Cabezas, a prehistoric site in northern Peru that dates to AD 100-800, has yielded, among other things, five skeletons of extraordinary stature and sharing in bone pathologies unique among their population. These five individuals - the Moche giants - were elite males. Stratigraphic analysis indicates that the men were buried with a 6 month period. A histological technique has the potential to confirm this finding. These individuats all died within the same season: dental cementum increment analysis. For this study, five teeth from four of the Giants were embedded in Buehler EpoKwik Resin under vacuum pressure. The embedded teeth were then sectioned with a Buehler low speed saw to create 300 micron thick wafers. The wafers were each mounted to a petrographic slide and ground to a thickness of 100 microns, polished, and viewed under an Olympus BX-41 transmitted polarized light microscope. Digital micrographs were captured using an Olympus DP70 digital camera. Of greatest interest was the seasonal cementum increment which was evident in four of the five teeth. All four teeth exhibited a dark outer increment, indicating that the four individuals died in the same season. The images will include the photomicrographs and data on when the light and dark bands transition in South America, a clue to when which months these men might have died.

American Journal of Physical Anthropology
Pennant's red colobus (Preuss's red colobus; Procolobus preussi), and an AMOVA showed more molecular variation within populations than between populations. We will continue collecting molecular data for other Biokoa mainland cercopithecoid taxon pairs to better understand their evolutionary history, colonization and speciation processes, the biogeographic history of this region, and to aid in designating conservation priorities for these threatened taxa.

Variable definitions provide varying conservation priorities for these populations. We will continue collecting molecular data for other Biokoa populations. We will continue collecting molecular data for other Biokoa populations. AMOVA showed more molecular variation within populations than between populations. We will continue collecting molecular data for other Biokoa mainland cercopithecoid taxon pairs to better understand their evolutionary history, colonization and speciation processes, the biogeographic history of this region, and to aid in designating conservation priorities for these threatened taxa.

Differences in vertebral shell structure among great ape and human thoracic vertebrae.

MEGHAN M. COTTER1, DAVID A. LOOMIS2, BRENDAN J. GOODWINE3, SCOTT W. SIMPSON3 and CHRISTOPHER J. HERNANDEZ2. 1Department of Anatomy, Case Western Reserve University, Cleveland, OH, 2Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, 3Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH.

Spontaneous vertebral fractures are the most common osteoporosis-related fracture in humans; however, apes with extremely low bone mineral density do not experience these types of fractures. Finite element models of ape and human vertebral body compressive strength indicate that young adult humans have weaker vertebral body mass despite similar amounts of bone mass among all hominoids. That the relationship between vertebral body bone mass and body mass does not differ among species, suggests that there are biomechanically important differences in vertebral body bone microstructure between humans and apes. We examined the vertebral shells of the T8 vertebral body in humans and great apes using three-dimensional micro-computed tomography. The shell in apes and humans becomes thicker at the midheight region of the body, with a concomitant reduction in trabecular bone. This structural pattern reflects the pattern of load sharing between the vertebral shell and trabecular bone (i.e., the more load carried the thicker the shell, or more dense the trabecular bone). Eswaran et al., 2006, JBMR. Humans displayed low trabecular bone volume fraction and thinner shells than apes were expected for body mass. While chimpanzees exhibited thin shells with high trabecular bone volume fraction, and gorillas and orangutans demonstrated varied trabecular bone volume fraction with very thick shells. The disproportionately thin vertebral shell thickness in humans was unexpected because it appears contrary to biomechanical demands suggesting that the difference in amount of bone may protect the vertebral bodies in apes from fracture following bone loss.

Femoral diaphyseal shape and mobility: an ontogenetic perspective.

LIBBY W. COWGILL. Department of Anthropology, University of Missouri.

The ratio of midshaft femoral anteroposterior (L1) to mediolateral (L2) second moments of area has been suggested as a possible indicator of mobility, and has been applied as an analytic tool to paleoanthropological and archaeological samples with variable success. Under this model, biomechanical loads associated with increased mobility modify the shape of the femoral midshaft from a roughly circular cross-section to an anteroposteriorly reinforced one. While previous research indicates that immature femora respond to changes in the manner of locomotor loading (Ruff, 2003; Cowgill et al., 2010), relatively fewer studies have examined population-level differences in immature femoral shape as a product of overall group mobility. This study uses seven immature Holocene human samples (n=626) to explore three questions: 1) When do population differences in midshaft femoral shape emerge during ontogeny? 2) Do the differences detected correspond to pre-take rates are unsustainable and at least three taxa endemic to Upper Guinea forests are in danger of extirpation. Here I report results from a bushmeat market survey located on the Cavally River which serves a large bushmeat market in Côte d'Ivoire border. Based on reports from actors in the bushmeat chain, meat arriving at this market derives primarily from forests in the Konobo district of eastern Liberia. The formal market, located near the Ivorian village of Tai, operates year round, two days a week but bushmeat is transported across the river daily. Over a 4 month period from 2009-2010, we visited this market and tallied the number of primate species traded. During the sampling period, we observed 723 animals for sale, including 264 primates, 68% of which were smoked. A minimum average of thirty-three animals exchanged weekly, yielding a highly conservative estimate of 1,716 ind/year for this market. Cercopithecus petaurus (25% of all primates) was the most abundant primate, followed by Cercopithecus diana (19.3%), Cercocebus atys (12.1%), Colobus polykomos (11.4%), Procolobus verus (10.6%), Cercopithecus campbelli (10.2%), and Procolobus badius (9.5%). Given the volume of meat sold at the Cavally market, our figures are likely gross underestimates of off-take levels. Based on known group sizes and population densities of these species in the adjacent Tai National Park, we conclude primate populations in Liberia's Konobo district are not being hunted at sustainable levels. Supported by the Primate Society of Great Britain, NSF BSC-0921770, and The Ohio State University.

American Journal of Physical Anthropology

114

AAAPA ABSTRACTS

American Journal of Physical Anthropology

ID: senthilk Date: 8/2/11 Time: 16:59 Path: N:\Wiley3b2\AJPA\Vol144S52\110008\APPPfile\JW-AJPA110008
Diet as a functional and adaptive explanation for glenoid region evolutionary changes: a comparative analysis of humans, non-human primates and fossil hominins.

ALEXANDRA M. COWPER and YOHANNEs HAILE-SELASSI. Department of Anthropology, Miami University, Cleveland Museum of Natural History.

Recent research suggests that neither the functional nor the adaptive basis for many of the evolutionary changes in the glenoid region of the hominin skull is well understood. The research indicates that evolutionary change occurred outside the context of brain expansion and “transformation” of the cranial base, and is instead most likely related to a diet shift. This was evident by the denotive graph. To investigate influence of diet on the mandibular fossa of the glenoid region, we correlated both left and right mandibular and maxillary fossae, in order to accommodate the observed between mandibular fossa dimensions of smaller primates. Bivariate analysis suggested that the variables are positively correlated in that: (a) M1/M3 area ratio increases (i.e. specimen ingests a softer diet), mandibular fossa index (length/breadth) increases. This implies that diet does affect the glenoid region of the hominin skull. Moreover, as the diet of non-human primates is known, comparing results of the non-human primates to the fossil hominins serves as a useful tool for future reconstruction of hominid diet, in addition to quantitativ microwear studies of diet.

The cave of the dead children: a case of possible ritual sacrifice.

JOHN J. CRANDALL, JENNIFER L. THOMPSON, and DEBRA L. MARTIN. Department of Anthropology, University of Nevada, Las Vegas.

The La Cueva de los Muertos Chiquito site (AD 800-1430) is located just north of Durango, Mexico. A reanalysis of the human remains from this site, excavated in the 1950s by Sheilagh and Richard Brooks, has yielded important new information. This cave site contains at least 18 burials of infants and children (n=17, most being =3-4 years of age) and at least two adult female burials all associated with the Gabriel San Loma culture. Using long bone lengths and radiographic analysis of dental development, age approximations for the subadults were refined. All of the children exhibit active cases of nonspecific periosteal reactions on the cranium. Sixty percent of the 17 children also exhibit periosteal reactions on the long bones. In addition, porotic hyperostosis (n=7) and cribra orbitala (n=5) are present. A number of cases of possible juvenile scurvy (n=4) were also identified.

Taphonomic indicators of the mortuary context revealed evidence of burning and intentional sequenced internment suggestive of ritualized burial treatment. Results from the analysis of coprolites and quids found in the cave (Reinhard, et al. 1988) provide additional information on diet and health. Vegetative data noting the presence of botanicals used for drug production at the site (Foster 1984), suggests that an unusual botanical or a traditional herbalist had some sort of ritual sacrience likely precipitated the deaths of up to 17 infants and children as well as two adult females. Large quantities of corn and beans may have also been a part of the ritual offering.

The role of marine lipids as a determinants of evolution and Hominid brain development.

MICHAEL A. CRAWFORD. Institute of Brain Chemistry and Human Nutrition, London.

Lipids played a major, as yet unrecognized, role as determinants in evolution. Docosahexaenoic acid (DHA) is the principal acyl component of the membrane lipids in the photoreceptor, synapse and the gray matter of the brain. To test the hypothesis that its role in these signaling systems has evolutionary significance we have used gas liquid chromatography and mass spectrometry, to analyze the lipids in the dynoflagellates, cephalopods, fish, amphibia, reptiles, birds and some 42 species of mammals. The results confirm the constancy of DHA in neural signaling systems. This data suggests DHA has been the key component of signaling systems with no evidence that it was replaced over what represents 500 million years of evolution, by docosapentaenoic acid which differs by only 2 protons. The conclusion is that the full six member, methylene interrupted double-bond sequence is essential to neural signaling. Molecular dynamic assessment of the π-electron behaviour suggests a potential quantum mechanical behaviour that is consistent with observation of DHA in signalling systems. This extreme conservation as a determinant of the brain together with the molecular biology of DHA provides a rationale for the dependence of human evolution on a DHA-rich, namely an aquatic food resources.

Patterns of gene flow into the indigenous populations of the Aleutian Archipelago.

MICHAEL H. CRAWFORD. Department of Anthropology, University of Kansas, Lawrence.

Contemporary populations of the Aleutian Islands resulted from admixture between Native Aleuts and Europeans. To accurately measure gene flow, the following information is required: (1) the gene frequencies of the parental and admixed populations; (2) identification of the origins of the parental groups; (3) information about other forces of evolution—e.g. signature of selection; (4) determination of differential maternally versus paternal migration. The sampling of DNA from eleven Aleut populations, geographically distributed 1500 kilometers from the Alaska Peninsula to Kamchatka, Siberia, offers an opportunity to measure gene flow rates. The Aleut gene pools were characterized using STRs, RFLPs and sequences of mitochondrial DNA, Y chromosome SNPs and the HLA system. Using Admix 2.0 Program and 9 STR frequencies, 40% of the admixed Aleut population is of Russian origin and 60% is Aleut. However, there is considerable variation in admixture locus by locus (12%-79% Russian). All of the mtDNA haplogroups are either A or D in the western or central islands—suggesting no admixture based on female migration. However, 85% of the Y-chromosomes are of European origin, with the most common being R1b 22%; R1a 26%. A total of 24% of the HLA haplotypes are Aleut specific, while 14% are East European. This study demonstrates considerable variation in estimates of admixture (m) when different genetic markers are used. The majority of the admixture was European males (Russians, Scandinavians or English) and Aleut females. This form of mate selection was encouraged by the Russian government as a political control mechanism. This study was funded by NSF grants OPP-9890500 and OPP-0327676.
The impact of natural substrates and load bearing on bipedal gait dynamics in human females.

MELANIE D. CRISFIELD. Center for Human Evolutionary Studies, Department of Anthropology, Rutgers University.

The ability to walk bipedally is the defining characteristic of the hominin lineage, and studying the origins of bipedalism is therefore important for understanding hominin evolution. The earliest hominins postcranial morphology differs constantly enough from that of modern humans to make it unlikely that early hominins were well adapted for long-distance, striding bipedalism. Additionally, the efficiency of early hominins bipedalism was likely impacted by environmental factors, particularly natural substrates. This study examines the effects on four healthy adult females of load carrying while walking in wet sand. Each subject conducted four walks across a 6x1 m sand tray. Three load conditions were examined for each subject: one in which the subject wore a 9.1 kg pack strapped tightly to the upper back to simulate a heavy torso and arms; one in which the subject carried a 4.5 kg bag of potatoes to simulate carrying an infant; and one in which the subject both wore the backpack and carried the "infant". A control trial in which none of the loads were introduced was also conducted for each subject. Gait dynamics, including speed and stride length, were captured using two digital video cameras with overlapping capture fields. The current study presents available field data on the effects of load carrying and natural substrates on human bipedalism. Preliminary results indicate a decrease in speed and stride length for each of the load variables as compared to the control variable. These data will be used to increase our understanding of early hominin bipedalism.

This study was generously funded by the Zelnick Pre-Dissertation Award, the Rutgers University Department of Anthropology Bigel Award, and the Center for Human Evolutionary Studies Pre-Dissertation Award. This project was approved by the Rutgers Institutional Review Board (#10-451).

Skeletal evidence for the dissection of children at the Philadelphia Almshouse, 1732-1834.

THOMAS A. CRIST and MOLLY H. CRIST. Programs in Physical Therapy and Sociology/Anthropology, Utica College.

In the 1700s, the "Edinburgh model" of medical education emphasized the use of dissected bodies to demonstrate human anatomy and instruct surgical techniques. This style of teaching was adopted in colonial America in 1765, when the first American medical school opened in Philadelphia. Pathologic specimens from dissected corpses were often retained in pathology museums while the dissected remains were buried in potter's fields. The vast majority of the cadavers were from adults, but the remains of children also were dissected for study and surgical practice.

Philadelphia constructed its first public almshouse in 1732. An associated burial ground was used until ca. 1834, when the much larger Blockley Almshouse and its associated burial ground replaced it. Recent excavations of the first almshouse burial ground revealed the well-preserved skeletal remains of 16 infants and children placed in separate coffins but buried together in a single grave shaft. The coffins were undisturbed. Of the 16 individuals, 12 had died before their first birthdays, including four premature infants and two newborns. Three other children were between two and three years of age. The causes of death are indeterminate. Of greatest significance, the heads and first two cervical vertebrae of three of the oldest children had been surgically removed prior to their interment, as indicated by thin cut marks visible on the remaining vertebrae. A necessary but unsettling component of medical education even today, skeletal evidence for the dissection of children is uncommon in the bioarchaeological record. This presentation links medical education in early Philadelphia and the procurement of cadavers from the almshouse morgue.

Differential sex distribution of skeletal trauma in an institutionalized historic population.

LORI A. TREMBLAY CRITCHER. Department of Anthropology, The Ohio State University.

In bioarchaeological studies of skeletal trauma, there has been little focus on institutionalized populations from the historic period in the United States. The aim of this study was to determine the differences of frequency and distribution of skeletal trauma between males and females in a late 19th century population associated with the Onondaga State Custodial Asylum in Rome, New York. I tested the hypothesis that there would be statistically significant differences in the frequency and distribution of traumatic lesions between males and females due to the different labor therapy tasks assigned to, as well as behavioral practices of, each sex. Using macroscopic visual methods, the remains of 55 males and 20 females were examined and both antemortem and perimortem fractures were recorded. Overall, there were no statistically significant differences in frequency and distribution of total trauma for both sexes (p = .306), with the exception of trauma to the tibia. This study revealed that this population not only exhibits a high rate of tibial trauma for the time period but also a statistically significant difference in sex distribution (p = .0375), with a higher rate among females (15%) than males (2%). Although it is unknown how these injuries occurred, and whether they were the result of accidents or some form of interpersonal violence, this unequal distribution suggests that the different kinds of behavioral activities that females and males engaged in produced varying levels of risk for injury in late 19th century institutional settings.

A health assessment of an Etruscan skeletal sample dating from the VIII century to the III century BC.

ELIZABETH S. CROCKFORD-PETERS1, ROBERT R. PAINE2, MARILONI CATA-LDI2, FLAVIA TRUCCO2, RITA VARGI2 and ARTHUR C. DURBAND1. 1Texas Tech University, Department of Archaeology and Social Work, Lubbock, TX, 2Soprintendenza Archeologica per l’Etruria Meridionale, Piazzale Villa Giulia, 2, Rome, Italy, 3Istituto Italiano di Antropologia, Rome, Italy.

We examine the frequency of paleopathological lesions exhibited by 278 skeletons recovered from several Etruscan Necropoli located near the city of Tarquinia, Italy. The necropolis dates from the VIII century BC to the III century BC. The purpose of this presentation is to compare lesion frequencies by sex and over time. Skeletal lesions appear in 65% of the adults; 64.8% of females and 66.4% of males. The following lesions were recorded OA, DJD, trauma, cribra orbitalia, porotic hyperostosis, caries, enamel hypoplasias, and periodontal disease. The differences in rates between the sexes for this sample of Etruscan burials are not statistically significant. Twenty percent of the subadults presented skeletal or dental lesions. The presence of lesions caused by chronic health stressors in the subadult sample indicates that they were likely under the same health constraints as the adults. Additionally, it is likely that acute health problems lead to many of the subadult deaths. Finally, our findings are compared to early Iron Age samples from the Tarquinia necropolis of Villa Bruschi Balgari (VBF), Italy and to an Imperial Roman skeletal sample from Urbino, Italy. For some of the lesions (cranial pitting and DJD) this Etruscan sample sits between the VBF and Urbino samples in occurrence.

American Journal of Physical Anthropology
Variability in the realized resource holding potential of capuchin social groups levels the balance-of-power between unevenly matched neighbors.

MARGARET CROFOOT1,2,3 and IAN GILBY1, 2Smithsonian Tropical Research Institute, Panama, 3Division of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Radolfzell, Germany, 4Department of Ecology and Evolutionary Biology, Princeton University, 5Department of Evolutionary Anthropology, Duke University.

In many social species, large groups have a competitive advantage over their smaller neighbors which can impose substantial costs including reduced reproductive rates and increased mortality. How do small groups persist when the potential ramifications of power imbalances are so severe? We propose that because the defense of shared resources requires the coordinated efforts of many individuals, a group’s strength, its realized resource holding potential, may vary substantially from one contest to the next and be only weakly related to the maximum resource holding potential of the group as a whole. Where payoff asymmetries create context-dependent fluctuations in the balance-of-power between neighbors, groups of unequal strength should be able to coexist. Here, we experimentally demonstrate that asymmetry between neighbors, groups of unequal payoff asymmetries create context-dependent fluctuations in the balance-of-power between neighbors, groups of unequal strength should be able to coexist. This study is aimed at investigating the variation and covariation patterns in howler monkeys, considering both inter- and intrageneric morphological differences. We also investigate the structural role of the pteric area within the cranial functional matrix, in order to test possible relationships between its variation and the degree of airorhynchy. To address this, we applied landmark-based analysis and multivariate statistics to a comparative dataset of atelid adult skulls. Our results suggest that the cranial architecture in howlers is influenced by an allometric vector, which associates higher degrees of airorhynchy with splanchnocranial enlargement, basiangular lengthening and neurocranial flattening. On the other hand, the relationship between pterion and airorhynchy could not be confirmed. Either way, some minor morphological differences were identified, suggesting that variations of the pteric area may be instead related with the relative development of the masticatory apparatus. This research is supported by Program MAS2009-00459, Ministerio de Educacion (Spain); Istituto Italiano di Antropologia (Italy); Fundacion Duques de Soria (Spain).

A dietary source of brain selective nutrients helped free nutritional and energetic constraints during human brain evolution.

STEPHEN CUNNANE. Research Center on Aging, Université de Sherbrooke, Sherbrooke, Québec, Canada.

Two parameters constrain successful brain development in humans – (1) sufficient access to a cluster of dietary ‘brain selective nutrients’ (BSN) including the omega-3 fatty acid – docosahexaenoic acid and several minerals including iodine, iron, zinc, copper and selenium, and (2) an extraordinarily high energy requirement. We hypothesize that since shore-based freshwater and marine fish and shellfish are the richest known dietary sources of BSN, regular consumption of these foods would have helped free the nutritional constraints on primate brain development and function by hominins. This hypothesis predicts that an inadequate dietary supply of BSN would negatively impact on human brain function today, a prediction confirmed by neurodevelopmental deficits due mainly to iron and iodine deficiency in ~20% of the world’s population. Although the adult human brain is 3-4 times bigger than in other primates and consumes about 23% of the body’s energy intake, energy requirements of the infant brain are considerably higher (74% of energy intake). Unlike other organs, the brain requires ketones as an alternate to glucose and cannot use fatty acids as fuels. We hypothesize that energy requirements of the newborn human brain were reliably achieved by the evolution of a significant layer of body fat at birth. Through ketone production, this fat layer supports the high energy needs of the developing nervous system to a degree not available in other primates. Access to BSN in shore-based freshwater and marine food resources therefore played a critical role in the tripling of brain size during human evolution. Funded by the Natural Sciences and Engineering Research Council of Canada.

Mechanical advantages of roasting undomesticated tubers.

ANDREW J. CUNNINGHAM1 and NATHANIEL J. DOMINY2. 1Department of Human Evolutionary Biology, Harvard University, Cambridge MA, 2Department of Anthropology, Dartmouth College, Hanover NH.

Cooking is a central component of modern human behavior. It expands the range of edible foods and reduces the energetic cost of chewing and digestion. Such profound advantages have been linked to key anatomical changes associated with the origin of Homo ca. 2.0 Ma. Yet evidence of cooking is scarce beyond 800,000 years ago, and the effects of roasting behavior on the plant foods available to early Homo are largely unknown. Here we report on the mechanical advantages of roasting undomesticated tubers consumed by two African hunter-gatherer populations, the Hadza and the Twa. The Hadza inhabit a savanna and consume Fabaceae tubers, and the Twa inhabit a rain forest and consume dioecaceous tubers (yams). Although all tubers were similar in size and shape, the mechanical properties of the raw tubers differed between habitats, as did the traditional open-fire roasting behaviors of the two populations. The Hadza roasted tubers with substantial mechanical defenses for ca. 2 min at 700-900 °C, whereas the Twa roasted relatively undomedesticated tubers for ca. 30 min at 500-700 °C. In both cases, cooking resulted in significant mechanical changes; roasted tubers were less stiff and tough and therefore easier to chew.
than raw tubers. Yet such changes cannot alone account for the roasting behavior of the Twas. Tubers roasted by the Hadza - despite immense mechanical changes in a mere 2 minutes - exceeded the toughness of all raw, inedible yams available to the Twas. We suggest that chemical detoxification is sometimes the primary reason to roast tubers. This study was funded by the David and Lucile Packard Foundation and the Department of Anthropology, Dartmouth College.

Assessing the impact of exogenous grit and plant silica on primate tooth wear: A field and laboratory experimental approach.

FRANK P. CUOZZO1, PETER S. UNGAR2, MICHELLE L. SAUTHER3, NAYUTA YAMASHITA4 and JAMES B. MILLETTE5. 1Department of Anthropology, University of North Dakota, 2Department of Anthropology, University of Arizona, 3Department of Anthropology, University of Colorado-Boulder, 4University of Southern California.

Potential causes of primate, and thus mammalian, tooth wear include exogenous grit and plant silica. We tested the hypothesis that plant silica, in the absence of exogenous grit, is a significant source of primate tooth wear. We experimentally “scratched” ring-tailed lemur dental specimens housed in the Beza Mahafaly Special Reserve (Madagascar) Osteology Collection with plant foods known to be eaten by lemurs, and collected just prior to their experimental use. A single lemur jaw (lower right mandible) was used for each round of “rubbing”. Dental impressions were collected prior to, and after 25, 50, and 100 rubs with each plant species, to simulate multiple feeding bouts on each plant type. Prior to their rubbing on teeth, each plant specimen was cleaned with laboratory grade (90%) alcohol to remove exogenous grit. Initial analysis of lemur plant foods using an SEM with EDX probe indicated the presence of endogenous silicates (opal phytoliths) in surface layers of specific lemur plant foods thought to cause abrasion based on long-term study of feeding ecology and collection of tooth wear data. Micro-wear analysis of experimentally rubbed lemur teeth indicates that leaves containing silica produce new microwear features on lemur teeth, these data refute the hypothesis that only exogenous grit is a significant source of tooth wear. Our new data illustrating that leaves containing silica produce new microwear features challenge published hypotheses that such endogenous phytoliths are not a significant cause of mammalian tooth wear. Funding – National Science Foundation BCS-0922465.

American Journal of Physical Anthropology

Open habitats of four Eurasian early Pleistocene sites demonstrated with Cervidae ecomorphology.

SABRINA CURRAN. Department of Anthropology, University of California, Santa Barbara.

Much attention has been paid to the issue of hominin dispersal throughout central and eastern Eurasia at ~2 Ma. Pivotal to understanding how and why dispersal occurred at that time is the elucidation of the types of environments available to hominins in the early Pleistocene. Were hominins adapted to a single habitat type that was spread throughout Africa and Eurasia or did they occupy a wide variety of habitat types, thus displaying behavioral flexibility? Ecomorphology allows for the reconstruction of paleoenvironments by investigating an organism’s functional morphology and adaptive relationships to different habitats. Recent work has shown that geometric morphometric analyses of Cervidae (deer and relatives) post-cranial remains can be used to reconstruct past habitats (Curran 2009). Expanding ecomorphological methods to Cervidae is imperative in studies of Eurasian sites, as cervids are often the dominant taxa in such assemblages. This study reviews ecomorphological results for extant cervids and applies the methods to cervid remains from four early Pleistocene sites (Gränceau, Romania; St. Vallier & Sénèze, France; and ’Ubeidiya, Israel). While all four sites have large faunal assemblages that include primate remains, only the last site contains hominin remains. Similar to other contemporaneous hominin sites, all four sites are reconstructed as being “intermediate open” to “open”. This is due, in large part, to the presence of several Pleistocene giant cervid species. Eucladoceros, especially, is reconstructed as having been adapted to open conditions. Thus, environmental conditions would not have precluded hominins occupation of these early Pleistocene western Eurasian sites.

The Daren Kelley case: how forensic anthropology helped solve a 15 year old homicide.

A. JOANNE CURTIN. Department of Anthropology, University of West Florida.

Sometime in June 1995, 23-year-old Daren Kelley disappeared from his home near Milton, Florida, never to be seen again. He was not formally reported missing until 1996, at which time suspicion fell on his wife, Kimberly Cannon. Although Ms. Cannon claimed to police that Kelley had deserted her in 1995, other informants reported that she had killed her husband, dismembered the body, and buried it on their 13-acre property. Investigators from the Santa Rosa County Sheriff’s Office (SRCSO) searched the property in question on three separate occasions, but found no evidence as to the fate of Mr. Kelley. In 2007, SRCSO asked for the assistance of the UWF Department of Anthropology in conducting another, final search of the property. A team of 22 anthropology undergraduate and graduate students volunteered to participate in the search under the supervision of three department faculty. Field methods included systematic foot search of the property, GPR investigation of suspicious depressions, and hand excavation and backhoe trenching of high probability locations. A single 20-cm fragment of human fibula was recovered during the search. This presentation describes the field methods employed by forensic anthropologists, the results of the analysis of the recovered fragment that led to the conviction of Ms. Cannon in 2010, and argues for stronger reliance on the specialized skills of forensic anthropologists in cold cases of this nature.

Age at death estimation by tooth cementum annulation (TCA) – a software for an automated line counting.

ANDREA CZERMAK1, ADRIAN CZERMAK2, HARTMUT ERNST3 and GISELA GRUPE1. 1LMU Biocenter Anthropology and Human Genetics, Ludwig Maximilian University of Munich, Planegg-Martinsried Germany, 2Faculty of Computer Sciences, University of Applied Science Rosenheim, Germany.

A valid age at death estimation is required in historical and also forensic anthropology. Tooth cementum annulation (TCA) is a method for age at death estimation of adult skeletal remains. The method uses light microscopic images acquired from tooth root cross sections. The age is then estimated by counting the number of visible tooth cement incremental lines and adding the result to the assumed age of tooth eruption. Manual line counting, however, is time consuming, potentially subjective and the number of individual counts is insufficient for statistical evaluations. Here a custom-made AidyTCA software is presented that allows automated evaluation of TCA images using Fourier analysis and algorithms for image analysis and pattern. It involves “line-by-line” scanning and the counting of gray scale peaks within a selected region of interest (ROI). Each scanning process of a particular ROI yields up to 400 counts, thus minimizing the potential error induced by manual line counting. This simple and time saving program can substitute manual counting and provides consistent and reproducible and user independent, unbiased results. In either case, however, reliability of
the results depends largely on the state of preservation of the analyzed material, the preparation, the choice of the thin section and image quality. These factors have to be standardized to get consistent and reproducible results. This research work was supported by the Hans-Seidl-Stiftung, Munich, Germany (PhD grant to Andrea Czermak).

Body composition over the lifespan.

STEVEN A CHERWINSKI, RAMZI W NAHAS, WILLIAM C CHUMLEA, AUDREY C COH, MIRYOUNG LEE. Lifespan Health Research Center, Boonshoft School of Medicine, Wright State University, Dayton OH.

Body composition is an important indicator of health status. Numerous methods are available for assessing body composition that partition the human body into different components including fat, muscle and bone. Body composition during childhood is important in assessing adequate growth and nutrition, as well as risk for type 2 diabetes mellitus (T2DM) and obesity. Body composition assessment in middle age can inform us about chronic disease risk, while body composition in the elderly can provide useful information regarding frailty, sarcopenia, and osteoporosis. Data collected from the Fels Longitudinal Study over the past 80 years have been vitally important in documenting the nature of body composition change over the lifespan, particularly as it relates to health risk. Analyses of Fels Longitudinal Study data have documented significant sex differences in body composition during adolescence and shown how body mass index (BMI) alone is a poor estimator of adiposity during adolescence. A recent longitudinal analysis of data collected from 226 participants older than 60 years of age reveals significant age-related decreases in stature, weight, bone mineral density, sitting height, and fat-free mass in men. For women, there were significant decreases in stature, bone mineral density, and fat-free mass accompanied by significant increases in percent body fat, waist circumference, and BMI. These results indicate that there are significant sex differences and considerable variability in body composition changes associated with normal aging. An understanding of the nature of these changes will aid health practitioners in the assessment and treatment of individuals at risk for chronic disease.

Supported by NIH grants R01HD012252, R01DK064870.

This research work was supported by the Amarna: Egyptians or interlopers grant R01AR052147, R01DK064870.

In the fifth year of his reign, the ancient Egyptian pharaoh Amenhotep IV severed his ties with the traditional religious institutions, changed his name to Akhenaten to reflect his ideological shift, and moved his capital to a "virgin" site situated in middle Egypt (Akh-ten-taten; Figs. 1-3). Occupied for a scant 15-20 years the modern archaeological site of Tell el-Amarna provides a snapshot of life in Egypt during the Amarna Period. This project uses craniometric data from 73 individuals excavated from the South Tombs Cemetery (STC) at Tell el-Amarna to address questions of the morphological and genetic diversity of the worker population at Akhetaten and identify the potential for immigration to the capital city from areas outside of ancient Egypt. Preliminary data analysis suggests the Amarna sample is a highly diverse population. Discriminant function analysis failed to differentiate Amarna individuals based on gross cranial morphology, and only had middling success (9/18 individuals correctly classified) when facial variables were included, suggesting there are few defining "Amarna" cranial characters. Additionally, the coefficients of variation observed in the STC sample are greater than those for a pooled sample of Egyptians from the Badarian to Middle Kingdom, yet less than that observed for the pooled sample when an intrusive Greek sample is included. All of this suggests the inhabitants of Amarna came from throughout Egypt, not outside Egypt.

Microwear of Cercocebus atys from the Tai Forest: implications for inference of hard-object feeding in the fossil record.

DAVID DAEGLING1, PETER UNGAR2 and SCOTT MCGRAW3. 1Department of Anthropology, University of Florida, 2Department of Anthropology, University of Colorado, and 3Department of Anthropology, Ohio State University.

We examined microwear of the P4 and M1sof Cercocebus atys (32 specimens) from the Tai Forest, Ivory Coast. We tested three hypotheses: 1) the "phase II" microwear facets of P4 and M1 do not differ in microwear texture attributes, 2) microwear texture complexity -- a variable known to identify hard-object feeders -- is higher in Cercocebus than taxa which do not or only seasonally ingest hard objects, and 3) the narrow diet of the Tai mangabeys is reflected in reduced variance of microwear texture. The microwear of P4 and M1 are statistically indistinguishable. In addition, sooty mangabeys have higher texture complexity than most other primates studied to date, including Lophocebus. Further, Cercocebus has relatively invariant microwear texture complexity as it relates to health risk. Analyses of this suggests that feeding on large, hard objects leaves similar microwear patterns on premolars and molars.

Supported by National Science Foundation grants BCS-0922429, 0921770, and 0315157.

PEDRO DA-GLORIA1, ANDRE STRAUSS2 and WALTER NEVES3. 1Department of Anthropology, The Ohio State University, 2Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, and 3Departamento de Genetica e Biologia Evolutiva, Universidade de Sao Paulo.

The Lagoa Santa region in central Brazil has been excavated since the 1830’s, providing dozens of human skeletons dated to the Early Holocene period. This collection is singular in terms of antiquity, degree of preservation and number of skeletons in the context of the New World. Based on this material a consensus was developed in which the mortuary practices of the region during this period were particularly homogeneous, consisting of primary burials in flexed position with rocks on top. Nonetheless, recent excavations undertaken at Lapa do Santo rockshelter documented diversified and far more elaborated mortuary rituals. Here, we re-evaluate the skeletal remains from the Harold Walter collection that was gathered by the homologous archaeologist between 1930 and 1950, to test whether they conform to the traditional paradigm or not. Specifically, we investigate the occurrence of modified human bones. The bones analyzed are commingled, representing at least 51 individuals based on skull count. We found 20 long bones and 3 diaphyses with cut off extremities diagnosed by multiple chopper marks at the sectioned margins of the bones. Regarding individual bones, at least 3.07% of the humerus, 2.53% of the femurs and 3.50% of the tibias have extremities cut off. In addition, four cranial vaults (7.84%) show multiple green fractures. These results show that body manipulation did occur, attesting that the mortuary practices in Lagoa Santa were not simple and homogeneous. The exact extension of body manipulation in Lagoa Santa deserves further investigation including...
analyses of ochre, defleshing marks and spiral fractures.
Supported by CNPq, process 200034/2007-3.

Collagen fiber orientation heterogeneity (CFO-Het): evaluation of this new characteristic in antler, primate, and non-primate bones shows that it does not correlate well with load history.

LYNN DAKOULAS1, KENDRA KEENAN2 and JOHN SKEDROS1,2, 1Department of Orthopaedic Surgery, University of Utah, 2Bone & Joint Research Laboratories, VA Medical Center, Salt Lake City.

High toughness of antler correlates positively with collagen fiber orientation heterogeneity (CFO-Het). CFO-Het might be an unexplored histomorphological characteristic, is potentially useful for interpreting load history, and its degradation could contribute to compromised bone quality in aging humans. We compared the degree of antler CFO-Het with various primate and non-primate bones to test the hypothesis that CFO-Het is highest in tension and shear regions. Deer antlers and various other primate and non-primate limb bones were embedded in methacrylate, milled to 100μm, and examined in circularly polarized light. CFO-Het is expressed as the full-width at ½ maximum (FWHM) of the gray level histogram profiles. Non-antler bones were examined in compression(C), tension(T), and shear(S) (i.e. neutral axes) regions. Antlers showed mean FWHM of 50 mm. In non-antler bones, CFO-Het measurements (mm) are: (1) proximal chimpanzee femur: 43(T), 135(C), 83(S); (2) human fibula: 23(T), 25(C), 77(S); (3) deer calcaneus: 47(T), 115(C), 58(S); (4) horse radius: 31(T), 92(C), 44(S); (5) horse third metacarpal: 33(T), 48(C), 72(S). In contrast to our previous studies showing strong correlations of predominant CFO with prevalent strain mode, these results show that CFO-Het does not correlate well with these load histories. This reflects the fact that the non-antler bones can produce toughening mechanisms that are not well represented by CFO-Het, including: (1) secondary osteons with variations in size and/or population density, and (2) specific secondary osteon morphotypes that can accommodate a regionally prevalent/predominant strain mode. But CFO-Het may prove useful for interpreting load history in bones with few or no secondary osteons.

Using body mass to examine Georiga coast stratification and the transition to agriculture.

SHAMSI DANESHVARI. Department of Anthropology, University of New Mexico.

Past studies have shown that the transition to agriculture caused a dramatic change in community organization. This study investigates whether populations in the Georgia Coast demonstrate a change in the mean and variance of their estimated Body Mass Index (BMI) and if a shift in social stratification can be determined via individual values for BMI. Six sites (n=69) dating to before the switch to agriculture (at 1150 A.D.) and one site (n=157) from after the transition were studied. ANOVA and F-tests were implemented to ascertain differences in the mean and variance of BMI. The results indicate that there is no significant difference across the transition (p-value=0.7602 for males, p-value=0.6547 for females). For females, the variance of BMI values appears different, however, no significance is shown (p-value=0.4512). For males, the spread of BMI values is dissimilar, however, a test demonstrates that there is no significant difference in variance (p-value=0.1976). Overall, for hunter-gatherers, the range of BMI values is more compressed around the mean while agriculturalists have a distribution with a larger range of values. Although the means and variances, within each sex, are not significantly different between subsistence strategies, the distribution and concentration of values is apparent. Indicating that with this change in social stratification in populations there is also a change in access to resources and resulting body mass (for height). Therefore, the distribution of BMI can be used as a proxy for social stratification and the degree present in that society.

Challenges in approaches to skeletal stature estimation: an example from prehistoric eastern Mississipi/western Alabama.

MARIE DANFORTH1, KRISTRINA SHULER2 and JEFFREY AUBERBACH1. 1Department of Anthropology and Sociology, University of Southern Missippi, 2Department of Sociology, Anthropology, and Social Work, Auburn University.

Stature is a widely reported bioarchaeological health indicator, viewed as a composite reflection of childhood disease and nutritional experiences. Its determination and subsequent interpretation, however, are not always straightforward, being highly dependent on the formuale and/or bones used. Our case study involving prehistoric populations from the Tennessee-Tombigbee Waterway in Mississipi and Alabama illustrates this issue. A total of 154 burials from four Late Woodland sites and 191 burials from five Mississippian sites were considered. Previously published stature data were used, and stature was also recalculated employing several different formulae. Results of formuale using various combinations of bone elements were analyzed as well. Estimated statures were then compared by time period, region, and site size. When only published data were evaluated, no consistent differences appeared for either sex using any organizing criteria. When a consistent method of stature determination was applied, however, trends did emerge. Using the formuale of Scilliu and Geissen (1993), male stature consistently increased over time whereas that of females peaked both during the Late Woodland and Middle Mississippian. A somewhat parallel pattern was seen when the formuale of B. Auerbach and Ruff were applied (2010), but individuals were somewhat taller and some of the differences approached statistical significance. Results, and thus interpretations, also varied depending on the particular bones used to estimate stature. Overall, these findings suggest that comparison of stature estimations must be performed with caution. Trends did emerge, and perhaps maximum lengths of individual bones should be the variable analyzed whenever possible.

Sunning: A behavioral response to seasonal climatic change in South African vervet monkeys.

JENNIFER DANZY1, J. PAUL GROBLER1, NELSON FREIMER2 and TRUDY TURNER1. 1Department of Anthropology, University of Wisconsin-Milwaukee, 2Department of Genetics, University of the Free State, South Africa, 3Center for Neurobehavioral Genetics, University of California-Los Angeles.

Our understanding of the physiological and behavioral mechanisms of torpor in primates has largely focused on lemurs. Gray mouse lemurs are known to undergo physiological torpor in response to differences between skin and ambient temperature and also in response to seasonal changes in precipitation. Similary, ring-tailed lemurs undergo physiological torpor in response to seasonal climatic change in South Africa from April-July of 2010. We observed that during the shift from autumn to winter, both troops began to care at the site, and participants left the site, and perhaps maximum lengths of individual bones should be the variable analyzed whenever possible.

Behavioral observation data was collected from two free-ranging vervet monkey troops in South Africa from April-July of 2010. We observed that during the shift from autumn to winter, both troops began to care at the site, and perhaps maximum lengths of individual bones should be the variable analyzed whenever possible. Behavioral observation data was collected from two free-ranging vervet monkey troops in South Africa from April-July of 2010. We observed that during the shift from autumn to winter, both troops began to care at the site, and perhaps maximum lengths of individual bones should be the variable analyzed whenever possible.
humidity ($F_{1,44}=4.56, p<.05$), and lower dew points ($F_{1,44}=35.78, p<.001$). These data suggest that like ring-tailed lemurs, vervet monkeys in temperate areas experience seasonal climatic changes by living with their activity and sunbathing. Further data is needed to understand if vervets also use physiological mechanisms for coping with seasonal climatic fluctuations.

This research was supported by NIH RO1RR016300.

Mobility and function of the human foot during shod and barefoot walking.

K. D’AOUT1,2 and C. WILLEMSE3,

1Department of Biology, University of Antwerp, Belgium, 2Centre for Research and Conservation (CRC), Royal Zoological Society of Antwerp, Belgium, 3Royal Academy of Fine Arts, Ghent, Belgium.

The foot is one of the key structures for assessing mobility and locomotor mode in hominins. Numerous adaptations in the foot and throughout the body have been related to the emergence of habitual bipedalism (for early hominins) and to its further fine-tuning toward highly efficient walking and endurance running (in Homo). Assessing form-function relationships in the foot relies heavily on insights from extant analogues. In the case of the modern human foot, the very recent habitual use of footwear might be a confounding factor obscuring natural form-function relationships. Additionally, experimental data on humans have typically been collected on artificial substrates.

We compared walking between native barefoot walkers and shod walkers, and we compared walking on an artificial (hard) and natural (softer) substrate – both walking barefoot and using ethnic (South Indian) footwear. Our results indicate that the use of footwear has an impact on the shape of the foot and on specific functional aspects, i.e. plantar pressure distribution. The effect of substrate (hard vs. softer) and footwear (barefoot vs. ethnic footwear) on biomechanical measures (impact acceleration, ankle kinematics, muscle activity) was more subtle than expected. We suggest that using native barefoot subjects on a natural substrate yields the most relevant results when assessing walking function in modern humans in a comparative context.

Assessing the population history of the Orkney Islands using pheno-typic and genetic perspectives.

ANGELA M. DAUTARTAS. University of Tennessee, Knoxville

Use of dermatoglyphic data in population genetic studies has a longstanding history in anthropology (Jantz et al., 1992, Jantz, 1997, Sokal et al., 1996). These phenotypic data have often been used as an estimate of genetic relatedness between groups, despite suggestions that this may be misleading (Ousley, 1987). Given that certain dermatoglyphic characteristics such as ridge count and cross patterns shown to be effectively selectively neutral (Jantz, 1987), these data should reflect population history in the same manner as genetic data.

The data were first applied to the question of variation between individuals from the Orkney Islands and individuals of British, Norwegian, and Breton nationality to determine if known ancestral connections between these populations are evident phenotypically (Roberts, 1985). Ridge count data, consisting of 20 variables representing 1194 individuals from the four groups were analyzed using principal components analysis and Mahalanobis distances.

In order to determine if utilizing a phenotypic distances would produce a significantly different result than using a genetic distance, the same populations were compared on the basis of ABO and MN blood groupings, as these are more tightly genetically controlled. A Mantel test was then applied to the results of both analyses in order to assess the difference between the two approaches. Preliminary results indicate that there is a difference between analyses conducted using phenotypic distances versus genetic distances, but that the differences do not strongly alter the conclusions ultimately drawn from the analyses.

Human variation in the periosteal geometry of the lower limb: Physique, biomechanics, and morphological integration.

THOMAS DAVIES and JAY T. STOCK.

Department of Biological Anthropology, University of Cambridge.

Behavioural influences upon human diaphyseal morphology are well documented, while variation in body size and shape is also known to influence diaphyseal morphology, particularly in the proximal limb. However, relatively little is known about the relationship between ecoregographic variation in body shape and the variation in diaphyseal strength parameters throughout the limb. This paper uses a new method to quantify shape variation throughout the length of the limb, testing the prediction that physique has a greater influence proximally, while behavioural biomechanics will have a greater influence distally. Diaphyseal strength of the femora and tibiae was assessed among a range of hunter-gatherer populations, using a 3D laser scanning approach to extract cross-sectional biomechanic data from periosteal contours. The method quantifies periosteal size and shape parameters at 1% intervals along the length of the diaphyses. The approach examines cross-sections as coordinate data and is fully automated.

Periosteal strengthening of the proximal femoral shaft is apparent in broader and heavier individuals and persists at least as far as femoral midshaft. Correlations between physique and geometric properties are strongest at proximal femur, but rise towards proximal and distal ends of femora and tibia. A maximum is reached around tibial midshaft. This may represent the best location to investigate variation related to mobility. Variation in location of minimal cross-section strength merits further investigation.

This whole-limb approach may allow further isolation of behavioural signatures in long bone geometry and may refine our understanding of the processes controlling variability in long bone shaft morphology.

This research is supported by funding from Natural Environment Research Council, UK.

Human Leukocyte Antigen system: immunogenetic and population genetic analyses of three Ecuadorian populations.

FLAVIO DE ANGELIS, ANDREA BATTISTINI, ALESSIA GARZOLI, ANDREA IORIO, RENATO POLIMANTI and GIAN FRANCO DE STEFANO. Department of Biology, University of Rome “Tor Vergata”, Rome, Italy.

Due to its long exposure to infectious diseases, the human genome tends to be gradually modified through natural selection, especially at level of the Human Leukocyte Antigen (HLA) complex. The aim of this study is to explore HLA DQ variability in three northwestern Ecuador populations (Cayapas Amerindians, Taschilas Amerindians and Afro-Ecuadorians). Two HLA class II loci (HLA DQB1 and HLA DQA1) of 263 unrelated individuals have been analyzed. HLA high-resolution molecular typing was performed by direct sequencing (Sequence Based Typing, SBT). Differences in HLA DQ gene frequencies have been observed among the ethnic groups of the Ecuadorian population. The comparison among populations shows the key role of several HLA DQA1 alleles in susceptibility and protection to several disease. Interestingly, the allele DQA1*0401 is negatively associated with onchocerciasis, an infectious disease prevalent among Cayapas and Afroecuadorians, living the same onchocerciasis hyper-endemic environment. In order to test the human population relationship, worldwide reference populations have been selected to compare the HLA allele pool by several phylogenetic methods. The compiled worldwide database finely resolved in different basal clusters with very high bootstrap values corresponding to four
Body size and stature estimation based on the first metatarsal in humans.

ISABELLE DE GROOTE and LOUISE HUMPHREY. The Natural History Museum, London, United Kingdom.

Archaeological assemblages often lack complete long bones needed to estimate stature and body mass. The most accurate estimates of body mass and stature are produced using femoral head diameter and femur length. Foot bones, although frequently absent or disassociated from the rest of the skeleton, preserve relatively well in a range of archaeological contexts.

In this paper we present regression equations using the first metatarsal to estimate femoral head breadth, body mass and femur length in a diverse human sample. The skeletal sample comprised 87 individuals (Andamanese, Australasians, Africans, American Natives and British). Results show that all first metatarsal measurements correlate with femoral head diameter and length. The proximal articular dorsoplantar diameter yields the most accurate predictions of both femoral head diameter and length. Percent standard errors of the estimate are below 5%. Equations using two measurements show a small increase in accuracy. No direct predictions are made for stature due to the varied body proportions represented in the sample. Direct predictions of body mass have an error just over 7%. The equations were tested on a sample of 35 individuals from Christ Church Spitalfields. Percentage differences in estimated and measured femoral head diameter and length were less than 1%.

This study demonstrates that first metatarsals can be used in the estimation of body mass and stature. The equations presented here are particularly useful for assemblages where the long bones are either missing or fragmented and enable estimation of these fundamental population parameters in poorly preserved assemblages. This study was funded by the Leverhulme Trust.

American Journal of Physical Anthropology
ment (i.e. greater mediolateral surface curvature). Surface areas were obtained from 16 anthropoid genera (n=200) with diverse locomotor adaptations, and comparisons of articular surface area and shape were made between discrete locomotor groups. Contrary to predictions, taxa with hand postures characterized by increased compressive loads do not have proportionately larger surface areas. Articular surface shape (i.e. mediolateral and dorsoventral curvatures), however, varies among discrete taxonomic groupings (i.e. hominins vs. cercopithecoids and ceboids) as a consequence of phylogeny, but also within individual groupings according to locomotor adaptation and hand posture.

Pleistocene and coevolution among characters of the anthropoid canine honing complex.

LUCAS K. DELEZENE. Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University.

Among anthropoid primates, a previous assessment of interspecific correlations between maxillary canine height and mandibular premolar honing facet length suggested that a significant correlation exists for males but not for females. This was interpreted as evidence for the selective importance of honing function in males and its relative unimportance in females. In this study, patterns of interspecific correlation, using phylogenetically independent contrasts, were examined for mandibular and maxillary canine heights and mandibular premolar honing facet length in males (n=37 taxa) and females (n=38 taxa). Regardless of the method used to reconstruct branch lengths, significant correlations exist among all the elements of the complex in both males and females. Additionally, 5 samples of males (G. gorilla, Pan troglodytes, Cercopithecus nictitans, Cercopithecus cephus, Hylabates lar) and 6 samples of females (G. gorilla, P. troglodytes, Colobus satanas, C. nictitans, H. lar), for which sample sizes exceed 20 for all character pairs, were examined for intraspecific correlations among the characters of the honing complex. In all male and female samples, maxillary and mandibular canine heights are significantly correlated with one another and each is correlated with premolar honing facet length. These correlations remain significant when accounting for the size of the postcanine dentition using partial correlations. Characters of the canine honing complex are linked by pleiotropy and form a unique module within both the female and male anthropoid dentitions. In both males and females, characters of the canine honing complex have coevolved because selection acted upon a pleiotropically-associated set of characters.

Funded by a National Science Foundation Doctoral Dissertation Improvement Grant and Wenner-Gren Dissertation Fieldwork Grant.

The need to account for pelvic size when examining pelvic dimorphisms.

HILLARY DELPRETE. The College of New Jersey.

Although there is a general consensus that the pelves of males and females differ, thereby making the pelvis an excellent source for sex identification, there is some disagreement in the literature on the existence of sexual dimorphism of some traits (Tague 1992). It is likely that some of this disagreement stems from the lack of data adjustment for body and/or pelvic size and perhaps, the lack of standardization of this adjustment. For this study, pelvic data was collected from the skeletal remains of 239 individuals from the Hamann-Todd Skeletal Collection in order to determine if data adjustment affects the presence of sexual dimorphism of pelvic measures. The presence of sexual dimorphism was compared for the same individuals using both unadjusted data and data adjusted for pelvic size. Based on the results of the t-tests, adjustment of the data can have a profound effect on which variables appear sexually dimorphic. The following measures were affected by data adjustment: anterior space of the inlet, transverse diameter of the inlet, linea terminalis, anteroposterior diameter of the midplane, anterior space of the midplane, anterior space of the outlet, inter-acetabular distance, pelvic breadth, sacral breadth, length of the superior pubic ramus, inter-siaka breadth, and circumference of the inlet. Based on the way that these dimorphisms changed in conjunction with known shape differences between the sexes, using the size-adjusted values seems to provide a better understanding of pelvic sexual dimorphism.

Organizing, administering, and sustaining an open-access database, examples learned from PRIMO.

ERIC DELSON1,2,3,4 5, ERIC FORD6, MARTIN FRIESESS, STEPHEN R. FROST6,8 and WILLIAM HARDCOURT-SMITH2,3,4,5 1Department of Anthropology, Lehman College/CUNY, 2Anthropology Ph.D. Program, CUNY Graduate School, 3Department of Vertebrate Paleontology, American Museum of Natural History, 4NYCEP (New York Consortium in Evolutionary Primatology), 5NYCEP Morphometrics Group, 6Computer Science Program, CUNY Graduate School, 7Department Hommes, Nature, Sociètes, & CNRS UMR 7206, Muséum national d'Histoire naturelle, Paris, 8Department of An- thropology, University of Oregon. Data in paleoanthropology are of many types: linear dimensions, landmark coordinates, images, surface and CT scans, stratigraphic and geographic locality information, taphonomic observations, specimen collection and life history information, bibliographic citations, and artifact dimensions, scar counts or mineralogy, among others. Beginning in 2000, Delson and NYCEP Morphometrics Group (NMG) col-

An assessment of the impact of small samples on the reconstruction of hominin phylogeny.

MANA DEMBO and MARK COLLARD. Laboratory of Human Evolutionary Studies, Department of Archaeology, Simon Fraser University.

Due to the vagaries of preservation and recovery, the samples used in hominin phylogenetic analyses tend to be small. To date, it has been widely assumed that this is not a problem. However, a handful of studies have recently suggested otherwise. For instance, Cobb and O’Higgins (2004) reported unreliable estimates of ontogeny and allometry in Pan with less than 15-20 individuals.

Here, we report a study designed to assess the impact of small samples on the accuracy of fossil hominin phyloge- netics. Experiments were conducted on cranial measurements of extant hominoids and two outgroup taxa, Colobus and Papio. Sample sizes were reduced (with random specimen selection) from the maximum per taxon to 20, 10, 5, 2, and 1 individual(s). The data were subjected to isometric and
allometric size correction methods. Then, phylogenies were reconstructed in TNT (Goloboff et al. 2008). We generated 10,000 bootstrap replicates for each sample size. Lastly, the impact of sample size was assessed by comparing the trees yielded by the reduced sample size datasets with the tree obtained from the full dataset. Reducing sample size had a major impact on the topology of the most parsimonious tree obtained, and the effect increased as sample size decreased. By the time each taxon was represented by 2 individuals, the most parsimonious tree was significantly different from the most parsimonious tree yielded by the full dataset. Thus, the study suggests that small sample size may well be a significant impediment to the accurate reconstruction of fossil hominin phylogeny.

Genetic influences on the age at menarche: new findings from genome-wide association studies.

ELLEN W. DEMERATH. University of Minnesota School of Public Health, Division of Epidemiology and Community Health, Minneapolis, MN.

Menarche, the onset of first menstruation, signals the imminent attainment of female reproductive capacity and is a key developmental event. Age at menarche varies widely between girls and is dependent on nutritional status. Early menarche is associated with several adverse health outcomes, including breast cancer, endometrial cancer, obesity, and type 2 diabetes, and is also associated with shorter adult stature. Studies of twins and extended families have shown that ~50% of the variance in menarche timing is attributable to genetic factors, but the identification of specific loci has been slow. Since 2009, a number of large (N>30,000) genome-wide association studies have had success in identifying numerous genetic loci associated with age at menarche. This lecture will review the current state of knowledge on the genetics of menarche and possible pleiotropic effects of identified genetic variants on height, body mass, and other growth and health-related outcomes.

New insights on the health status of a pre-contact population from New Mexico: enamel hypoplasias in the permanent dentition of the Gallina.

LAUREN C. DENTON. Department of Anthropology, Colorado State University.

Linear enamel hypoplasias are used to examine the incidence of childhood systemic metabolic stress in the pre-contact Gallina population from northern New Mexico during the Pueblo III period. The sample is from the Llaves-Alkali area in Gallina Country, and consists of the permanent anterior teeth from 26 individuals with a total of 121 teeth. The incidence of hypoplasias in this sample is high, involving 94.4 percent of the individuals and 65.3 percent of the teeth. The earliest onset of enamel hypoplasia in individuals occurs most commonly at 1.5-2.5 years, with a peak age at 2.5-3.0 years. All individuals, regardless of sex or age at death, express a similar age of metabolic disruption; no significant difference exists between the groups. However, a significant difference in hypoplasia frequency between males and females exists with males accounting for almost double the total number of hypoplasias observed in females. Compared to Anasazi populations during Pueblo III studied by Malville (1994; 1997) and Karhu (2000), the Gallina show a higher incidence of metabolic stress. No previous studies concerning dental disruptions on the Gallina have been published; the present work provides new insights into the past health status of this southwestern culture.

Isotopic signatures of diet from the Bronze Age, Iron Age, and Anglo Saxon period in Kent, UK: preliminary results.

CHRISTINA A. DETER1, ELIZABETH ROWING1, KATERINE SCANE1, GERALD A. MOODY2 and PATRICK MAHONEY1. 1University of Kent, School of Anthropology and Conservation, 2Trust for Thanet Archaeology, Kent.

Dietary reconstruction from stable isotope ratios is increasingly reported as a way of inferring human diets from the past. This has provided insights into periods of cultural and economic change. Here we investigated carbon and nitrogen isotope ratios in human bone dating to the Bronze Age, Iron Age, and Anglo Saxon period in Kent, UK. Nitrogen and carbon stable isotopic studies for this region of the UK are under represented in the literature. Samples used here are from previously excavated archaeological sites, South Dumpton Down (2100 BC-100 BC) and Oozengell (500-700 AD). Mean stable nitrogen and carbon isotope values were 10.64 (±0.55) and -23.44 (±0.56) for the Bronze Age, 9.19 (±0.01) and -22.18 (±0.09) for the Iron Age, and 9.16 (±0.49) and -22.2 (±0.33) for the Anglo Saxon period. Enriched nitrogen and slightly depleted carbon signals during the Bronze Age suggest a greater consumption of terrestrial protein and less marine resources, compared to the other periods. Ongoing research for this region during these periods will investigate stable isotope ratios and social status, sex, and religious transition.

American Journal of Physical Anthropology

Cercopithecus mitis x C. ascanius hybridization in Gombe National Park, Tanzania.

KATE M. DETWILER. Department of Anthropology, New York University and The New York Consortium of Evolutionary Primatology (NYCEP).

Most cases of hybridization between broadly sympatric species of Cercopithecus monkeys in the wild are rare and sporadic, and have little or no apparent, long-term phenotypic impact on the participating populations. An exception is the long-standing and very frequent hybridization between C. ascanius and C. mitis in Gombe National Park, Tanzania, where a significant proportion of all guenons are phenotypic intermediates. The Gombe population thus provides a unique opportunity to test for evidence of gene flow between two closely related sympatric primate species.

I surveyed the Gombe population and characterized animals from all parts of the national park phenotypically, and by using Y-chromosomal and mitochondrial DNA genetic markers. All Gombe guenons surveyed, including phenotypically normal C. mitis, carry mitochondrial haplotypes derived from C. ascanius, suggesting a past history of massive transpecific introgression via immigration and subsequent successful species hybridization. No previous studies concerning interspecific hybridization among Cercopithecus species have indicated that males of both parental species can have hybrid ancestry. The lack of evidence for Y-chromosomal gene flow between the two species suggests that C. mitis and C. ascanius are distinct species in Gombe National Park. The study was conducted using the Wenner-Gren Foundation Individual Research Grant, Leakey Foundation General Research Grant, and National Science Foundation, Dissertation Improvement Grant Award.

Maternal perinatal diet alters offspring bone architecture: evidence for developmental programming of the skeleton.

MAUREEN J. DEVLIN1, CORINNA GRASEMANN2, MARK PALMERT3 and MARY L. BOUXSEIN1. 1Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; 2Hospital for Sick Children, Toronto, Canada.

Is the fetal skeleton sensitive to its maternal diet during gestation? Maternal diet can induce developmental programming
of offspring metabolism, but potential skeletal effects are unknown. To test the hypothesis that maternal diet modulates offspring skeletal acquisition, we compared pups from female C57Bl/6J mice fed high-fat (HF, 45% kcal/fat) or normal (N, 18% kcal/fat) diet from 6 wks prior to breeding through gestation and lactation. We weaned 3-wk-old female pups from HF mothers (HF-N) and N mothers (N-N) onto N diet ad lib. Experiments at 14 and 26 wks of age included body mass, body length, % body fat, total body bone mineral density (BMD), and cortical and trabecular architecture at midshaft and distal femur. At 14 and 26 wks of age, body mass, body length, and % body fat did not differ in HF-N vs. N-N. Total body BMD increased by 50% more in N-N vs. HF-N from 14-26 wks of age (+12% vs. +16%). In the HF-N group, however, increased maternal HF impaired skeletal acquisition. Midshaft femur cortical thickness was 6% lower in HF-N vs. N-N at 14 wks of age (p < 0.03). However, in the distal femur, trabecular bone volume fraction was 19-26% higher in HF-N vs. N-N at 14 wks of age (p < 0.05). These data suggest complex effects of maternal diet on offspring skeletal acquisition, perhaps via developmental programming. Female HF-N pups exhibited lower cortical bone mass, but higher trabecular bone volume vs. female N-N pups, suggesting maternal HF diet may impair postnatal cortical bone acquisition, but also slow age-related trabecular bone loss. This study was funded by NIH R01AR049265-01 (MLB), 1RC1AR058389-01 (MLB), and 5T32DK007028-35 (MJD).

The effect of social status on risks of mortality in Roman Dorset, England.

SHARON N. DEWITTE1 and REBECCA C. REDFERN2. 1Department of Anthropology, University at Albany, SUNY, 2Centre for Human Bioarchaeology, Museum of London.

Recent analyses have suggested that one of the consequences of the Roman conquest within the population of Dorset County, southwest England was an increase in health disparities in the Romano-British population compared to the earlier Iron Age population of the same area. Average levels of frailty and the degree of heterogeneity in frailty might have increased post-Conquest for a variety of reasons, including increased status differences in housing (including house size and the use of plumbing) and diet. This paper contributes to an understanding of the health consequences of Roman Conquest in Britain by examining the effects of social status on risks of mortality in Romano-British cemeteries. This study uses a sample of 291 individuals from Romano-British cemeteries (dated to the 1st to late 4th centuries AD) in Dorset County. For these analyses, burial type was used as a proxy for social status, and was modeled as a covariate affecting the Siler model of mortality. The estimated effects of the burial-type covariate suggests that these individuals were buried with a coffin (wood, lead, or stone) or a mausoleum that was not significantly associated with elevated nor reduced risks of mortality during the Romano-British period in Dorset, when all ages are considered simultaneously. Therefore, these analyses did not reveal a significant difference in risks of all-cause mortality between individuals of higher and lower status in this population. Further analyses will reveal whether the association between burial type and mortality risk varies by age, sex, or across cemeteries. This study was funded by the University at Albany Research Foundation, the University at Albany Center for Social and Demographic Analysis, the University of Birmingham, and an Ian Horsey Award from Dorset Natural History and Archaeological Society.

Interbirth interval, age at dispersal, and sexual dimorphism in wild titis (Callicebus discolor) and sakis (Pithecia aequatorialis).

ANTHONY DI FIORE1,2 and EDUARDO FERNANDEZ-DUQUE1. 1Department of Anthropology and Center for the Study of Human Origins, New York University, 2New York Consortium in Evolutionary Primatology, 3Department of Anthropology, University of Pennsylvania.

Much of what we know of group composition and demography of wild titis and sakis comes from surveys and limited long-term studies of groups living in human-impacted landscapes. Few longitudinal studies of these pithecia have been conducted in primary tropical forests, where the ecological community (including other primates and possible predators) remains intact. Since 2003, we have collected demographic and morphometric data from individuals in several groups of wild titis and sakis in Yasuni National Park, Ecuador. Here, we report data on group composition, interbirth interval, birth seasonality, age at inferred dispersal, and sexual dimorphism based on captures and regular observations of individually-recognized animals. Both titis and sakis live in socially-monogamous groups comprising a single adult male-female pair and up to 2-3 young. Interbirth intervals for titis averaged ~12 months (n = 6 offspring, 3 each born to two females in different groups) while for sakis averaged ~21 months (n = 4 offspring born to a single female). Titi births were more seasonal than sakis births, concentrated between November and February. Inferred dispersal age ranged from 2.5 to over 5 years for titis (n = 4), while one saki was observed to disperse successfully at the high end of this range. Sakis were moderately sexually dimorphic (males ~25-40% larger than females) while male and female titis were more similar in weight. Differences in life history and sexual dimorphism in these taxa may reflect variation in the factors underlying the evolution and maintenance of sexual monogamy.

This research was funded with grants from the National Geographic Society, the Leakey Foundation, and the Wenner-Gren Foundation.

Standardizing Paleolithic stone tool analysis: perspectives and prospects.

HAROLD L. DIBBLE1,2 and SHANNON M. P. MCPHERSON2. 1Department of Anthropology, University of Pennsylvania, 2Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology.

Though there is a well-developed literature on techniques of stone tool analysis, there remains a tremendous amount of variability in terms of how stone tool collections are excavated, stored and analyzed. Variation in standards is apparent at every step of the descriptive and analytical process, from determining which artifacts are included in analyses (usually based on size), which measurements or observations are taken and how, and even how descriptive categories (i.e., types) are defined and presented. While other paleoanthropological disciplines have successfully dealt with these issues, published analyses in lithic studies vary considerably from one researcher to another, and in turn this means that comparing results among various researchers is extremely limited, if not impossible. In part to address these issues, the authors have, over the past twenty years, attempted to develop a set of excavation methods linked to specific taphonomic and stone tool analysis goals and to facilitate inter-site comparisons. These methods have now been applied to a series of Middle Paleolithic sites in France and this has resulted in inter-site patterns that have not previously been recognized. The larger problem still remains, however: how to encourage the development of standards that are accepted and used by the wider community of researchers. Until this is achieved, progress in this field based on scientific observation, predictive testing, and replicability is limited, and so too is any understanding of prehistoric behavior based on lithic remains.

Supporting evidence for a genetic component in the etiology of Mx.C.P1 transposition in a Rwandan sample from Africa.

CLARISSA R. DICKE AND JOEL D. IRISH. Department of Anthropology, University of Alaska Fairbanks.

In 1963, Jacques Nenquin and his team excavated 91 human burials in Nyirakuba cave near Ruhengeri, Rwanda. Inhumations, pottery, iron tools, beads, and...
Phylogeny of primates based on muscular characters, with special attention to the relationships of hominoids and the phylogenetic position of Tarsius.

RUI DIOGO¹ and BERNARD WOOD¹.
¹Center for the Advanced Study of Hominid Paleobiology, Department of Anthropology, George Washington University, Washington DC.

In this presentation we report the results of the first comprehensive cladistic analysis based on muscular characters that addresses the relationships among the major groups of living primates and taxa such as tree-shrews and colugos. This analysis is based on information obtained from a review of the literature and from dissections of more than 50 specimens of various primate and non-primate taxa. The genera included in the analysis were: Rattus, Tupaias, Cynocephalus, Lemur, Propithecus, Loris, Nycticebus, Tarsius, Callicebus, Pithhecia, Aotus, Saimiri, Macaca, Papio, Cercopithecus, Colobus, Hylobates, Pongo, Gorilla, Pan and Homo.

The analysis was based on 208 characters concerning the head, neck, and upper limb muscles of these taxa, using Nona & Winclada 2002. The relationships among the taxa in the most parsimonious trees obtained (L=382; RI=0.53; CI=0.65) largely conform to those supported by recent molecular studies of the Primates: Lemuriformes, New World monkeys, Old World monkeys, the subfamily Cercopithecinae and the Hominoida are monophyletic groups, and there is strong support for the following relationships among hominoids: [Hylobates, [Pongo, [Gorilla, [Pan, Homo]]]]. Our study revealed that, regarding its muscles, Tarsius is one of the most peculiar primates, displaying some plesiomorphic (e.g., the presence of a distinct muscle spinotrapezius) and derived (e.g., the presence of two series of anterolateral muscles) features that are rarely seen in other living primates. We will examine the phylogenetic and evolutionary implications of these results, and discuss the use of myological, molecular and osteological characters in phylogenetic reconstructions.

We gratefully acknowledge the support of the GW Signature Program, the Mathers Foundation and the GW VP for Academic Affairs, Don Lehman.
Enamel microstructure and molar development in *Leptadapis magnus*.

WENDY DIRKS, ROBERT L. ANEMONE, K. CHRISTOPHER BEARD, BRETT A. NACHMAN and PAUL TAFFOREAU. *Museum of Natural History, Pittsburgh, Department of Anthropology, University of Montpellier II, European Synchrotron Radiation Facility, Grenoble.*

Leptadapis magnus is a large adapine primate from the Eocene of Europe with dental adaptations for folivory. We examined dental microstructural characteristics and the timing of its molar formation in histological thin sections, including M1-M3 from a single individual, using conventional polarized light microscopy. We found the Eocene from thocene species *Cantius abditus* and two extant strepsirhines as a comparison. Daily cross striations and striae of Retzius were used to determine daily secretion rate (DSR), enamel extension rate, and the timing of crown formation. We examined enamel microstructure using SEM and confocal microscopy. Enamel thickness was measured using synchrotron microtomography. *L. magnus* is characterized by very thin enamel and extremely weak prism decussion, surprising considering its large body size. Mean DSR is 3.7 microns, slightly higher than in *Cantius*. A potential neonatal line was identified in the M1, based on its similarity to the position of neonatal lines identified in the extant strepsirhines, as well as several specimens of *C. abditus*. The M1 crown was complete at age 6.7 months and probably erupted by one year of age. Premolars and molar extension rates in the M1 were almost 12 microns a day, dropping abruptly to just over five microns a day at the neonatal line, then increasing again toward the cervix of the tooth. There appears to be extensive overlap in molar formation, typical of folivores, lending support to this reconstruction of dietary adaptation in *Leptadapis*. Then enamel and weak decussion can also be interpreted as an adaptation to folivory. This study was funded by the Royal Society and the French Ministry of Research.

Does a house full of bones equal a massacre? Testing assumptions of violence in the Texas panhandle.

LYNETTE N. DIXON. Department of Sociology and Anthropology, University of Texas at Arlington.

The Footprint Site in the Texas Panhandle was excavated in 1964 by F.E. Green and has become a common reference for inter-personal violence or massacre within the Ancestral Nile Focus in Texas Prehistory. The commingled remains of a minimum of thirty-two individuals were discovered within one of the three structures. This site along with twenty six other sites. This site is unique in that among the fifty plus sites excavated within the Texas Panhandle and western Oklahoma for the Ancestral Nile Focus, this is the only one with evidence of possible extreme interpersonal violence. Analysis consists of current osteological and forensic methods to evaluate perimortem and postmortem fracture patterns, burn pattern analysis and taphonomic alteration of the remains. Preliminary findings indicate that the assumptions of violence at this site are most likely false. Although excavation and curation problems make estimation of actual events at this site impossible, cultural associations of mortuary practice may possibly if the assumption of violence is dispelled. In addition to the question of violence in the Ancestral Nile Focus, cultural affiliation with the Southern Plains Villagers and/or the Southern Cultures has long been an enigma for this site. Assemblages of remains such as those found at the Footprint Site have been documented in Southwest sites, however the evidence of violence at those sites is yet to be found at Footprint. Burials within structures and subsequent abandonment have been documented in the Southern Plains, suggesting a possible cultural affinity with the Footprint Site. This study was funded by Termini Graduate Student Research Grant 2010.

Co-evolution of facial expression and brain size: a test of the visual specialization hypothesis.

SETH D. DOBSON. Department of Anthropology, Dartmouth College.

It has been suggested that primates with more specialized visual systems tend to have relatively large brains due to selection for enlarged cortical visual processing areas. This "visual specialization hypothesis" is supported by several comparative studies. However, the behavioral bases of these co-evolutionary patterns remain unclear. If the visual specialization hypothesis is correct, then variation in visually-oriented behaviors should correlate with variation in brain size. The purpose of this study is to test this prediction by examining the co-evolution of facial expression complexity and relative brain size in extant anthropoids. Facial expression complexity is a function of facial mobility, or the number of visually distinctive facial movements a species can produce. Data on facial mobility are currently available for 12 species. These data were combined with published estimates of endocranial volume and body mass. Phylogenetically-informed partial correlation analyses were used to examine the association between facial mobility and endocranial volume after controlling for body mass. Male and female data were analyzed separately. The results of this study provide broad support for the visual specialization hypothesis. Facial mobility is positively correlated with endocranial volume after controlling for body mass in males (partial r = 0.65; p = .031). However, females do not exhibit a significant partial correlation between facial mobility and endocranial volume (partial r = .10; p = .396). These findings suggest that male, but not female, brain size evolution is influenced by selection for facial expression processing.

Evidence challenging the Pleistocene origin of yaws: A reexamination of KNM-ER 1808.

SEAN G. DOLAN. Department of Anthropology, New Mexico State University.

The use of paleopathology in the archaeological and paleontological record can be a way to understand the evolution of diseases as well as the behavior and culture in human and non-human primates, however it can be overlooked and possibly underreported when it comes to the human fossil record. The *Homo erectus* partial skeleton, KNM-ER 1808 is an exception because it exhibits a bone pathology not seen in other Pleistocene hominids. Walker et al. (1982) concluded that this individual suffered from chronic hypervitaminosis A, while Rothschild et al. (1995) states that KNM-ER 1808 exhibits the oldest case of the treponemal infection yaws in prehistory, which is up for debate because it may not be possible to differentiate between the treponemal infections in isolated skeletons. Casts, x-rays, and photographs of KNM-ER 1808 were compared to the paleopathological literature to refute Rothschild et al. (1995). The treponemal diseases often leave lesions on the frontal bone and anterior tibial bowing. This study compared the bowing angle of the tibia from a population of non-diseased modern humans, modern humans suffering from the treponemal diseases, and KNM-ER 1808. Examination of KNM-ER 1808 indicates that this nearly ubiquitous anterior bowing is absent. This suggests that KNM-ER 1808 probably did not suffer from a treponemal infection 1.6 MYA. Genetic evidence also supports a more recent origin for yaws. Hypervitaminosis A, does not have a large or accessible sample size to compare, therefore it cannot be excluded based on this research.

The interplay between mobility, body size and prey capture in living and extinct Canis.

SARA K. DOYLE, CHRISTINE E. WALL and DANIEL SCHMIDT. Duke University, Durham, NC.

Limb length affects locomotor efficiency and distance traveled per step, an im-
portant component of mobility in mammals with large home ranges. Many Pleistocene and some extant mammals in cold climates have relatively short limbs, a pattern usually attributed to thermoregulation. This potentially compromises efficiency. Limb length also influences bone strength. This study considers the relationship between limb length, ambient temperature, and bone strength in living and fossil Canis across a range of body size and localities. We propose that limb shortening in Canis is a mechanism to increase bone strength by reducing bending moments. To test this, we calculated the scaling of bone length and diameter and body mass. Results show that for extant Canis, there is negative allometry (femur: 0.70; tibia: 0.79) of bone length on body length, indicating that bone strength is isometric relative to body mass. When dire wolves are included, they fall only slightly above the regression lines of bone diameter on body mass, but significantly below the line for bone length on body mass, meaning that they are increasing bone strength primarily through shorter bones. Carnivores hunting large prey may experience high forces during prey capture. Dire wolves were specialized hunters of Pleistocene megafauna living in a mild climate. Dire wolves appear to compromise locomotor efficiency in exchange for greater bone strength needed for prey capture. These data demonstrate clearly the multiple influences on limb length in mammals and argue against a simple relationship between limb length and mobility.

Secular change in the asymmetry of the human pelvis: 1842-1981.

KATHRYN DRISCOLL. Department of Anthropology, University of Tennessee. The change that the human pelvis has experienced over time is of great interest in anthropology. In a preliminary study, the pelvic asymmetry of the William M. Bass Donated Skeletal Collection in addition to the Bass Collection in New York, NY. Stratified samples of individuals from the Bass Collection were more asymmetric than the cohorts made up of individuals from the Bass Collection were more asymmetric than the cohorts made up of Terry and Todd skeletons. In contrast to the white males, the white females were more asymmetric in the early cohorts. When asymmetry was present, it favored the left side in both height and breadth. Secular trends do seem to be present in the white cohorts in the breadth measurement with an increase in asymmetry.

Genetic and functional variation of primate bmp5 enhancer region.

KELLY DRONEY, COWEN LOVEJOY and CHI-HUA CHIU. Department of Anthropology, Kent State University, Kent, OH. Reorganization of the primate bauplan (e.g. changes to thoracic cage shape, scapular relocation, vertebral column invagination) has played an integral role in locomotor adaptations. A causal genetic and developmental link is lacking between bauplan changes and bipedal locomotion, a hallmark of hominid evolution. However, a genetic and developmental link has been demonstrated specific to the shape of the thoracic cage. Guenther et al. (2008) functionally defined a cis-regulatory sequence of bone morphogenetic protein 5 (bmp5) that modulates the protein’s expression in mouse rib anlagen and influences rib curvature. We PCR amplified, cloned, and sequenced the orthologous DNA sequence in several primate taxa including gibbon, squirrel and spider monkey which were previously unavailable publicly. We aligned these to orthologous sequences of chimpanzee, orangutan, rhesus monkey, the common marmoset, and mouse. Using Match, a program that predicts transcription factor binding sites and phylogenetic analysis, we traced the progression of putatively functional nucleotide substitutions in this bmp5 enhancer throughout primate phylogeny that potentially affect transcription factor binding sites in key taxa including human, gibbon, and spider monkey. Among many conclusions, our analysis demonstrates that while there are species-specific nucleotide differences, the human, gibbon, and chimpanzee sequences share a core of predicted binding sites that are different from that predicted in monkeys and mouse (outgroup). This study demonstrates the power of experimental and bioinformatic approaches to fundamental issues in primate and human evolution and suggests future functional studies that may help decipher critical events in the genetic and phenotypic evolution of the primate thorax.

Searching and extracting reports from the Osteoware database.

J. CHRISTOPHER DUDAR. Director Repatriation Osteology Lab, National Museum of Natural History, Smithsonian Institution, Washington D.C. A relational database is a collection of data organized for easy access and management. The database itself is composed of separate tables storing different types of data. Each table contains data elements (cells) organized by horizontal rows and vertical columns, and resembles a spreadsheet to the uninitiated eye. However unlike spreadsheets relational database tables can be joined and indexed so that meaningful information can be extracted and used together. The Relational Database Management System (RDBMS) used in conjunction with Osteoware, Advantage Data Architect™, offers rich and useful features for searching and extracting the osteology data stored within. Querying the Osteoware database for optimal results requires some knowledge of Structured Query Language (SQL), a computer language designed for managing relational databases. Fortunately SQL is easy to learn. This presentation will provide a basic foundation and a hands-on opportunity to compose queries that will join tables and extract data that, in turn, will generate meaningful information that can be exported to a variety of formats, including HTML, .txt, .rtf, .csv, .dif, as well as Microsoft Excel and Word for report production.

Osteoware is supported by grants from the National Center for Preservation Technology and Training (NCPTT) National Park Service, and the Smithsonian Web 2.0 Fund.

Distribution of synaptic markers in chimpanzee neocortical areas across development.

TETYANA DUKA1, LAWRENCE GROSSMAN2, MONICA UDDIN2, DEREK WILDMAN2, MORRIS GOODMAN2, WALLACE BAZES, PATRICK HOP2 AND CHET SH QUWOOD1. 1The George Washington University, Washington, DC. 2Wayne State University School of Medicine, Detroit, MI. 3The University of Texas M.D. Anderson Cancer Center, Bastrop, TX. 4Mount Sinai School of Medicine, New York, NY.

In humans, the prefrontal cortex, which is important for executive cognitive function, shows a delay in its maturation compared to other cortical areas. The purpose of this study was to examine if there is a similar humanlike developmental pattern of synaptic function in chimpanzee neocortical areas.

American Journal of Physical Anthropology
CT scanning of the Willandra Lakes fossil hominids: progress and prospects.

ARTHUR C. DURBAND, ROSS O'NEILL and MICHAEL WESTAWAY.
1Department of Sociology, Anthropology, and Social Work, Texas Tech University, 2Medical Imaging Department, The Canberra Hospital, Canberra ACT, Australia, 3Department of Cultures and Histories; Queensland Museum, South Bank.

The human fossil sample from the Willandra Lakes, New South Wales, Australia, represents the largest collection of late Pleistocene human remains in the world. Approximately 100 individuals are represented in this sample, including the oldest known human burial in Australia, Lake Mungo 3. The Willandra Lakes Hominid (WLH) fossils are both the oldest and largest series of fossil remains that have not been reattributed to local landscapes for reburial. Thus, the WLH fossil series provides an invaluable resource for understanding the peopling of Australia and modern human origins in the region. During May, 2010, permission was obtained from the Traditional Tribal Groups of the Willandra Lakes area for a series of CT scans to be made from the fossils. Eight of the most complete and important individuals from the collection were selected for the initial phase of the project, including Lake Mungo 3 and WLH 50.

We will discuss our progress as well as the manifold benefits and future prospects that stem from this ongoing project. First and foremost, CT scanning provides a digital archive of the fossils that can serve as a virtual “keeping place” for scientific access to the remains. We will also demonstrate how the application of virtual anthropological software to this set of more fragmentary remains can help scientists better communicate the value of such remains to concerned indigenous communities who are often skeptical of our work. Financial support for this project was provided by the Franklin Research Grant Program of the American Philosophical Society.

American Journal of Physical Anthropology
American Journal of Physical Anthropology

genetic and environmental influences. The environmental envelope surrounding the developing skeleton obviously changes as a child is exposed to novel experiences (diet, exercise, etc.). Likewise, the genetic influences on the growth and development of the pediatric skeleton can change over the course of childhood. We examined the genetic underpinnings of measures of bone health (cortical thickness & biomechanical properties) in three cross-sectional samples of genotyped children participating in the Fels Longitudinal Study representing distinct stages of childhood development at 3 years, 12 years, and 18 years of age. All analyses were conducted using a maximum-likelihood variance decomposition approach in SOLAR with age, sex, and skeletal age as covariates. Quantitative genetic analyses reveal that bone measures at each of the three age groups. Heritabilities ranged from 0.47 (section modulus in the 12 year olds) to 0.82 (total cortical bone thickness in the 18 year olds). Significant linkage were identified for QTL on chromosomes 6q, 17q and 22p in the 3 year olds, on chromosomes 2p, 6p, 11p and 22p in the 12 year olds, and on chromosomes 1p, 6q, 7q, and 14q in the 18 year olds. Our results demonstrate that pediatric bone health is influenced by genes throughout childhood. And although some genomic regions appear to consistently influence bone health across ages, each developmental stage is also characterized by a genetic landscape unique to that time period.

This study was funded by the National Institutes of Health (NIH-R01HD056247, R01AR059827, R01HD12252).

Preliminary results of activity-induced skeletal markers on proximal femora from the Bronze Age Tell Abraq tomb, U.A.E.

ANIMIKA DUTT, DEBRA L. MARTIN and JENNIFER L. THOMPSON. Department of Anthropology, University of Nevada, Las Vegas.

Patterns of activity-induced skeletal markers within an ancient population shed light on the economic lifestyle when incorporated with archaeological findings. This study presents the preliminary results of analyses of the adult proximal femora collection from the commingled, disarticulated and fragmentary human remains from the United Arab Emirates Bronze Age Tell Abraq tomb. Archaeological evidence from the site reveals that various forms of subsistence were practiced such as fishing, farming and domestication of animals. If there was task specialization and/or division of labor to perform these tasks then activity-induced skeletal markers should reveal sub-groups within the population. The sample includes 108 femora with intact head, neck, greater and lesser trochanter. Data on sex, age and stature were assessed using published techniques. Particular attention was paid to distinct musculoskeletal stress markers and pathologies. Preliminary results show high frequencies of posterior cervical imprint as well as increased femoral robusticity when compared to other Bronze Age populations that indicates a complex division of labor and differential access to resources from 2200 BC - 2000 B.C. These findings are supported by previous research that showed a correlation between osteoarthritis, sex, and robusticity in the adult carpals and metacarpals from Tell Abraq indicating males were habitually involved in hard physical labor using of their hands. High frequencies of osteoarthritis and fluorosis in this sample also suggest a population engaged in diverse work-related tasks.

Tol erated scrounging a foraging strategy for young juvenile capuchin Cebus capucinus monkeys.

ELIZABETH EADIE. Department of Anthropology, University of New Mexico.

Capuchin monkeys are unique among primates in their reliance on difficult-to-acquire foods and for having large, metabolically demanding brains. This combination poses a challenge to young juveniles who lack experience in obtaining food but nevertheless must obtain enough calories to sustain their growth and daily nutrient requirements. One potential solution would be for young juveniles to capitalize on pieces of food dropped by tolerant and more proficient foragers—a behavior known as tolerated scrounging. Data on foraging behavior was collected at The Pacuare Nature Reserve in Costa Rica on three wild groups of Cebus capucinus. Quantitative measures obtained through independent and tolerated scrounging behaviors was measured during continuous focal sampling, while behavioral frequencies were determined from instantaneous scan samples taken at thirty minute intervals. We compare the number of bites obtained through scrounging versus other means between infant, young juveniles, old juveniles and adults. Infants were found to engage in scrounging behaviors over fifty times more frequently than young juveniles, and young juveniles scrounged over four times as often as old juveniles. In addition, scrounging occurred almost exclusively with difficult-to-acquire food items. One implication of our findings is that a tolerant social structure has co-evolved with a stronger reliance on difficult-to-acquire foods. It is possible that tolerated scrounging could be the first behavioral step toward the human behavior of feeding juveniles.

This study was funded by a National Science Foundation Doctoral Dissertation Improvement Grant 0925843, a Leakey Foundation Grant, and a Sigma Xi Grant-in-Aid of Research.

Reliability of urine test strips for measuring ketone values in Phayre's leaf monkeys.

AMY EAKINS, CAROLA BORRIES, JAMIE R. GARTEN, REBECCA S. ZULUETA and ANDREAS KOENIG. 1Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, 2Department of Anthropology, Stony Brook University.

Energetic measures are essential in primate behavioral ecology and new methods involving C-peptides, ketones, or leptins seem to provide good estimates of energetic body condition. However, the reliability of non-invasive methods such as urine test strips is not well understood. Here, we tested whether urine test strips provided accurate measures of ketones, whether the values remained stable over the short term, and which factors possibly affected correspondence of measurement. Test strips were collected for 50 individuals within three groups of Phayre's leaf monkeys (Trachypithecus phayrei crepusculus) at Phu Kheo Wildlife Sanctuary, Thailand (137 samples). We used test strips from different manufactures with and without specific gravity to correct for urine concentration. Samples were collected throughout the day for the same individual at least twice. In addition, we noted the context (time since resting and feeding). Repeated testing of the same sample lead to almost perfect correlation (Spearman's rho, P < 0.001) and agreement (weighted kappa coefficient, P < 0.001), although agreement was lower comparing different brands. Samples taken several hours apart showed variable values for the same individual with weak correlation and agreement (P < 0.1). Correlation and agreement improved when specific gravity was taken into account, but neither time of the day nor the behavioral context were significant predictors. Our results show that urine test strips may estimate ketone content in urine reliably if specific gravity is taken into account. Importantly, ketone values seem to vary over the short term and, hence, single measurements may be inadequate to characterize the energetic body condition of an individual.

Supported by the National Science Foundation BCS-0542035.

Isotopic assessments of Late Miocene paleoenvironmental change in Central Europe: Implications for early hominin evolution and dispersal.

LAURA C. EASTHAM, MARIAM C. NARGOLWALLA, DAVID R. BEGUN and LASZLO KORDOS. 1Department of Anthropology, University of Toronto, 2Geological Institute of Hungary (MAFI).

Major cognitive and locomotor adaptations, as well as intercontinental dispers-
sals, have been associated with the early hominid response to increasing seasonality during the Late Miocene. Reconstructions of paleoenvironments in Late Miocene Europe have figured prominently in these discussions, with several authors suggesting a "diagnostic factor", specifically the increasingly seasonal availability of ripe fruit, as the cause of decline in European hominids. Both the morphology and life history pattern of *Rudapithecus hungaricus*, a large-bodied frugivorous hominid, considered to be closely related to the last common ancestor of living African great apes and humans, suggest it would have been susceptible to increasing intra-annual ecological variability. Current paleoenvironmental reconstructions of Late Miocene Rudabanya suggest a humid, closed canopy forest ecosystem characterized by a low degree of seasonality.

To further evaluate the environmental context of *Rudapithecus*, we employed high spatial resolution oxygen and carbon isotope measurement in a sample of tooth enamel from six different herbivore species contemporaneous with *Rudapithecus*. To minimize attenuation of isotopic results, we employed a MicroMill system to sample tooth enamel from sectioned third molars and premolars, collecting bulk samples along the enamel-dentine junction (EDJ), as well as serial sampling at an angle to the EDJ. This sampling methodology produces a more accurate isotopic reading, minimizing the influence of subannual ecological conditions. Preliminary results suggest intraannual ecological variability at Rudabanya. The results of this research provide insight into the paleoecology of Rudabanya and help to evaluate the impact of environmental change on the evolution and dispersal of Late Miocene European hominids.

LB1 in comparative context: Asymmetry, microcephaly, plagiocephaly, taphonomy.

ROBERT B. ECKHARDT1, MACIEJ HENNEBERG2 and H. JOSEPH SOMMER3. 1Laboratory for the Comparative Study of Morphology, Mechanics and Molecules, Department of Kinesiology, The Pennsylvania State University, 2Biological Anthropology and Comparative Anatomy Unit, University of Adelaide, Australia, 3Department of Mechanical Engineering, The Pennsylvania State University.

Assessment of asymmetry in the LB1 skull from Liang Bua Cave, Flores, requires replicable quantification before arcane explanation. Hypotheses concerning causes of asymmetry (normal or abnormal development, postural influences, and/or post mortem modifications) follow as matters of interpretation. So far LB1 has been compared with fossil hominids, recent hominoid primates, and various extant human samples, normal and abnormal; techniques used are about as diverse as the specimens: anthropometric measurements on living individuals, 2-D linear measurements on photographs, 3-D landmark data, and various presentations of conventional radiographs and CT scans. Consequently, there is a large interaction effect compounds the influence of observers, samples, equipment, techniques, and standards. A further complicating factor arises because the primary specimen, as well as images and casts of it, are only selectively available.

Beyond LB1, additional skulls are known from archæological contexts on Flores (van der Plas, 2002; Lynnerup, 2010). At Naturalis, Leiden, we collected 300 3-D coordinate points on skull vaults from Liang Togo and Liang Momer from Flores, using a Bird electronic digitizer (Ascension Technology) plus laptop computer. Cranial shapes were quantified and asymmetries assessed as deviations of surface measurements from an inherently symmetric superquadric model (Sommier, et al., 2006). Superquadric parameters have simple geometric interpretations, are very reproducible, and capture both squareness and taper. The instruments are inexpensive (under $10k), portable, and their blunt probes can be used safely on skulls, casts, and heads of living subjects including children, the last pertinent for the nonce given the imaginative plagiocephaly hypothesis.

Demonstrating an anthropological application of the Economides orthodontic collection: deciduous and permanent tooth size correlations in European and Hispanic Americans.

HEATHER EDGAR1,2, MICHAEL HAUETER3, SHAMSI DANESHAVI1, EDWARD HARRIS4, and PHILIP KROTH PHILIP5, 1University of New Mexico Department of Anthropology, 2University of New Mexico Health Sciences Library and Informatics Center, Albuquerque, NM, 3University of Tennessee Health Sciences Center.

Radiographs, intra-oral photographs, and patient records in the J. E. Economides orthodontic patient record collection are now online and freely available for research (http://hsc.unm.edu/programs/ocfs). This database contains records and over 400,000 images for approximately 5,650 individuals, representing the diversity of Albuquerque, New Mexico 1972-1999, including African, Asian, European, Hispanic, and Native Americans. There are records for 600 related sets of individuals in the collection. Additionally, associated dental models are available for research at the Maxwell Museum of Anthropology.

The anthropological research potential for this database is enormous, including studies of growth and development and cranial, dental, and soft tissue studies. This potential is indicated by the present study, an intra-individual comparison of deciduous and permanent occlusal molar linear measurements and areas in European (EA; n=123) and Hispanic Americans (HA; n=77). Two alternate hypotheses were considered for the relationship between correlations in HA compared to EA. First, higher overall tooth size correlations might indicate developmental stability in an admixed group (HA). Second, lower overall correlations might indicate developmental instability related to lower socioeconomic status. Correlations range from 0.00 (HA um1/UP3) to 0.72 (EA um2/UM1), within the range of correlations in the published literature. Differences between EA and HA are not statistically significant at the 0.05 level, indicating that neither admixture nor socioeconomic status is affecting tooth size. This sample of HA is indicative of only one of many applications available using this new research database.

This project was supported by Award Number 5K08 LM009381 from the National Library of Medicine, National Institutes of Health.

The influence of body mass and ecological similarity on dominance relationships among three sympatric primate species.

ALICE A. ELDER. Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University.

Interspecific competition is usually explored in the context of competitive exclusion and niche segregation between ecologically-dissimilar taxa. Conversely, competition between ecologically-similar species is hypothesized to be mitigated by dominance relationships based on inequality in resource holding potential (RHP). I investigated the influence of ecological similarity on encounters among three sympatric primate species at Way Canguk, Sumatra: the ecologically-similar siamangs (*Symphalangus syndactylus*) and agile gibbons (*Hylobates agilis*), and the ecologically-dissimilar mitered langurs (*Presbytis melalophus*). Due to differences in body mass (and hence RHP), siamangs were predicted to dominate gibbons and langurs. Alternatively, if group size determined RHP, langurs would be dominant. Data were collected from March 2008 to October 2009 on the context and outcome of interspecific encounters (N=262) among seven siamangs, three gibbon, and five langur groups. Dominance was determined from the proportion of agonistic encounters and the percentage of encounters won. Siamangs were dominant over gibbons (won 98.4%) and langurs (100%).

American Journal of Physical Anthropology
AAPA ABSTRACTS

North American subadult body proportions: climatic adaptation or population history?

COURTNEY D. ELEAZER1, LIBBY W. COWGILL2 and BENJAMIN M. AUERBACH1. 1Department of Anthropology, University of Tennessee, Knoxville; 2Department of Anthropology, University of Missouri.

It is generally agreed that human body proportions covary with climate in accordance with thermoregulatory predictions; body mass increases and limb length relative to trunk height decreases with greater distance from the equator. These patterns have been consistently demonstrated in both modern primate and pre-modern human adults. However, indigenous American body proportions among adults do not appear to conform to the same predictions. Many correlations with mean annual temperature are low, and some morphological patterns are argued to reflect colonization history and population movements rather than ecogeographic adaptations. This study investigates whether subadult indigenous Americans follow the expected ecogeographical patterning for Old World populations. Due to a higher surface area to mass ratio, subadults are possibly more susceptible to temperature stress than adults. This result in higher correlations between anthropometric measurements and climatic variables among subadults than among adults in the Old World. If subadult North American body proportions do not exhibit the same pattern, a non-climatic explanation should be explored. Over 6,500 juveniles, originally measured as part of Franz Boas’s North American anthropometric data, were used to examine the relationship between climate and morphology through ontogeny. On average, correlations between anthropometric variables and climatic variables are lower than those of Old World subadults, are close to zero, and do not change significantly during ontogeny. These results may be considered further evidence that indigenous American proportions do not mirror climatic adaptation but rather non-climatic factors, such as population history.

Body mass estimation in Old World monkeys using long bone ends.

ANDREA ELLER, STEPHEN R. FROST and EMILY H. GUTHRIE. Department of Anthropology, University of Oregon.

Equations for estimating primate body mass often require complete long bone elements. However, complete long bone elements are rare in the fossil record rendering many primate mass estimation methods difficult to apply. As proximal and distal ends are far more common we developed prediction equations for estimating species-sex average body mass based on three sub-families. We estimate body mass in the fossil record. Linear measurements on the proximal and distal humerus, radius, femur, and tibia, as well as the proximal ulna were collected on 34 cercopithecid species from both sub-families spanning a wide range of body sizes. A total of 15 predictor variables are used, with samples ranging from 102 to 258 specimens depending on the species. Species-sex mean body mass data were taken from Delson et al. (2000). Body masses were averaged by sex within species due to the large degree of sexual dimorphism in this family. Least squares regression analysis of natural log-transformed data was used to create prediction equations. All regressions show a tight correlation with body mass, R² values range from 0.84 to 0.95 with a mean of 0.90.

In order to test the accuracy of our predictor variables, jackknife procedure was applied. For each predictor variable percent prediction error, calculated as [(actual-predicted)/predicted] x 100, was calculated for a random sample of extant species-sex samples. Average prediction error was 14% across all variables and ranged from 8% (proximal tibial breadth) to 19% (anterior-posterior diameter of tibial trochlear facet).

This study was funded by the Leakey Foundation and the Wenner-Gren Foundation (SF), Geological Society of America (EG), the Paleontological Society (EG), the National Science Foundation (SF,EG), and the University of Oregon (SF,EG).

Severe rickets at the Spring Street Presbyterian Church.

MEREDITH A.B. ELLIS. Department of Anthropology, Syracuse University.

Construction in New York City in 2005 unearthed four burial vaults from approximately 1811-1845 from the Spring Street Presbyterian Church. Over 300 commingled individuals were excavated, and ongoing analysis has identified at least a third of these as subadults. Although the adults from the population show relatively good health, the subadult remains are characterized by widespread pathology, including lesions and deformations consistent with rickets, scurvy, anemia, congenital syphilis, as well as pathological conditions with no clear etiology. Rickets, in particular, is widespread. From just one of the four burial vaults, 38 long bones from a minimum of 9 individuals show rickets. Additionally, 8 complete individuals exhibit rickets, 3 of them with severe cases. This paper will present these 3 cases, which were identified using both macroscopic and radiographic analyses. The extent of the bone deformation, including bowing, porosity, flaring metaphyses, and fractures, will be presented. They provide an opportunity to expand our understanding of severe subadult pathology within a specific context. Originally built in a fruit orchard in 1810, by the 1830s the church was in the center of the city. It was a radical abolitionist church that had parishioners from all social classes. One of the pastors described the church as comprised of...
Eco-primatology, a field of study that examines human interactions with primates in ecological and cultural contexts. Using this approach, we examined the extent of overlapping resource use between the Guizhou snub-nosed monkey (Rhinopithecus brelichi) and human residents in Fanjingshan National Nature Reserve, China. We also explored residents’ attitudes towards R. brelichi, FNNR, and resource collection. According to the 2010 IUCN Redlist, R. brelichi is “Endangered” and the primary anthropogenic threat to their survival is the destruction of forest habitat. The methods integrated ethnographic interview techniques including structured, semi-structured questions, focal informant follows, and participant observation. The results indicate minimal overlap between humans and monkeys in terms of season, resource type, and spatial use of FNNR. The most common resources collected by residents do not overlap with the monkey’s known dietary resources. Although observed locations of collection did not overlap with the monkey’s altitudinal range, observed evidence of human activity did overlap with the monkey’s range. Respondents reported spending more time collecting resources in the winter, which could be due to the reduced availability of terrestrial food sources. Respondents expressed a feeling of connectedness with the Guizhou snub-nosed monkey because of its observable, humanlike behaviors and morphological features. Understanding local people’s attitudes towards the Guizhou snub-nosed monkey and involving community participation in conservation policy development can increase local support and understanding for the objectives of FNNR.

Ethnoprimatology is a field of study that examines human interactions with primates in ecological and cultural contexts. Using this approach, we examined the extent of overlapping resource use between the Guizhou snub-nosed monkey (Rhinopithecus brelichi) and human residents in Fanjingshan National Nature Reserve, China. We also explored residents’ attitudes towards R. brelichi, FNNR, and resource collection. According to the 2010 IUCN Redlist, R. brelichi is “Endangered” and the primary anthropogenic threat to their survival is the destruction of forest habitat. The methods integrated ethnographic interview techniques including structured, semi-structured questions, focal informant follows, and participant observation. The results indicate minimal overlap between humans and monkeys in terms of season, resource type, and spatial use of FNNR. The most common resources collected by residents do not overlap with the monkey’s known dietary resources. Although observed locations of collection did not overlap with the monkey’s altitudinal range, observed evidence of human activity did overlap with the monkey’s range. Respondents reported spending more time collecting resources in the winter, which could be due to the reduced availability of terrestrial food sources. Respondents expressed a feeling of connectedness with the Guizhou snub-nosed monkey because of its observable, humanlike behaviors and morphological features. Understanding local people’s attitudes towards the Guizhou snub-nosed monkey and involving community participation in conservation policy development can increase local support and understanding for the objectives of FNNR.

Social and health implications of betel staining in ancient Mariana Island populations.

JULIE EUER. School of Human Evolution and Social Change, Arizona State University.

The importance of betel chewing in many past and present Indo-Pacific populations is well documented, but researchers of ancient populations seldom focus on the biological and social implications of betel chewing. Clinical literature suggests that betel chewing increases susceptibility to calculus formation, oral submucous fibrosis and oral cancer. To the contrary, other studies suggest that betel staining provides a cariostatic barrier; however, this relationship is not universally accepted. A better understanding of the effects of betel chewing on oral health will facilitate interpretations of caries frequencies in populations where betel chewing is common. Furthermore, implications of betel chewing are not solely biological, a point often overlooked in the clinical and archaeological literature. Dental staining caused by habitual betel chewing and intentional application can be highly visible, and therefore may serve as a marker of social identity or status. How and why betel staining reflects identity in ancient groups and social contexts is currently unknown, but is likely to have been highly variable.

The current study reviews limitations of previous research of betel nut use among past populations and introduces a new theoretical framework. The rela-
The effect of infant age on infant attraction, tolerance and handling in *Ateles geoffroyi*.

KAYLEY J.E. EVANS1, KAYLA S. HARTWELL1, MARY S.M. PAVELKA1, and HUGH NOTMAN2.

1Department of Anthropology, University of Calgary, 2Anthropology Program, Athabasca University.

Typically other females are most interested in infants, however in black-handed spider monkeys (*A. geoffroyi*) males have been observed to engage in infant handling, even though infants younger than 6 months of age spend most of their time either on or in close proximity to the mother. We examine whether the age and sex of the infant has an effect on male infant attraction, tolerance and handling in *A. geoffroyi*. All occurrence data was collected from January 2007 to July 2010 on a community of 35 wild spider monkeys at Runaway Creek Nature Reserve, Belize. During 884 hours of observation, 102 infant handling bouts, 12 infant handling attempts, and 27 infant tolerance bouts were recorded. Large juvenile, sub-adult and adult males handled infants the most (N=76, 75% of all bouts). Male infants were handled more often than female infants [Pearson $X^2=5.263$, df=1, $p<0.05$] and younger infants were handled more often than older infants [Pearson $X^2=3.853$, df=1, $p<0.05$]. At least 6 months, male and female infants were handled equally, but at greater than 6 months male infants were handled significantly more often [Pearson $X^2=12.448$, df=1, $p<0.01$]. Overall, infants appear to be more attractive to males when they are younger and the continued interaction with male infants as they age may be related to the strong bonds among closely related adult males that characterize spider monkey society. This may reflect kinship-based affiliation or bond formation. This study was funded by NIMH, ROI MH61852.

First virtual reconstructions of the frontal lobe and temporal pole of the Taung (*Australopithecus africanus*) endocast.

DEAN FALK1, JOSE BRAGA2, BENÔT COMBES3,4,5, GERARD SUBSOL6 and SYLVAIN PRIMA1,4,5.

1Department of Anthropology, Florida State University, 2Laboratory of Anthropobiology AMIS, University Paul Sabatier, Toulouse, 3INSERM, U746, F-35042 Rennes, France, 4INRIA,ViaAgeS Project-Team, F-35042 Rennes, France, 5Laboratory of Computer Science LIRMM, CNRS/University Montpellier.

The Taung type specimen for *Australopithecus africanus* includes a natural endocast that reproduces external morphology of a large portion of the right cerebral hemisphere, and a separate fragment of the fossilized face that articulates with the endocast. The natural endocast lacks the right temporal pole and rostral part of the frontal lobes, which were embedded in the back of the facial fragment. Although these structures have previously been reconstructed manually using the external morphology of the facial fragment as a guide, we used advanced 3D-CT technology to prepare virtual reconstructions of the frontal lobes and right temporal pole. We then joined these parts of Taung's virtual endocast to a virtual image of the natural endocast, and reconstructed the remaining missing areas using mirror imaging. The resulting virtual endocast of Taung was compared with 3D geometrical models of chimpzee and bonobo endocasts reconstructed from CT scans of dry skulls representing individuals at the same dental development stage as Taung. We employed recently developed automated computational tools that allowed processing of 3D free-form surfaces and quantification of the mean anatomy within each species (chimpanzee and bonobo). Support received is gratefully acknowledged.

Dental tissue allometry in modern human males and females.

ROBIN N. M. FEENEY1,2, ADAM D. SYLVESTER1 and JEAN-JACQUES HUBLIN3.

1Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 2Department of Sociology, Anthropology and Criminal Justice, Valdosta State University.

The dental crowns of modern humans are sexually dimorphic with respect to external size, and males have a greater dentine-pulp complex than females but differences in enamel quantity or thickness between the sexes are not pronounced. Allometric relationships of crown components have not been examined between the sexes, yet this information is critical for understanding how tooth crowns are assembled. We suggest two sources of variation in enamel distribution between males and females: tooth size and sex. To address this we examine sex-specific and sex-combined allometry in crown components to explore the potential effect of size and sex.
scans (0.02 to 0.04 mm voxel size). These crown components were used to calculate average and relative enamel thickness. To explore the possible effect of sex and tooth size, we performed regression analyses (reduced major axis) and correlation analyses between dental tissue volumes, EDJ surface area and enamel thickness. Results indicate that the EDJ scales with positive allometry with respect to dentine volume and a larger dentine volume is correlated with a proportionally larger EDJ (i.e., the EDJ changes shape). Enamel scales isometrically across the sexes with total crown volume. As males tend to have larger dentine-pulp complexes and larger EDJ surface areas this explains the different previously reported patterns of sexual dimorphism in enamel thickness.

Supported by the Royal Irish Academy and Saint Louis University.

How well do traditional stature regression formulae capture secular trends during the late 20th century?

TONY FITZPATRICk and FRANK L. WILLIAMS. Department of Anthropology, Georgia State University.

Secular trends in stature have been well-documented during the 20th century. However, traditional stature regression formulae as those created by Trotter and Gleser from the Terry Collection are from individuals that achieved maximum adult height before fundamental increases in height arose. To test whether stature regression formulae from Terry Collection males (n = 1670) and mid to late 20th century individuals from collections at the University of New Mexico and the University of Tennessee (n = 81) differ, analysis of covariance was conducted for maximum femoral length, bicondylar femoral length, maximum tibial length and fibula length. The results suggest that no significant differences exist in slope values for the maximum femoral length and bicondylar femoral length. Slope and y-intercept values for both the fibula and the tibia are significantly different, the samples are smaller (n = 35). Although differences in mean stature are apparent between the two samples, differences in regression formulae are not statistically significant for femur length.

A comparative assessment of the Chen et al. and Suchey-Brooks pubic aging methods.

JULIE FLEISCHMAN. School of Criminal Justice, Michigan State University, East Lansing, MI.

Accurately assessing age-at-death of adult human skeletons is fundamental in physical anthropology. The most generally accepted methods for estimating age involve analysis of the pubic bones. Two such methods—Chen et al. (2008) and Suchey-Brooks (1990)—are the focus of this study.

The objective of this research is to evaluate the accuracy of the Chen et al. and Suchey-Brooks methods. The Chen et al. method was developed on a sample of Chinese Han males. The primary research question asked: Will the revised Chen et al. method be more accurate than the Suchey-Brooks method for aging males of European ancestry? It was hypothesized that there would be statistically significant differences between the rates of accuracy. This research utilized a known collection of modern pubic bones curated at the Forensic Science Center in Phoenix, Arizona. A sample of 296 left male pubic bones of European ancestry,
between the ages of 18 and 70, was evaluated. Results indicate that there are no statistically significant differences between the two methods. On average the revised Chen et al method slightly overestimates the specimens while the Suchey-Brooks method slightly underestimates. Both methods have an average error of 8 years from actual ages.

The presented study demonstrates that the Suchey Brooks method is most accurate for young adults, while the revised Chen et al method is most accurate for aging middle and old adults. This evaluation of both methods has an important contribution to the field of physical anthropology for aging older adult skeletal remains.

A geometric morphometric study on the orientation of the lesser trochanter in humans – comparison of Upper Palaeolithic specimens with femora from a medieval skeletal assemblage.

STEFAN FLOHR, ALDONA RIEGER, HORST KIERDORF and UWE KIERDORF. Department of Biology, University of Hildesheim, Germany.

A conspicuous orientation of the lesser trochanter towards posterior has been reported for some femora from the Upper Palaeolithic (Bonn-Oberkassel, Irlich, Dolní Věstonice), raising the question of possible differences in trochanter orientation between these specimens and femora of other origin. To assess the variation in the orientation of the lesser trochanter we studied 65 femora originating from an early medieval skeletal assemblage (Greding, Germany) and compared the results with those for a left femur of a young adult individual from Irlich, Germany, dated to 12,550 to 11,200 BP (calibrated AMS age). Four landmarks on the proximal femur, four on the mid-shaft and three on the distal femur were defined, recorded with a MicroScribe 9D digitizer, and analyzed with Auto-CAD 2010 software. Seven angles and five distances were defined and measured. Significant differences (P < 0.05) between sexes were found for all linear measurements while no significant differences (P > 0.05) existed for angular measurements in the Greding femora.

For some angular variables related to the orientation of the lesser trochanter, the values for the Irlich femur lay outside the range of the Greding specimens. The reason for this was the more posterior orientation of the trochanter in the Irlich femur. A similar orientation of the lesser trochanter has also been reported for some other femora dating to the Upper Palaeolithic (Bonn-Oberkassel, Dolní Věstonice).

The observed difference in trochanter orientation might reflect differences in activity and locomotor patterns between medieval peasants and Upper Palaeolithic hunter-gatherers.

A trauma analysis of the Morton Site skeletal series from the Central Illinois River Valley.

ALLISON FOLEY. Department of Anthropology, Indiana University.

The Morton Site, located within the Central Illinois River Valley was inhabited continuously from the Archaic, Red Ochre period (~1200 B.C.) to the end of the Mississippiian period (~1300 A.D.), and consists of 19 burial mounds. This long habitation, coupled with such a wealth of available osteological data, presents an excellent backdrop for examining biocultural change in a site-specific context. Paleopathological analyses focusing on trauma patterning contribute to a holistic interpretation of this biocultural environment and allow for a greater understanding of occupational and subsistence change, overall health status, and disease dynamics. The patterns of violence and concordant socio-temporal changes. However, while other sites in the region, most notably the nearby trauma-heavy site of Norris Farms 36, have been analyzed for signs of trauma, the Morton Site has never been systematically examined in this regard.

This paper provides a catalogue of skeletal trauma at Morton noting injuries related not only to interpersonal violence and captive-taking, but also highlights the extraordinary frequency of occupational and accidental injuries, as well as bone fractures secondary to other pathological conditions. This expanded analysis challenges the focus on violence-related trauma and presents a regional and population-specific interpretation of injury patterns, their variation over time, and their relationship to political, social, ecological and cultural changes in the region. The patterns of trauma in the Morton population are then used to create a model of injury that is comparable to other contemporary cemetery sites in the region such as Norris Farms 36.

This study was funded in part by the Indiana University Department of Anthropology North American Research Grant.

Atlantic versus Mediterranean Mesolithic shell middens. An approach to the human diet from stable isotope analysis.

MARTA FONTANALS-COLL, 1 M. NEKANE MARIN-MORATALLA, 2 JORDI RUIZ, 1, 3 and M. EULÀlia SUBIRA, 4, 5 GRAPAC, Universitat Autònoma de Barcelona, 1Institut Català de Paleontologia (ICP), 2Màmia Arqueologia i Serveis S.L., 3GREAB, Universitat Autònoma de Barcelona.

We present data for the isotopic study of human and faunal remains from four Mesolithic shell middens (Cabeço das Amoreiras, Arapouco, Cabeço do Pez and Várzea da Mô) all of them placed in the Sado Valley in the province of Alentejo, Portugal, representing the Atlantic Mesolithic communities. These sites have a timeline that ranges between 8150 - 7580 years cal. BP.

The analysis has been conducted from 18 human skeletal samples from these four sites and 11 samples of faunal remains from Cabeço das Amoreiras and Arapouco.

The initial objective of this study is to establish the diet of individuals of various Sado’s shell middens. This study can contribute to find the specific weight of the harvest in the global supply of each group and therefore could reassert the hypothesis that these shell middens were stationary settlements. Moreover, to provide data on the evaluation of the molluscs contribution on the diet of these individuals over time.

Finally, the comparison of our results with the data from the Mesolithic site of El Collado (Valencia, Spain), as a regional representation of the Mediterranean communities, will highlight the possible differences in the paleodiet, or other resources, that both coasts had in these chronologies.

This study was funded by the Spanish Ministerio de Ciencia e Innovación (CGL2008-03368-E) and the Portuguese Fundação para a Ciência e a Tecnologia (PTDC/HAH/64548/2006).

Effects of occlusal variation on temporo-mandibular joint form in modern humans.

ELLIOITT FORSYTHE, LAUREN FORSYTHE, MEADOW CAMPBELL, RYAN CAMPBELL, EVAN MUZZALL and ROBERT CORRUCINI. Department of Anthropology, Southern Illinois University.

Modern humans exhibit extensive variation in occlusal form, including occlusal discrepancies termed malocclusion. Previous studies on cadavers have linked malocclusion to deviation in TMJ shape, but it remains unclear if deviation in TMJ form results primarily from changes in the soft or hard tissues of the joint. In this study, we address the role of hard anatomy in modified TMJ shape due to occlusal variation by comparing the shape of the TMJ of individuals exhibiting different Buccal Segment Relations (BSRs) at the Hamann-Todd Osteological Collection. If the previously reported differences in TMJ shape result from changes in underlying bony anatomy, there should be observable differences in TMJ shape between individuals exhibiting different BSRs in this osteological collection.

Shape-rotations were created from metric data on the TMJ to broadly represent TMJ form. Individuals exhibiting different BSRs were then compared using ANOVA and Tukey’s HSD. The results

American Journal of Physical Anthropology
show that there are relatively few osteological differences in TMJ shape between individuals exhibiting different BSRs. The only significant difference is the tightness of the fit between the gnathal fossa and the mandibular condyle; individuals exhibiting class 3 BSRs have a significantly looser fit than individuals exhibiting other BSRs. These data show that while there is some change to the skeletal levels of the TMJ, the previously reported deviations in TMJ form resulting from malocclusion are not due primarily to changes in the hard tissue of the TMJ. Future research should focus on the soft anatomy of the TMJ as it relates to occlusal variation.

Dental attrition does not explain occlusal discrepancies in a modern human population.

LAUREN A. FORSYTHE, ELLIOTT C. FORSYTHE, RYAN CAMPBELL, MARK CAMPBELL, PATRICK MUZZALL and ROBERT CORRUCINI. Department of Anthropology, Southern Illinois University.

The etiology of malocclusion has received considerable anthropological attention. A simultaneous decrease in attrition and increase in malocclusion has been noted in human populations worldwide. Some scholars have posited a causal link for this relationship: decreased wear caused increased malocclusion. However, others have suggested that malocclusion and dental wear are causally linked to malocclusion by comparing the rates of occlusal variants on the left and right side of the dental arcade in individuals with symmetrical and asymmetrical wear. In this study, we test the hypothesis that occlusal attrition is causally linked to malocclusion. We predicted that if dental wear is causally linked to malocclusion, there should be lower incidences of occlusal discrepancies on the side exhibiting greater wear in individuals exhibiting asymmetrical wear, and no difference in individuals with symmetrical wear. We determined wear-symmetry and collected data on occlusal discrepancies on 118 individuals from the Hamman-Todd Osteological Collection. The percentages of rotated and displaced teeth on the right side of the dentition were subtracted from that on the left side to create an occlusal discrepancy index. ANOVA and Tukey's HSD (one-tailed) were used to compare indices for individuals with left, right, and unbiased dental attrition. We found no significant differences between these populations.

These results suggest that a causative relationship between dental attrition and malocclusion is unlikely. Rather, both likely relate independently to an underlying causative process. We suggest that this underlying process is chewing stress. Further research focused on interproximal wear is needed to further address this issue.

A nutritional assessment of Marshallese school children: Issues involved in applying Anthropology in order to support social change.

TODD FOSTER. Department of Anthropology, Indiana University.

Many studies have found a positive effect on growth, attendance, and exam scores of children given a meal during school hours. Having only gained independence in the last thirty years, the Republic of the Marshall Islands is still attempting to build programs like school lunch. In 2006, a local committee was formed to investigate claims that in Majuro, the capital atoll, private school children were outperforming public school children in each of the above categories. A pilot study conducted in 2006 revealed significantly lower averages in height and weight among public school children. Differences were significant when compared to private school children. Major problems in the pilot study were the inclusion of self-reported data and a lack of repeated measures to determine measurement precision and reliability. In 2009, an updated nutritional assessment was completed to address these and other issues. Anthropometric measurements were collected from primary school children (N=588) attending public and private schools. Z-scores were calculated and compared to the CDC 2000 reference data. Both samples of school children were, on average, below the median of the reference population but the public school averages were significantly lower. In terms of body composition, no difference was found among upper arm muscle area but all skinfold Z-scores showed significant differences. The committee planned to use these results to support the need for fund school lunch programs for the public schools. Further examination of the private school sample, however, revealed issues with the findings and raised concerns about applying Bioanthropological techniques to support an agenda.

Quantification of cortisol in wild and captive nonhuman primate hair: methodological considerations and biological validation.

NICOLAS FOURNIER1,3, ROBIN BERNSTEIN2,3. 1Hominid Paleobiology Doctoral Program, 2Department of Anthropology, The George Washington University, 3Center for the Advanced Study of Hominid Paleobiology, The George Washington University.

Hair archives a time averaged hormonal signal and offers several advantages over traditionally collected substrates for the analysis of hormone-behavior relationships. This research explores some methodological issues associated with hair cortisol analysis by examining 1) hair growth rates and patterns, 2) the relationship between time-averaged fecal and cortisol levels, and 3) the utility of the technique to track known ages and phylogeny-related patterns of cortisol variation in wild and captive nonhuman primates.

Hair growth rates, patterns and the relationship between hair and fecal cortisol levels are examined, using samples derived from captive animals. Age related hair cortisol levels were determined for samples collected from wild and captive animals representing five species (n=78). Cortisol levels were compared among catarhines and platyrrhines (n=83), and evaluated for agreement with known differences in circulating cortisol levels among these groups. Hair was subject to the same extraction techniques to support an agenda. Data were analyzed using regression models and analyses of variance. Results suggest considerable variability in hair growth rates within and among taxa. Aged fecal cortisol (collected over a period of weeks) and hair cortisol levels show agreement, and hair cortisol levels reflect expected age-related changes. Platyrhines exhibit significantly elevated hair cortisol levels relative to catarhines. In sum, our results imply that, if variation in growth rates and pattern can be accounted for, hair cortisol analysis may be a powerful and heretofore underutilized tool in field- and laboratory-based studies of the relationship between hormones and behavior.

This research was funded by the George Washington University Selective Excellence Fund and The Lewis Cotlow Foundation.

Mapping the distance between the brain and the inner surface of the skull: interest for the study of fossil endocasts.

MARC FOURNIER1,2,3, BENOIT COMBES1,2,3, JOSÉ BRACA1, NEIL ROBERTS2, and SYLVAIN PRIMA1,2,3. 1INRIA, VisAGEs Project-Team, F-35042 Rennes, France, 2INSERM, U746, F-35042 Rennes, France, 3University of Rennes I, F-35042 Rennes, France, 4Lab. of Anthropobiology, FRE 2960 CNRS, University of Toulouse (Paul Sabatier), France, 5CRIC, Queen’s Medical Research Institute, Edinburgh, U.K.

Endocranial casts are commonly used to infer the shape, size, asymmetry or overall organization of the brain of fossil species. However, endocasts are not an indirect representation of the brain. Few studies seek to assess the usefulness of this representation, upon which is based much of our knowledge on the evolution of the brain of hominids.

American Journal of Physical Anthropology
The aim of this work is to automatically map in 3D the distance between the brain and the inner surface of the skull in humans and other primates to see how some morphological characteristics of the endocranial space (and in particular its asymmetries) relate to those of the brain. MR images are used to automatically extract the brain and virtual endocast. Point-to-point distances are evaluated between the two surfaces to generate a distance map. Bilateral asymmetries of the brain and virtual endocast are also computed. A mean endocranial shape is computed for the overlap of convergence distances and asymmetry maps.

Results show that the local distance between the brain and the virtual endocast strongly varies between anatomical regions, but symmetrically with respect to the mid-sagittal plane. Symmetrical global asymmetries of the brain and endocast are closely related.

These findings suggest that in paleoanthropology, the study of natural or virtual endocasts gives significant information about the morphology of the brain of fossil species. Moreover, we may use the distance map computed on extant species to infer more precise information about the potential surface of the brain of fossil species.

This work is funded by the 3D-MORPHINE project (http://3dpmorphine.inria.fr), a collaborative research initiative of INRIA (http://www.inria.fr).

Analysis of kin groups using the frontal sinus.

MICHAEL FRANCKEN1, KATERINA HARVATI1,2 and JOACHIM WAHL1,3
1Department of Early Prehistory and Quaternary Ecology, Eberhard-Karls-University of Tübingen, Germany, 2Senckenberg Center for Human Evolution and Paleobiology, Eberhard-Karls-University of Tübingen, 3Georg-August-Universität Göttingen, Göttingen, Germany.

Frontal sinuses are generally regarded as a highly variable trait and unique to each individual, but previous studies have also demonstrated that certain characteristics of the frontal sinus are passed on from one generation to another. In this study we further explore the potential for inheritance by examining the relationship between frontal sinuses and kinship groups in a population of Neolithic individuals from the cemetery of Schwetzingen (Germany). 214 individuals with an almost balanced female/male ratio have been found, with a large number of well-preserved subadults. The sample for this study is based on cranial CT-scans of 58 subadult and adult individuals, analyzed using the software Aviso 6.1.

To describe and analyze characteristics of the frontal sinus, we developed a scoring scheme reflecting various attributes of sinus morphology. The traits scored include absence of the sinus, bilateral symmetry, position (centre, left or right sides) and shape (for example, triangular) of the sinus.

Our preliminary results suggest that frontal sinuses are present in over 20% of the total sample. This is an unusual finding because in recent European populations the ratio of absence is around 5%. Comparable results are only known from isolated historic populations like the Inuit of Greenland or Mesolithic populations from the Sudan. The results obtained from this analysis have implications for using the frontal sinus as a possible trait to examine heritable features within and between populations.

In addition, the present study proposes to build a framework for future studies to examine kinship relationships based on morphomorphological features.

Placing the cranial morphology of a rare endemic colobine, Presbytis natunae, within the phylogenetic context of its genus.

BRENDA C. FRAZIER. Department of Anthropology, Penn State University.

The attributes that make SE Asian leaf monkeys appealing and informative subjects for evolutionary biologists also make them challenging to study. Because they inhabit major landmasses as well as scores of smaller islands, their biogeography is complex and mutable over geologically short time scales. Among these taxa, colobines of the genus Presbytis are no exception. This study investigates cranial shape and allometry in the Natuna Island leaf monkey, Presbytis natunae, compared to related species of Presbytis: P. melalophos and P. femoralis. Sumatran Presbytis melalophos forms the primary reference sample, and P. femoralis is included for additional context. Cranial metrics, including 3D landmark coordinates, were collected from museum specimens. A variety of morphometric analyses were performed to address two hypotheses: that (1) the insular species exhibits a derived cranial shape associated with its isolation and body size reduction, and (2) the various species of Presbytis are identifiable based on cranial form.

It was found that the major shape differences distinguishing the Natuna monkey from P. melalophos are unlikely to be related to its isolation and dwarfing, because P. natunae shares these shape characters with P. femoralis. Nonetheless, cranial size and shape analysis of these samples supports the hypothesis that species variants within Presbytis are morphometrically distinguishable, whereas skin and pelage characters currently define genus systems. Although the success of cranial morphometrics as a tool for systematics and phylogenetic inference has proven to be limited among papionins and African colobines, this study suggests that its potential in Asian colobines warrants continued exploration.

This work was funded by NSF Doctoral Dissertation Improvement Grant #08586, and by grants from the College of the Liberal Arts and the Department of Anthropology, Penn State University.

Allometry and evolution of the face in mid-Pleistocene Homo.

SARAH E. FREIDLING1,2,3,4, PHILIPP GUNZ1, KATERINA HARVATI1 and JEAN-JACQUES HUBLIN1. 1Max Planck Institute for Evolutionary Anthropology, 2City University of New York, The Graduate Center; 3New York Consortium in Evolutionary Primatology, 4Institut für Ur- und Frühgeschichte, Eberhard Karls Universität Tübingen and Senckenberg Center for Human Evolution and Paleobiology.

Facial features clearly distinguish modern humans from their fossil relatives. It is unclear, however, whether facial features co-vary with facial size. Here we present a geometric-morphometric study of ontogenetic and static allometry in modern and archaic humans. The modern human sample (N=255) comprises growth series from four morphologically distinct human populations; their ages range from two years to adulthood. The fossil sample covers human specimens from the Pleistocene to the Upper Paleolithic, and includes several subadult Neanderthals as well as the Homo antecessor fossil ATD-6-69 from Atapuerca, Spain. This subadult fossil, dated to ca. 780 Ka, has been suggested to mark the earliest appearance of modern human facial features. Our objectives were to (1) assess ontogenetic and static allometry in modern and archaic humans. (2) Test to what extent ATD-6-69 exhibits a modern human facial morphology. We digitized landmarks and semilandmarks on surface and CT scans and analyzed the Procrustes shape coordinates in shape-space and form-space.

We show that the facial differences between modern and archaic humans are not exclusively allometric. The developmental trajectories of modern humans and Neanderthals are similar, but they are clearly separated. Our results indicate that the modern human facial morphology is derived, whereas the facial differences between Neanderthals and H. heidelbergensis are largely due to allometric scaling along an ancestral trajectory. ATD-6-69 plots along this archaic trajectory, indicating that its overall resemblance to modern humans is largely an artifact of its size. However, allometric scaling cannot account for the canine fossa of this specimen.

This study was funded by the Marie Curie Actions grant MRTN-CT-2005-019564 “EVAN,” the Max Planck Society, NSF (0333415, 0513660 and 0851756), the L.S.B. Leakey Foundation, and the Sigma Xi Foundation.
Impact of global climatic change on the evolution of Theropithecus oswaldi.

STEPHEN R. FROST1, EMILY H. GUTHRIE1 and ERIC DELSON2,3,4. 1Department of Anthropology, University of Oregon, 2Department of Anthropology, Lehman College, 3Department of Vertebrate Paleontology, American Museum of Natural History, New York, NY, 4NYCEP (New York Consortium in Evolutionary Primatology).

We examined the impact of global climatic change on the morphological evolution of Theropithecus oswaldi, which has an extensive fossil record spanning the time period from prior to 3.5 until approximately 0.25 Ma when significant changes occurred in global climate and regional African habitats. Thus T. oswaldi is an ideal primate for studying the relationship between climate and evolution. Theropithecus oswaldi is recognized as a terrestrial grazer based on its limb skeleton, tooth morphology, and dental microwear. Several morphological trends are clear over its chronological range and appear to occur throughout Africa, although data are sparser for North and South compared to East Africa. These trends include an increase in body size, molar size and enamel complexity, enlargement of cranial substructures, reduction of anterior dentition, shortening of the rostrum, and some evidence for increasing terrestrial adaptations in the postcranium. Evolution of these morphological trends is the basis for recognizing the chrono-subspecies of T. oswaldi: T. o. darti, T. o. oswaldi, and T. o. leakeyi. While changes in T. oswaldi’s morphology through time generally tracked the overall increase in aridity that occurred throughout the Pliocene and Pleistocene, they did not seem to track a steady increase in adaptation to terrestrial grazing. This study was funded by the Leakey Foundation (SF, EG), the Wenner-Gren Foundation (SF), the Geological Society of America (SF, EG), and the Academic Exchange Service (DAAD). This study was provided by the German Academic Exchange Service (DAAD).

Theropithecus oswaldi is an ideal primate for studying the relationship between climate and evolution. Theropithecus oswaldi is recognized as a terrestrial grazer based on its limb skeleton, tooth morphology, and dental microwear. Several morphological trends are clear over its chronological range and appear to occur throughout Africa, although data are sparser for North and South compared to East Africa. These trends include an increase in body size, molar size and enamel complexity, enlargement of cranial substructures, reduction of anterior dentition, shortening of the rostrum, and some evidence for increasing terrestrial adaptations in the postcranium. Evolution of these morphological trends is the basis for recognizing the chrono-subspecies of T. oswaldi: T. o. darti, T. o. oswaldi, and T. o. leakeyi. While changes in T. oswaldi’s morphology through time generally tracked the overall increase in aridity that occurred throughout the Pliocene and Pleistocene, they did not seem to track a steady increase in adaptation to terrestrial grazing. This study was funded by the Leakey Foundation (SF, EG), the Wenner-Gren Foundation (SF), the Geological Society of America (SF, EG), and the Academic Exchange Service (DAAD). This study was provided by the German Academic Exchange Service (DAAD).

GENETIC ANCESTRY AND INDIGENOUS HERITAGE IN A NATIVE AMERICAN DESCENDANT COMMUNITY LIVING IN BERMUDA.

JILL BENNETT GAIESKI1, AMANDA OWINGS1, JEAN FOGGO SIMON2, JOHN LINDO1, DAVID GAIESKI1, and THEODORE SCHURR1. 1University of Pennsylvania, 2Oberlin College.

Nearly six hundred miles east of Cape Hatteras, Bermuda is a lone outpost in the middle of the Atlantic Ocean. Neither American nor Caribbean, but integrally linked to the history of both regions, this former British colony has largely escaped the attention of most anthropologists. Bermuda is one of Europe’s few true discoveries in the New World, as it was uninhabited until the Virginia-bound Sea Venture literally crashed into its shores in 1609. Soon after, Bermuda gained the dubious distinction of being the first New World English colony to forcibly import its labor by engaging in the systematic trafficking of indigenous peoples from their homes along America’s eastern seaboard. Oral traditions circulating today among contemporary Pequot, Wampanoag, and Narragansett tribes recount these same events, while, in Bermuda, residents of St. David’s Island have long clung to the idea that their histories are linked to a Native American past. To investigate the influence of the historical past on biological ancestry and native cultural identity, we analyzed genetic variation in Bermuda’s self-proclaimed St. David’s Island Native Community. Our results indicate that the majority of mtDNA haplotypes present today belong to West Eurasian and African lineages. This reflects the extent of their interactions with people of European and African descent. However, Y-chromosome analysis has identified a range of Native American, West Eurasian, and African haplogroups. By comparing the genetic data with genealogical and historical information, we can reconstruct the complex history of this Bermudian community to the mid 17th century.

SOMETHING FISHY IN SANTA CLARA COUNTY: AN ISOTOPE STUDY OF DIETARY BREATH WITHIN AN ANCESTRAL OHLONE POPULATION.

KAREN S. GARDNER1, ALAN LEVENTHAL2, ROSEMARY CAMBRA3, ERIC J. BARTELINK1 and ANTOINETTE MARTINEZ1. 1California State University, Chico, 2San Jose State University, 3Chairwoman of the Muwekma Ohlone Tribe.

Paleodietsary analysis of botanical and faunal remains has revealed the menu available to residents of California’s Santa Clara Valley during the Middle and Late Periods; however, the relative contribution of dietary components cannot always be accurately assessed using these methods. Stable isotope analysis of human bone from the Yukiama Mound (MS-SCI-38) provides direct evidence of the relative contributions of dietary macronutrients, as bone is built from the foods consumed during life. This presentation explores the dietary patterns of the ancestral Muwekma Ohlone population buried in this mortuary mound, located in what is now Milpitas, California. Stable carbon and nitrogen isotope analysis of bone collagen and bioapatite is used to assess dietary patterns of 126 individuals, interred between 1700 BP and 180 BP. Results show a mean collagen δ13C value of −19.0‰, with a range from −20.3‰ to −17.5‰. Collagen δ15N values yield a mean of 8.4‰ and range from 5.8‰ to 12.8‰. Bioapatite δ15N reveals a mean value of −14.1‰, with a range of −16.2‰ to −11.9‰. These values are compared to local foodweb isotope values derived from archaeological and modern animal resources. The results suggest a diet primarily composed of terrestrial foods, but with a significant marine component. Finally, consideration is made of dietary variation within this population. The ranges of values from stable isotope studies cannot be entirely explained by temporal change, age, or sex of the individuals, but may be explained by a relation...
ship between social roles, ascribed social status, and differential access to foods.

Revisiting health in Neolithic Çatalhöyük: a study of growth and development.

EVAN M. GAROFALO, CLARK S. LARSEN, and CHRISTOPHER B. RUFF. 1Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, 2Department of Anthropology, The Ohio State University, Columbus.

Depressed skeletal growth is an expected consequence of sedentism and increased population density. Previous studies suggest that health was poor in Neolithic Çatalhöyük, one of the earliest large-settled farming communities. However, growth patterns have not been systematically examined to test these expectations. Growth of juveniles from Neolithic Çatalhöyük was evaluated from stature (n=32) and body mass (n=28), derived from femoral length and body breadth, respectively. In addition, percent cortical area, a more environmentally sensitive parameter, and femoral polar section modulus, a measure of overall strength, were determined at femoral midshaft. Male and female adult means (n=20) provided growth endpoints. These were compared with a proto-historic Arikara sample (Sully sites; juvenile stature n=27, body mass n=25; adult: n=20) and mid-twentieth-century US Denver Growth Study yearly averages (n=20). Within the Çatalhöyük sample, potential differences related to social status were examined through burial location. Polynomial regressions plot Çatalhöyük statural growth similar to Denver until late childhood (when Denver increases) and comparable to that of Sully. Body mass is more similar among all three samples, although the Denver sample again shows an increase during adolescence. Femoral polar section modulus and percent cortical area do not differ significantly for age from the Sully sample. Burial location does not impact growth in stature, body mass, percent cortical area, or polar section modulus. Long bone ontogenetic patterns of this sample do not support expectations of negative environmental impacts on health or growth during the Neolithic at Çatalhöyük. Rather, they suggest a relatively healthy and vigorous community.

Reconstructing the vomeronasal system of the earliest primates.

EVA C. GARRETT and TIMOTHY D. SMITH. 1Department of Anthropology, The Graduate Center at the City University of New York, New York NY, 2New York Consortium in Evolutionary Primatology, New York, NY, 3School of Physical Therapy, Slippery Rock University, Slippery Rock, PA.

Traditionally, primates have been characterized by a reduced reliance on olfactory cues compared to other mammals. In part, this generalization is biased by absence of a functional vomeronasal organ (VNO) in carnivores, despite its presence in strepsirhines, tarsiers, and platyrhines. The character state of the VNO in VN0 morphology, for example in neuroepithelial thickness or lumen diameter. The character state of the VNO in stem primates is unclear. In this study we used linear dimensions of the "vomeronasal groove" (VNG) to predict VNO morphology in early primates. Measurements of this osteological feature correlate highly with VNO dimensions in extant primates. Histological sections and CT scans of 54 primate crania (including 13 strepsirhines and 11 haplorhines generas) were inspected for a VNG and linear dimensions were recorded. Parsimony reconstruction was performed to predict ancestral character states of VNO functional categories and VNG linear variables. Results of parsimony analyses predict the last common ancestor of primates possessed VNO similar to strepsirhines, 11 haplorhines category and linear dimensions. Predicted VNG length and width, when adjusted for size, were more similar to lorisiforms. The large VNG dimensions of some cheirogaleids (especially Microcebus) appear to be derived, which merits consideration when they are used as an extant model for stem primates. Early primates were probably heavily reliant on olfaction like extant strepsirhines, and the vomeronasal system has experienced expansion and reduction in lineages in response to different sociocultural conditions. Future research will test these interpretations by including VNG data from fossils of plesiadapiforms and early euprimates.

Quantifying sexual dimorphism in craniofacial trait morphologies using 3-D laser scanning.

HEATHER M. GARVIN. Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore.

Sex differences in human craniofacial traits have been traditionally evaluated using qualitative methods. Quantification of these morphological traits, such as browridge and chin shape, typically does not extend beyond ordinal categories assigned using the illustrative scales provided in standard sources, such as Standards for Data Collection from Human Skeletal Remains (Buikstra and Ubelaker, 1994). This approach includes a certain degree of subjectivity, does not take into consideration population-specific variation, and drastically limits possible statistical analyses. Consequently, it is not conducive to interpopulation comparisons of sexual dimorphism in these discrete traits, and may explain the lack of such analyses in the literature.

American Journal of Physical Anthropology

This study describes a method using a morphometric approach to quantify sex differences in browridge and chin morphologies from 3D laser surface scans. The isolation and segmentation of these features from the remainder of the skull is described. Several characteristics are derived, including measures of bone volume and projection, as well as Principal Components following Generalized Procrustes superimposition. The methods are applied to a recent US black sample from the Terry Collection (n=30 males and 30 females). Results suggest that the proposed methods provide an objective manner to document and compare sexual variation in browridge and chin morphology. The quantification of sex differences in these trait morphologies benefits numerous anthropological disciplines. It provides a means to test for population differentiation from the remainder of the skull, determine if population-specific sex identification standards are necessary, evaluate factors contributing to variation in sexual dimorphism, and could be extended to human evolutionary studies.

They died in the Great Irish Famine. Biocultural and palaeopathological study of mass burials from Kilkenny Union Workhouse, Ireland.

JONNY GEBER. School of Geography, Archaeology and Palaeoecology, Queen's University Belfast, Northern Ireland.

The recent development at the former union workhouse in Kilkenny City, Ireland, has revealed 63 mass burial pits containing the skeletal remains of a minimum of 970 individuals dating to the Great Irish Famine (1845-52). Although the skeletons represent the tragic inevitable end for many people during the catastrophe that was the Great Famine, the bones have the potential to offer a unique insight in understanding how the calumny affected the lowest levels of society and what the conditions in the workhouse were like.

Archaeological research of historical periods often has given a contrasting conclusion with the written records, and the archaeology of the Great Famine has only recently been considered. A study on the impact of the Famine, from an osteoarchaeological and palaeopathological perspective in a multidisciplinary approach, will unveil the extraneous information pertaining to this massive national and social catastrophe in the relatively recent history of Ireland.

The biocultural and palaeopathological research in this project aims at exploring the human experience of the Great Famine by those who did not survive. The skeletal remains represent a social strata which in the Victorian society was very poorly treated, and usually only referred to as a collective – as 'paupers'. The skeletons do also give direct reflection of the impact of the Famine, by indicating a high non-adult mortality, as well as a widespread suffering of...
scurvy. Furthermore, cases of craniotomies and amputations have given further insights into the management of the crisis by the workhouse institution. This research is supported by Margaret Gowen & Co. Ltd.

Does cortisol suppress testosterone under day-to-day conditions? Evidence from a large cohort of young adult Filipino males.

LEE T. GETTLER¹, THOMAS W. MCDADE¹ and CHRISTOPHER W. KUZAWA¹. ¹Department of Anthropology, Northwestern University.

Life history theory posits that under stressful circumstances organisms will enhance energetic investment in functions necessary for survival while reducing allocations to reproduction. Among male mammals, these trade-offs are sometimes mediated in part through the increased production of cortisol (CORT), which can lead to reduced reproductive investment via suppression of testosterone (T) and androgenic steroids. However, less is known about the relationship between the two hormones under basal conditions when organisms are not facing potent stressors. Here we evaluate relationships between waking, pre-bed and post-waking salivary CORT and waking and pre-bed salivary T, and also with plasma total T and luteinizing hormone (LH), in a large population-based birth cohort of young adult Filipino males (20.8-22.6 years, n = 695). Data come from the Cebu Longitudinal Health and Nutrition Survey. T and CORT were significantly positively related in waking (r = 0.36) and evening (r = 0.31) saliva samples (both p < 0.001). These relationships were not changed after adjusting for a range of socio-demographic, anthropometric, behavioral, and health covariates. Evening CORT was also weakly positively correlated with plasma total T (r = 0.08, p < 0.05) and LH (r = 0.07, p < 0.10). Men reporting stress on the day of sampling also showed lower evening T and slightly higher waking CORT; however, the effects of self-reported stress on T were not mediated by CORT. We suggest that the two hormones complementarily prepare men energetically, psychologically, and behaviorally to face the challenges of the day.

This study was funded by the National Science Foundation, grant number 0542182, and Wenner-Gren, grant number 73256.

Plio-Pleistocene biogeography of the African papionins: implications for early hominin dispersals.

CHRISTOPHER C. GILBERT¹,²

¹Department of Anthropology, Hunter College of the City University of New York, ²New York Consortium in Evolutionary Anthropology.

Early hominin biogeography is contested and poorly understood. Depending on the analysis, two to seven Plio-Pleistocene dispersal events between East and South Africa have been hypothesized. To better understand hominin evolutionary history and biogeography, the biogeography of contemporaneous mammals, especially primates, can be applied to test different hypotheses. African papionins have long been argued to be useful adaptive and phylogenetic models for human evolution. However, while Plio-Pleistocene African papionin monkey remains are found at nearly all East and South African hominin sites, their evolutionary biogeography remains unclear. The current study investigates African papionin biogeography by treating biogeography as an unordered cladistic character and African biogeographic regions as character states. To infer dispersal events, biogeographic character states for each fossil and extant African papionin taxon are scored from a cladogram derived from craniodental data, and the resulting biogeographic patterns are then compared to those hypothesized for contemporaneous hominin taxa during the African Plio-Pleistocene.

Results indicate that African papionin dispersal patterns largely mirror those of early hominins and, in at least one case, may oppose general mammalian trends. Suggestions of unique behavioral adaptations to account for early hominin biogeography and dispersal patterns, therefore, seem unwarranted. In addition to hypothesized dispersal events between East and South Africa, African papionin monkeys appear to document a biogeographic connection between West and South Africa ~2.3 - 1.5 Ma. Future research is necessary to determine if this hypothesized faunal connection may have involved other mammalian taxa, such as hominins, as well.

This study was generously supported by the L.S.B. Leakey Foundation.

Data architecture in field paleoanthropology.

W. HENRY GILBERT. California State University, East Bay and Human Evolution Research Center, University of California, Berkeley.

Everyone agrees that data sharing is good, but considerable investment is required to build and manage large datasets. Recent efforts to collect, compile, and thoroughly revise on its way to publication. Published data is generally highly refined relative to raw data. Traditionally, investigators built data-models and ‘lookup’ tables information presented will include a field paleoanthropology data dictionary with field names and thoroughly-tested field definitions, a diagram of the relational database used for RHOI and the Kesem Kebena project and a discussion of software platforms and development environments.

This material is based upon work supported by the National Science Foundation under Grant Nos. SBR-9318688, SBR-9512534, SBR-9714432, BCS-9910344, BCS-0321893, and 0521538. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation or the Leakey Foundation.

Consequences of alpha male chimpanzee dominance strategies.

IAN C. GILBY. Department of Evolutionary Anthropology, Duke University.

Alpha male chimpanzees have been reported to exhibit distinct dominance ‘styles’, ranging from ‘despotic’ to ‘cooperative’. However, given the species’ long lifespan, it has not been possible until now to quantify this variation. As a result, little is known about the evolutionary consequences of dominance style. Here, I use fifty years of data on 10 alpha males in two communities of wild chimpanzees in Gombe National Park, Tanzania, to 1) document variation in alpha male behavior and 2) test the hypothesis that aggressive alpha males achieve higher reproductive success during their tenure than more peaceful alpha males. On average, the alpha male exhibited a significantly higher dominance display rate than the other adult males in the community. There was considerable inter-individual variation in the proportion of these displays that included contact aggression. However, behavioral and genetic data show no clear relationship between aggression and reproductive success. This suggests that less aggressive males...
Surface and deep structure of the central sulcus in the human and chimpanzee neocortex.

EMMANUEL GILLESSEN1,2,3 and CELINE NEUTENS4. 1Department of African Zoology, Royal Museum for Central Africa, 2Laboratory of Histology and Neuropathology Université Libre de Bruxelles, Belgium, 3Department of Anthropology, University of Arkansas, 4Evolutionary Morphology of Vertebrates, Ghent University.

Primate brain evolution has resulted in a large increase of the neocortical folding. As a result, 60% of the neocortical cortical surface is buried within sulci in humans. Positron-emission tomography (PET) studies of regional cerebral blood flow in humans suggest that the cortical regions exposed on the brain surface and cortical region buried in the fundal zones at the bottom of sulci may play a distinctive role in higher cognitive processing. For a better understanding of the neural basis of human cognition, a broad comparative context, it is therefore of interest to determine whether the surface structure of sulci differs from its fundal structure across primate species.

Surface reconstructions of the central sulcus were examined together with tangential sections across the cortex. Our sample consists of MR scan data of post mortem adult brains. The composition of the sample includes 15 humans, 3 common chimpanzees (Pan troglodytes), 3 bonobos (Pan paniscus), 8 gorillas (Gorilla gorilla) and 8 orang utans (Pongo pygmaeus). Both sexes are equally represented. Data were processed for 3D reconstruction using Amira 5.3.1 (Visage Imaging). We here confirm that although the surface structure of the human central sulcus is highly variable, its deep structure is remarkably consistent. The fundus of the human central sulcus is divided in two limbs by a complex junction located between the interhemispheric and Sylvian fissures. We examine the similarities and differences between human and great ape concerning the relationships between surface and deep structure of the central sulcus.

Part of the great ape specimens used in this study was on loan to the Comparative Neurobiology of Aging Resource supported by NIH AG14308. This work was supported by the European Commission, contract number 029923.

Supernumerary vertebrae and other spinal pathology in three 17th century crypt mummies from Germany.

HEATHER GILL-FRERKING1, JAMES SCHANANDORE2 and WILFRIED ROSENDAHL1. 1German Mummy Project, Reiss-Engelhorn Museum, Mannheim, Germany, 2Department of Biological Sciences, North Dakota State University, Fargo.

A small group of mummies rest in the von Cranisheim family crypt, at Sommerdorff Castle, in southern Germany. All of the mummies date to the 17th century, and all are naturally preserved, due to the air flow in the crypt area. To date, the German Mummy Project has examined three of the mummies in the crypt: the Baron von Holz, Sophie von Kniestätt and the Baroness Schenck von Geyern. There is limited historical documentation related to these individuals and very little was known about the three adults. DNA analysis to determine the specific kinship relationship between all three individuals has been inconclusive so far.

Using a Siemens Definition Dual Energy Source CT scanner and medical imaging software (Osirix and Mimics), all individuals were assessed for age-at-death, evidence of trauma or pathology and identification of potential cause of death. Analysis of the cervical spine of the three adults has shown that all three adults had evidence of spinal pathology. All three individuals had supernumerary vertebrae: two with non-sacralized L6 and one with non-sacralized C8. Both the human spine bifida occulta and extreme spinal curvatures, the severity of which was made clear through the 2D visualization and 3D reconstruction during the medical imaging. One of the women may have had tuberculosis; DNA testing for this is pending. The spinal pathology of these individuals is interpreted within the bioarchaeological context of the Thirty Years War in Germany (1618-1648).

Climatic and other trends in the femoral neck-shaft angle: a global study of variation among modern human groups.

IAN GILLIGAN. School of Archaeology and Anthropology, Australian National University.

The femoral neck-shaft angle (NSA) varies widely between and within modern human groups, and between modern and earlier hominin species. Debate surrounds the question of whether this NSA variation relates mainly to body shape and climate (as a morphological trend associated with Bergmann’s Rule) or, instead, to population differences in habitual activity patterns (forager, agricultural and urban lifestyles, for example). Previous studies have shown inconsistent and even contradictory findings with respect to climate, lifestyle and also gender patterning in the NSA. However, these have been hampered by measurement problems (for example, reliance on radiographs) and limited population sampling. The present study reports results from an extensive survey of the NSA (measured by hand-held goniometer) involving over 8,000 adult femora derived from 100 samples (80 countries and 20 additional groups including Ainu, Andamans, Fuegians, Inuit and Pygmies). Analyses demonstrate consistent correlations.
between group NSA means and climatic indices at global and continental levels, consistent with predictions based on Bergmann’s Rule. No difference between male and female NSA is found, and associations with economic categories are generally weak. However, one lifestyle variable (clothing) shows an interesting effect: a reduced NSA range with thermally-effective clothing. Also, unexpected evidence for bilateral asymmetry is revealed: a small difference between left and right NSA, attributable to right leg dominance. The unprecedented size and geographical coverage of this study allows these findings to be generalized and to resolve key questions regarding climatic and other sources of variation in the femoral NSA among modern humans.

A comparative framework for the interpretation of antemortem tooth loss in Neandertals.

CASSANDRA C. GILMORE. Department of Anthropology, University of California, Davis.

Multiple fossils of the hominin species Homo neanderthalensis show evidence of severe antemortem loss of teeth. Researchers have interpreted the survival of these individuals as an indication of human-like behavior—such as cooking or conspecific care—in this extinct species. One inadequately tested prediction of these interpretations, however, is that recent humans actually differ in their frequency of antemortem tooth loss (AMTL) from our closest living relatives, non-human primates.

This study investigates dental pathology in a sample of 214 individuals from Pan troglodytes, Papio hamadryas, and several populations of modern humans with varying diets to determine if there is a difference between humans and non-human primates. Mann-Whitney U and Kolmogorov-Smirnov two-sample tests of the data indicate that the average proportion of teeth remaining per individual in humans is significantly smaller than that of both Pan and Papio (p = 1.2x10^5 and p = 9.1x10^4 respectively) and the shape of the human distribution is significantly more dispersed (p = 9.4x10^5 and p = 9.8x10^5). The non-human primate averages (p = 0.89) and distribution shapes (p = 0.1) are not significantly different from each other.

These preliminary results support the hypothesis that modern humans have a higher frequency of AMTL than do non-human primates. Because there were non-significant differences between the non-human primates despite significant differences in ecology, these results further suggest that the increased frequency of AMTL observed in modern humans is not related to ecology, and therefore they tentatively support hypotheses that link increased AMTL frequency to the evolution of human-specific behaviors. Ongoing data collection will contribute further to these results.

This study was funded with generous support from the Leakey Foundation, University of California, Davis, Department of Anthropology Summer Fellowships, and the UC Davis Institute of Governmental Affairs.

Linear enamel hypoplasias and the dietary adaptations of Cebus.

JUSTIN T. GLADMANN1,2. 1Department of Anthropology, The Graduate Center, City University of New York, 2New York Consortium in Evolutionary Primatology.

Linear enamel hypoplasias (LEHs) are generally accepted markers of nonspecific physiological disruption most often attributed to malnutrition or disease. Malnutrition especially has been documented in human and non-human primates as an important factor influencing development of LEHs in the permanent dentition. This study examines whether or not LEHs can be used as indicators of relative foraging success, an extension of relative levels of malnutrition. A standardized platyrhine genus, Cebus. To test this relationship, LEH frequencies were calculated based on observations of the mandibular canines of 176 individuals of Cebus apella, C. albifrons, and C. olivaceus. The salient dietary differences among these species relate to alternative foraging strategies adopted during times of scarcity. Cebus apella fall back on hard nuts, while C. albifrons and C. olivaceus, lacking comparable craniodental adaptations, rely on other behavioral adjustments to meet their requirements. Cebus apella, with its specialized diet, is predicted to show relatively lower frequencies of LEH because it can monopolize a niche unavailable to sympatric congers lacking such specializations.

The results of this study do indicate a difference in LEH frequency among species of Cebus, but not in the predicted direction. Cebus albifrons shows significantly lower frequencies of LEH compared with its other congers (F = 14.58, df = 4, P = 0.0057). Thus the specialized dentition of C. apella may not reflect a nutritional advantage compared with the behavioral adaptations in other members of the genus even though it seems to allow for a wider geographical distribution and may minimize competition under scarcity.

This work was supported by the New York Consortium of Evolutionary Primatology, NSF DGE 0353415 (NYCEP IGERT).

Thermal imaging and iButtons: a novel use of two technologies to quantify the daily thermal profiles of wild howlers (Alouatta palliata) and their habitats at La Pacifica, Costa Rica.

KENNETH E. GLANDER1, CHRISTOPHER J. VINYARD2, SUSAN H. WILLIAMS1 and MARK F. TEOFORD3. 1Department of Evolutionary Anthropology, Duke University, 2Department of Anatomy & Neurobiology, 3Department of Biomedical Sciences, Ohio University, 4Functional Anatomy & Evolution, Johns Hopkins University School of Medicine.

Thermoregulation is a key element of primate physiology. The significance of temperature is highlighted in on-going debates involving heat stress and thermoregulation in human evolution, particularly since our early ancestors experienced body hair loss and likely increased heat load upon moving into the savanna. Despite this debate, actual body temperatures, and possible heat load, have only been measured for baboons and dwarf lemurs among wild primates. Many primate studies have recorded ambient temperatures at observer locations or nearby weather stations, but not the animal’s body temperature or the ambient temperature in the animal’s immediate vicinity.

To quantify the thermal profiles of howlers and their arboreal habitat, we employed thermal imaging and datalogging to record continuous ambient and body temperatures for free-ranging mantled howling monkeys (Alouatta palliata) at La Pacifica in Costa Rica. Thermal imaging is a noninvasive tool that measures surface infrared radiation (i.e., similar for black, brown, or white skin). iButtons are small temperature dataloggers that were attached to collars or anklets and surgically implanted subcutaneously.

Internal temperatures ranged from 41.8°C-33.3°C with corresponding ambient temperatures likely impacts energy budgets in terms of dumping heat or maintaining core temperatures. These results demonstrate greater temperature fluctuations in a homoeothermic animal than previously reported. Thermoregulation in response to rain and ambient night-time temperatures is highlighted in on-going primate physiology. The significance of body temperature or the ambient temperature in the animal’s immediate vicinity.

The study was funded by NSF Grant BCS-0720028/0720025.

Male homosexual behavior in Cercopithecus mona.

MARY E. GLENN1, MARISSA RAMSIER2 and KEITH J. BENSEN3. 1Department of Anthropology, Humboldt State University, Arcata, California, 2Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 3Windward Islands Research and Education Foundation, Grenada, West Indies.

Cercopithecus mona males living outside of family groups often coexist in small, tightly-bonded, all-male groups and regularly practice homosexual behaviors, demonstrating that male-male competition for females does not preclude male-male social bonding. Our
AAPA ABSTRACTS

Age at death estimation in an Italian archaeological sample: a test of the Suchey-Brooks and transition analysis methods.

KANYA GODDE1,2, SAMANTHA M. HENS3, M. GIOVANNA BELCASTRO4. 1Department of Anthropology, Texas State University, San Marcos, 2Department of Anthropology, University of Tennessee, Knoxville, 3Department of Anthropology, California State University, Sacramento, 4Laboratory of Bioarchaeology and Forensic Osteology, Department of Experimental Evolutionary Biology, University of Bologna.

The application of aging methods in bioarchaeological contexts is problematic for several reasons, including the limiting structure of the age intervals and age mimicry of the reference sample. Boldsen et al. (2002) attempted to combat these issues by suggesting a combination of transition analysis and a Bayesian approach. In this study, we test the accuracy of both the Suchey-Brooks method alone, and the application of transition analysis to the Suchey-Brooks method, expecting that the incorporation of the statistical component will significantly increase the accuracy of estimated age at death. Public symphyses from 202 males and 188 females of documented age from a modern Italian collection from Sardinia were scored using the Suchey-Brooks method. Transition analysis was conducted separately on the sexes. A Gompertz model was applied to a second modern Italian sample from northern Italy to estimate a prior age at death distribution.

The probability density functions were used to generate the highest posterior density regions. Finally, following the suggestion by Konigsberg et al. (2008), cumulative binomial tests were run with 50% coverage to quantify the performance of each aging approach. Transition analysis technique performed significantly better than expected, while the Suchey-Brooks coverage yielded significantly poorer age estimates. Using an informative prior led to results that provided significantly better coverage of the stages than mere application of an aging technique. This paper demonstrates the necessity for conducting transition analysis to estimate age in archaeological samples. Many age assessments here can be extrapolated to forensic contexts. The data collection was facilitated by a grant for Samantha M. Hens from the Office of Research and Sponsored Projects, California State University, Sacramento.

A time frame for butchery of giant lemurs and sifakas at Taolambiby, SW Madagascar.

LAURIE R. GODFREY1, BROOKE E. CROWLEY2, VENTURA R. PEREZ3, DAVID A. BURNLEY4, WILLIAM L. JUNGERS4 and MIRYA RAMAROALNY4. 1Department of Anthropology, University of Massachusetts at Amherst, 2Department of Anthropology, University of Toronto, 3National Tropical Botanical Garden, Kalalau, 4Department of Anatomical Sciences, Stony Brook University, 5Department of Biology, University of Antananarivo, Madagascar.

We compiled new and previously published 14C dates on animal bones from Taolambiby, a subfossil site that has revealed the earliest evidence of human megafaunal butchery in Madagascar. Sixty-eight dates on specimens belonging to 4 extant and 7 extinct species and ranging in age from 3270 Cal BP to modern are now available. Samples were derived from four collections representing four localities at this site, each with different percentages of extinct and extant taxa. One in particular, the Walker collection (1185 Cal BP to modern), comprises predominantly extant species. A dated microfossil record associated with the older Burney collection shows stratigraphic proxy evidence from coprophilous fungus spores for decline of the megafauna. It also documents changes in fire regime and vegetation.

Fifteen dated bones show signs of butchery, including a giant tortoise (2225 Cal BP) and a giant lemur, Propithecus (2250 Cal BP). Thirteen butchered Propithecus (sifakas) from the Walker collection range in age from 1015 Cal BP to modern. These data suggest an early presence of humans in southwest Madagascar and a megafaunal population decline prior to 1000 years ago when sifakas became primary local targets of human hunting. They also document body size reduction in the hunted sifaka population. The evidence presented shows that megafaunal population decline preceded the drought at 950 Cal BP that has been posited as triggering megafaunal extinction in Madagascar. Although climate may have played a role in subsequent ecological changes, megafaunal decline at Taolambiby seems to correlate with evidence for human arrival.

Funding for new 14C analyses was provided by UCOP/Labs 09-LR-07-115818-DOMN SC 20081267 to N.J. Dominy. Funding for field work in Madagascar was provided by NSF grant BCS 0129185 to DAB, LRG and WLJ.

Does breeding seasonality predict receptive synchrony and reproductive skew among non-human primates?

JAN F. GOGARTEN1 and ANDREAS KOENIG2. 1Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, 2Department of Anthropology, Stony Brook University.

Among non-human primates, male reproductive skew appears to be affected primarily by receptive synchrony and the number of males per...
group. These factors have frequently been assumed to depend on breeding seasonality, with strong seasonality increasing receptive synchrony, which in turn reduces the strength of male monopolization associated with more males and lower skew. In this study, we tested the importance of breeding seasonality as a factor affecting female receptive synchrony and male reproductive skew. We obtained data from the literature on genetic maternity, number of males per group, female receptive synchrony, and seasonality of breeding (percentage of months with births and mating events). At the same time, the variation explained by synchrony and hence not driving male reproductive skew was significantly negatively associated with the number of males per group ($P < 0.01$) as well as in female receptive synchrony ($P < 0.01$).

Contrary to general expectations, breeding seasonality did not explain variation in reproductive skew over and above the variation explained by synchrony and the number of males per group. Seasonality alone did not explain much variation in skew and there was no significant association between breeding seasonality and synchrony. These results are consistent with limited control models for reproductive skew. At the same time, they suggest that breeding seasonality is not the driving force behind receptive synchrony and hence not driving male reproductive skew. This work was supported by a National Science Foundation Graduate Research Fellowship to J.F. Gogarten.

Potential population-specific selection among copy number variants (CNVs) in indigenous American populations.

OMER GOKCUMEN1,2, REBECCA C. ISKOW1,2, ANN T. SUKUMAR1, RYAN E. MILLS1,2, HANSUO PARK1,2 and CHARLES LEE1,2. 1Department of Pathology Brigham and Women’s Hospital, Boston, MA, 2Harvard Medical School, Boston, MA.

Copy number variants (CNVs), which are gains and losses of stretches of DNA among human genomes, constitute to a considerable fraction of the genomic variation. These variants were impli-
cated in several evolutionary and medical phenotypes, as well as in recent, local environmental and dietary adap-
tations. Several high-resolution studies revealed thousands of CNVs within Asian, European and African popula-
tions. However, the distribution of these variants and their possible effect on phenotypic variation within continents is largely unknown.

In this study, we comparatively interrogated the common CNVs and their possible functional impact within three indige-
nous American populations. Specifically, we used a custom designed an array comparative genomic hybridiza-
tion (aCGH) platform to interrogate ~20,000 copy number variable loci in a limited number of Surui ($n = 5$), Maya ($n = 5$), Fima ($n = 5$) and Mongolian ($n = 10$) samples against a European reference individual. We documented a total of 3,021 CNVs that are observed in more than one individual in our sample set. We found that 290 of these CNVs are gains and losses of stretches of DNA specific to indigenous American populations, absent in 10 Mongolians and rare (<5%) in African, Asian and European populations (indCNVs). This large number of indCNVs is expected due to bottlenecks that ancestors of contemporary indigenous American groups underwent during their migra-
tion into Americas. However, we observed that 147 (~50%) of the indCNVs are likely background CNVs of the overall dataset only 651 (~21%) over-
lop with exons. This observation may indicate an increased frequency of at least some indCNVs due to selection rather than founder effect.

This project is funded by an American Association of Physical Anthropologists Career Development Grant.

An epistemological investigation into the different theories on the rise of behavioural modernity in the hominin lineage.

NATHALIE GONTIER. Vrije Universi-
titeit Brussel, Belgium and American Museum of Natural History, New York.

A distinction is made between the rise of anatomical and behavioural modernity.

"Anatomical modernity" is a theoretical concept defined by anthropologists (Tat-
tersall, Schwartz, Wood, Johanson, Wolpoft,...), that refers to a set of well-
demarcated traits possessed by fossils and modern skeletons alike, such as small teeth, gracile bones, reduced pro-
gnathism, etc.

"Behavioural modernity", is an abstract notion that is introduced by archaeolo-
gists (Mellars, d’Errico, McBrearty and Brooks, Klein, Conard, Henrich, Zilhão,...), but contrary to the notion of anatomical modernity, its meaning is liable to changing theories. First, I will examine the way in which "behavioural modernity" is defined by various authors. Secondly, the different theories on the rise of behavioural modernity are examined in light of the suggested time periods in which behavioural mod-
ernity arose (400,000; 250,000 or 50,000 years ago).

It will be argued that the lack of consen-
sus within these different theories together with the lack of scientific grounding of why certain behavioural traits are modern rather than archaic make it necessary to realize that at present adding the label "behav-
iourally modern" to a certain trait or species is inflicting a value judge-
ment rather than making a scientific statement on a trait or species. Epis-
temological guidelines will be provided that allow one to overcome this problem.

Factors that influence the biomass of frugivorous anthropoid guilds in African communities.

REIKO MATSUDA GOODWIN. Department of Sociology and Anthropology, Fordham University, Bronx, New York.

What limits primates? In Paleotropics, protein-to-fiber ratio in mature leaves (Protein/ADF ratio) is the determinant of colobile biomass, while fruit produc-
tivity was correlated with Neotropical primate biomass. As for frugivorous pri-
imate biomass, however, productivity of endozoochorous trees were the ecological correlates in the Neotropics. Major ecological correlates that could explain the variations seen in the bio-
mass of African frugivorous primates have not been recognized to date. Here I conducted correlational analyses (Pearson $r < 0.05$) on the biomass of individual African anthropoid guilds (groups of species that exploit similar resources): apes, terrestrial mangabeys and Mandrillus spp., arboreal mangabeys, frugivo-folivorous guenons, fru-
givo-insectivorous guenons, frugivo-
semivorous guenons, and colobines in relation to some ecological characteris-
tics of > 10 African communities that were obtained from published studies. Ecological characteristics examined include the number of dry months, Temperature/Precipitation (T/P) ratio (dryness index), soil pH, % of Caesalpi-
ioideae tree basal area, and Protein/
ADF ratio. This study found: (1) soil pH positively correlated with the bio-
mass of frugivo-insectivorous guenons, but the number of dry months/yr is negatively correlated with their bio-
mass; (2) T/P ratio is positively corre-
lated with the biomass of frugivo-semi-
 vorous guenons; (3) no correlation with any ecological characteristics was found for the biomass of frugivo-folivorous guenons, except with the biomass of frugivo-insectivorous guenons; (4) Protein/ADF ratio is positively correlated with the biomass of apes, but sample size is small ($N = 5$). No unifying factor determines the biomass of all anthropo-
poid guilds, because each guild is adapted to a unique set of ecological conditions.

This study was funded by: National Science Foundation (SBR-9528348), Wenner-Gren Foundation for Anthropo-
logical Research (Gr. 9562), Leopold Schepp Foundation, Primate Conserva-
tion Inc.

American Journal of Physical Anthropology
The role of comparative databases in paleoanthropology research.

ADAM D. GORDON and BERNARD WOOD. 1Department of Anthropology, University at Albany – SUNY, 2Center for the Advanced Study of Hominid Paleobiology, Department of Anthropology, The George Washington University, 3Human Origins Program, National Museum of Natural History, Smithsonian Institution.

Paleoanthropologists lament that they have insufficient evidence and stress the need to recover more fossils. However, our community also needs information systems that allow for the best use of the fossil evidence we do have. Researchers spend an inordinate amount of time searching for basic information about the hominin fossil record; for most hominin sites only the simplest data about the fossils found there are available and even those data often have to be mined from several sources. The situation with respect to comparative data is often worse: while metric data for fossil specimens are often published, metric data for extant specimens usually are not. The dearth of databases that contain more than the most basic information about museum collections of the obvious comparator taxa means that researchers, both senior and junior, often collect data that are the same or very similar to data that have already been satisfactorily collected by others. This duplication of effort obviously wastes time and precious grant resources that could be better spent on productive, novel research. Duplicated efforts also expose collections to needless handling that gradually and inevitably degrades the sources of the data that lie at the heart of our discipline. Databases have the potential to address these issues, although in doing so new data issues arise. We will use our Human Origins Database (humanoriginsdatabase.org), which includes data from both fossil hominin and extant African ape specimens, to illustrate some of the benefits and challenges presented by comparative databases in paleoanthropology research.

BW acknowledges the support of the GW Provost's Signature Program initiative, and both authors acknowledge support from the G. Harold & Leila Y. Mathers Foundation.

Phylogenetic and functional signals in the astragals of cercopithecoids.

ASHLEY D. GOSSELIN-ILDARI. Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University.

Morphologists have long been interested in identifying musculoskeletal adaptations to locomotion in order to reconstruct locomotor habits in fossil taxa. However, our community also needs information systems that allow for the best use of the fossil evidence we do have. Researchers spend an inordinate amount of time searching for basic information about the hominin fossil record; for most hominin sites only the simplest data about the fossils found there are available and even those data often have to be mined from several sources. The situation with respect to comparative data is often worse: while metric data for fossil specimens are often published, metric data for extant specimens usually are not. The dearth of databases that contain more than the most basic information about museum collections of the obvious comparator taxa means that researchers, both senior and junior, often collect data that are the same or very similar to data that have already been satisfactorily collected by others. This duplication of effort obviously wastes time and precious grant resources that could be better spent on productive, novel research. Duplicated efforts also expose collections to needless handling that gradually and inevitably degrades the sources of the data that lie at the heart of our discipline. Databases have the potential to address these issues, although in doing so new data issues arise. We will use our Human Origins Database (humanoriginsdatabase.org), which includes data from both fossil hominin and extant African ape specimens, to illustrate some of the benefits and challenges presented by comparative databases in paleoanthropology research.

BW acknowledges the support of the GW Provost's Signature Program initiative, and both authors acknowledge support from the G. Harold & Leila Y. Mathers Foundation.
The microindentation data reveal that adult macaques have significantly stiffer bone than their juvenile counterparts. However, macaque mandibles do not show a consistent relationship between stiffness and local differences in cortical thickness. The macaque data lend support to the hypothesis that colonized mandibles are materially more compliant than those of cercopithecines. Supported by National Science Foundation grants BCS-0922429, 0921770, and 0922414.

X-ray fluorescent spectroscopy and its research applications to Northern European bog bodies.

GUINEVERE GRANITE, JOYCE SIRIANNI, and ANDREAS BAUEROCHSE. 1Department of Anthropology, University at Buffalo, SUNY, 2Department of Anthropology, University at Buffalo, SUNY, 3Niedersächsisches Landesamt für Denkmalpflege, Hannover, Germany.

To expand the understanding of Northern European bog bodies’ contextual significance and the reason for death, this dissertation research focuses on the application of X-ray Fluorescence (XRF) Spectroscopy to both the skeletal remains and the surrounding burial environment of twelve bog bodies. This non-destructive testing method can provide a more objective contextual understanding of bog body burial sites, as well as determine geographic origin and/or disparity in environmental habitation of bog bodies early and late in life.

Currently, strontium is the most reliable element of interest in geographic origin and migration research. Strontium acts like calcium, incorporating preferentially into bone and tooth enamel at sites of increased osteogenesis. To enable the most accurate value ranges of strontium concentration as measured in parts per million (ppm), each body was repeatedly scanned at various pre-determined osteological landmarks. The skeletal area scanned included any present/visible dentition, as well as trabecular bone regions found within the crania and postcrania. Comparable strontium concentration ratios from the bones and teeth could greatly assist in determining whether the bog body migrated between infancy and death, even possibly his/her birthplace. Subsequent data assessment strongly suggests diagenesis has occurred within the bog, affecting the bog body elemental levels. Though the strontium levels may be compromised due to environmental incorporation, additional analysis of the bog bodies’ elemental composition, including Iron, Lead, Bromine, Zinc, and Copper, have provided a comprehensive understanding of the chemical interactions between the bog bodies and the bog itself in the form of elemental leaching and incorporation.

Patterns in ancient teeth: palimpsests of behavior.

DAVE GRANT. San Jose State University.

In analyzing burial populations from seven sites in the Santa Clara Valley patterns on teeth were found that did not conform to the flat normative wear explanation. The purpose of this study is to expand upon the seminal work of Molnar (1968) and Keiser (2001) and to propose a definitive refinement of wear patterns found on teeth from populations in Central California. Zero wear or normative flat wear was present, four additional distinct wear patterns were found. Wear patterns include slants and scoops on posterior teeth and rounding and grooving on anterior teeth. Statistically significant differences were identified between an older (4,000-2930BP) Northern population and younger populations from the Santa Clara Valley. Analysis of the Southern population suggests that these individuals were not utilizing their teeth as frequently to produce patterned wear and may possibly suggest an elite class that was exempt from normal processing activities. The percentage of slants, rounding and scoops all increased through time from the earlier, older, northern population to the younger, southern populations. Northern males exhibited more slant and rounding wear than females in that population. Southern males had more slant wear than females and were evenly split on the rounding pattern. Scoops, which may be related to arrow shaft processing or peeling, are overwhelmingly found in the southern population after the adoption of the bow and arrow in this area. Further research is called for to further refine and define these processes.

A bioarchaeological study of cranial trauma in the William M. Bass and Hamann-Todd collections: interpersonal aggression in America.

KATY D. GRANT and JACQUELINE T. ENG. Department of Anthropology, Western Michigan University.

This study on the patterns of interpersonal violence in America compared cranial trauma found in samples from the William M. Bass Osteological Collection (BOC) held at the University of Tennessee-Knoxville with samples from the Hamann-Todd Osteological Collection (HTOC). Individuals in the HTOC had been primarily of low socioeconomic status and had lived in Cleveland, Ohio during a time of social, economic, and political instability. Many of the individuals in the BOC had been college educated and had lived during a time when Tennessee and surrounding states were under relatively stable conditions. Because of these differences, it was hypothesized that the BOC would have a lower rate of traumatic lesions than the HTOC.

The sample used in this study included 297 adult crania from BOC (n = 152) and HTOC (n = 145), including 183 males and 114 females. All crania were examined macroscopically and with the help of a hand lens. The total frequency of traumatic lesions found in all crania observed was 22.6% (0/78). Although the BOC was found to have a higher frequency (24.3%) of cranial trauma than in the HTOC (20.7%), it was not found to be statistically significant. When testing for location and type of fractures (blunt, sharp, and gunshot wounds), no significance was Found with the exception of gunshot wounds (p = 0.036). Implications of the results will be discussed in our poster.

This study was funded by the Undergraduate and Creative Activities Award from the College of Arts and Sciences at Western Michigan University.

Effects of social cohesion, pair-bonding and monogamy on primate brain evolution.

JESSICA GRAVES, E. CHRISTOPHER KIRK and REBECCA J. LEWIS. Department of Anthropology, University of Texas, Austin.

The social brain hypothesis suggests that the cognitive demands of living in large, complex social groups were the primary selective factors favoring increased encephalization in primates. Recent studies suggest that it is the quality and complexity of social relationships rather than large group size that has selected for increased encephalization. Pair-bonded social systems and monogamous mating systems have been proposed to provide the social complexity favoring increased brain size. The goal of this study was to evaluate the importance of group size, group cohesion, pair-bonding and monogamy on primate brain evolution. Data on endocranial volume (ECV), body mass, social systems and mating systems were collected for 212 primate species from the literature. These data reveal that across all primate taxa, group size is positively correlated with ECV. Furthermore, species with cohesive social systems have significantly larger ECV’s than species with dispersed social systems. Significant correlation between ECV and group size. Monogamous and pair-bonded carrionbile species showed significantly larger ECV’s than other cattrailing. Mating and social system
showed no significant effect on ECV for all other infraorders. Our results suggest that although group size is positively correlated with ECV across all primates, the evolutionary forces acting on primate encephalization may vary among clades and the complexity of social relationships in pair-bonded and monogamous systems may not be uniform across all primates. This study was funded by the Undergraduate Research Foundation.

The effect of auditory enrichment on the expression of abnormal behaviors in laboratory-housed infant rhesus macaques (Macaca mulatta).

LAURA GRAVES and KERRIE LEWIS GRAHAM. Department of Anthropology, Texas State University – San Marcos.

Environmental enrichment can reduce the expression of abnormal behaviors in captive primates. However, auditory enrichment has generated mixed results, possibly due to music choice, volume levels, or species differences. With these factors in mind, the purpose of this study was to test the effect of two different types of music on captive primates. Forty laboratory-housed rhesus macaques (Macaca mulatta) infants at the Oregon National Primate Research Center were observed for 19 days over a 4 week period. During Week 1, subjects were observed with no music to acquire a baseline level of behaviors (Phase 1). During week 2 subjects were exposed to white noise for 3 hours a day (Phase WN). During week 3, designee music was played for 3 hours a day (Phase DS). White noise and the designer music were played at ~72 decibels. Observations continued into week 4 to determine if changes in behavior were residual (Phase 4). Results show that exhibition of abnormal behaviors were at their highest during Phase 1, with an average of 90 abnormal behaviors exhibited daily. Abnormal behaviors significantly decreased over the course of the study with subjects and were lowest, at 48.6 per day, during Phase DS (X² = 39.3, DF = 3, p < .001). This research demonstrates that auditory enrichment decreases the exhibition of abnormal behaviors in captive primates. It should be noted however, that some behavioral changes could be due to increased familiarity with the researcher. Future directions should aim to address this factor, in addition to introducing other music genres.

Hominoid behavior in ecological and phylogenetic context: is it all in the (super) family?

RONGA R. GRAVES and ANDREAS KOENIG. 1Departmental Doctoral Program in Anthropological Sciences, Stony Brook University, 2Department of Anthropology, Stony Brook University.

Selective forces play an important evolutionary role, reinforcing the preservation of adaptive qualities and diminishing the frequency of maladaptive traits. In turn, the shared evolutionary history of closely related taxa may act as a constraint, effectively limiting natural selection in driving adaptation. This study evaluated variation in behaviors exhibited by closely related taxa in different ecological contexts to identify the extent to which phylogeny affects behavioral adaptation among extant hominoids. Fourteen longitudinal studies of gorillas, chimpanzees, bonobos, orangutans, gibbons, and siamangs functioned as ingroup operational taxonomic units (OTUs). Outgroup taxa consisted of rhesus and yellow baboons. Character states were coded for 74 social characters, 32 ecological characters, and four demographic characters. Phylogenetic analyses of the complete dataset and data subsets suggest that behavioral properties reflect the evolutionary history of the populations to some degree, but also demonstrate plasticity. Demography and life history more closely track phylogeny, while ecological adaptations demonstrate greater flexibility. Sociosexual behaviors varied widely across taxa, and when analyzed as a data subset, demonstrated high levels of autapomorphy. Overall, the social behaviors of chimpanzees, bonobos, and gorillas were more similar to those of macaques and baboons, with Asian apes demonstrating behaviors that were less similar to their closest genetic relatives. Chimpanzees and bonobos from similar environments displayed behavioral adaptations that were more comparable to each other than to geographically distant populations of their own subspecies. These results suggest that behavior may be less constrained by phylogeny than suggested in previous reports.

Peripartum shifts in female sociosexuality: adaptive or pathological?

PETER B. GRAY, MICHELLE J. ESCASA and SHARON M YOUNG. Department of Anthropology, University of Nevada, Las Vegas.

This presentation reviews human female peripartum shifts in sociosexuality within an integrative evolutionary, comparative, mechanistic, and cross-cultural framework. An evolutionary perspective indicates that ancestral females spent the bulk of their reproductive years pregnant or subject to lactational amenorrhea. Across the peripartum period, females face life history allocation challenges between current and future reproduction. Hormones and other features of women’s physiology help coordinate the increased investment in maternal behavior at expense to sexuality. Comparative nonhuman primate data indicate that females may maintain sexual behavior during pregnancy at variable rates, but these tend to plummet postpartum when females are focused on caring for a new offspring. In humans, data from international behavioral and cross-cultural attitudinal surveys indicate that reductions in peripartum female sociosexuality are common, but also subject to variation due to factors including marital dynamics (e.g., reduced gestational sex and extended postpartum sex tabos in multiple polygamous societies) and breastfeeding (e.g., lactation tends to inhibit female proceptivity). The human and nonhuman primate data suggest both adaptive (e.g., elevated prolactin associated with lactating facilitates maternal investment at expense to resumption of ovarian cycling) and byproduct (e.g., elevated mid-gestational sex steroid levels promoting pregnancy outcomes, but incidentally enhancing libido) interpretations of these peripartum transitions in female sociosexuality. Further, human female peripartum sociosexuality may more consistently reflect life history allocation interpretations than some recent biomedical views of these as “pathological”.

Developmental variation in great ape molar crowns.

DANIEL R. GREEN, HALSZKA GLOWACKA, GARY T. SCHWARTZ, DONALD J. REID, LAWRENCE B. MARTIN and TANYA M. SMITH. 1Department of Human Evolutionary Biology, Harvard University, 2Institute of Human Origins & School of Human Evolution and Social Change, Arizona State University, 3Department of Oral Biology, Newcastle University, 4Department of Anthropology, Stony Brook University.

Investigations of tooth development have become increasingly common in characterizations of fossil ape and human dentitions. Despite this, relatively few studies report comparative data for living great apes, which are often assumed to show similar patterns of dental development. Here we quantify incremental development, including cuspal enamel thickness, daily secretion rate, Retzius line number and periodicity, crown formation time, and coronal extension rate in histological sections of great ape molars. We find that cuspal enamel thickness increases from Pan to Gorilla to Pongo, ranging from ~0.5-2.0 mm, depending on tooth and cusp type. Daily secretion rates are broadly similar among great apes, ranging from ~3-5 microns/day in the inner to outer cuspal enamel. These variables lead to relatively short cuspal enamel formation times in Pan and longer formation times in Pongo. Retzius line number is highest in Pan, while average Retzius line periodicity is highest in Pongo. Although there is a good degree of overlap, average molar crown formation...
times increase from Pan to Gorilla to Pongo. Differences in coronal extension rates are particularly marked; Gorilla rates are higher than both Pan and Pongo. Accelerated cellular extension in Gorilla facilitates the formation of large tooth crowns over a period comparable to other great apes. Variation in dental tooth crowns over a period comparable to other great apes. Variation in "Gorilla" facilitates the formation of large and extant hominoid scapulae, and suggests that some shoulder characteristics may not necessarily be developmentally or functionally linked.

This study was funded by Harvard University and the Institute of Human Origins, Arizona State University.

A new ~1.5 Ma hominin scapula from Koobi Fora, Kenya.

DAVID J. GREEN1, BRIAN G. RICHMOND2, JOHN W. HARRIS3, EMMA MBUA1, DAVID R. BRAUN2, NICOLE L. GRIFFIN1 and HABIBA CHIRCHIR1. 1Department of Anthropology, The George Washington University, 2Department of Paleontology, National Museums of Kenya, 3Archaeology Department, University of Cape Town, 4Department of Paleontology, National Museums of Kenya, 5Department of Paaleontology, National Museums of Kenya, 6Department of Evolutionary Anthropology, Duke University, 7Hominid Paleobiology Doctoral Program, Department of Anthropology, The George Washington University.

The KNM-WT 15000 skeleton preserves the only known Early Pleistocene scapula from East Africa. As a result, it has not been possible to characterize shoulder and upper limb variation from this critical period of hominin evolutionary history. Here, we describe a new 1.51-1.53 Ma hominin shoulder fossil, KNM-ER 47000, from the Koobi Fora Formation, Kenya (FwJ 14e, Area 1A). KNM-ER 47000 is an associated right arm skeleton, including portions of the scapula, humerus, ulna, wrist, and several hand bones. The scapula consists of a complete glenoid cavity preserving a small portion of the scapula spine and neck, the proximal half of the acromion process, and the medial aspect of the axillary border.

Though fragmentary, a sufficient amount of the scapula is available to make meaningful comparisons with Australopithecus, early Homo, and a large sample of living hominoids. The orientation of KNM-ER 47000's gleno-humeral joint is similar to KNM-WT 15000 in being marginally more cranially oriented than modern humans, but is considerably more laterally oriented with respect to the great apes. In contrast, the angle used to measure scapula spine orientation relative to the axillary border is more acute than in modern humans and falls within the gorilla confidence limit. Such a spine orientation is suggestive of a narrow, yet long infraspinous region, resembling that of extant apes and Australopithecus. This mosaic pattern is unique among fossil and extant hominoid scapulae, and suggests that some shoulder characteristics may not necessarily be developmentally or functionally linked.

This study was supported by Grant Sponsorship: NSF BCS-0924476, NSF BCS-0824552, NSF DGE-0801634, NSF DGE-0987590, the Wenner-Gren Foundation, Koobi Fora Research and Training Program, Rutgers University CHE, Lewis & Clark Fund, and the GWU UFF and Cotlow Funds.

MNI and MLNI in the quantification of commingled skeletal remains: application to a large-scale Bronze Age skeletal collection.

LESLEY GREGORICKA1, SUSAN GUISE SHERIDAN1 and JAIME ULLING-GER1. 1Department of Anthropology, The Ohio State University, 2Department of Anthropology, University of Notre Dame.

Minimum likely number of individuals (MLNI) represents a quantification technique rarely taken advantage of despite the potential for underestimation when calculating MNI, particularly when applied to fragmentary, commingled remains. Both MNI and MLNI were determined using the best-prepared skeletal elements from Early Bronze Age II-III (2900-2300 BCE) Bab edh-Dhra, Jordan. While MLNI has previously been applied only to small-scale circumstances of commingling, we tested the hypothesis that it is a useful method for evaluating larger commingled collections. This hypothesis was tested by osteometric sorting and pair matching of the calcanei, tali, and proximal humeri. MLNI was similar for tali (n=224) and calcanei (n=215), although fewer femoral fragments gave a relatively low MNI (n=142). This indicates that in the recovered assemblage, <250 individuals are represented. Conversely, MLNI calculations display significantly elevated estimates for tali (n=1,129), calcanei (n=2,363), and femora (n=1,633), suggesting that the original number of individuals represented was substantially larger than indicated by MNI. However, MLNI results are likely exaggerated because so few pair matches could be made relative to the number of bones present; this is confirmed by extremely low recovery probabilities for all elements (r=0.184, 0.083, 0.086, respectively). Such artificial inflation is a product of taphonomic processes, including burning, that have altered the bones (e.g., warping, heat fractures) to the extent that they may no longer be visibly paired. Consequently, while MLNI is a useful method when applied to well-preserved, small-scale collections, taphonomic alteration and ability to pair match must be considered when dealing with larger archaeological assemblages.

Behavioral responses to seasonal changes in Guianan bearded sakis (Chiropotes sagulatus): Brownsberg Nature Park, Suriname.

TREMAYNE GREGORY and MARILYN NORCONK. Department of Anthropology, School of Biomedical Sciences, Kent State University.

Behavioral responses to seasonal changes in resource availability have been well documented in many primate species, but little is known about how bearded sakis (Chiropotes spp.) adjust to seasonal variation in fruit availability. As unripe seed predators, the pitheciines are thought to be removed from intra-specific competition experienced by ripe fruit eaters. However, observations that group sizes are flexible and sub-grouping is common in both genera of larger-bodied pitheciines (Chiropotes up to 56-member groups and Cacajao > 100-member groups) suggest that feeding competition may influence group stability. In this study, conducted in Brownsberg Nature Park, Suriname from March 2008 to April 2009, we predicted that bearded sakis (Chiropotes sagulatus) would adjust group size, activity patterns, travel patterns, and feeding habits seasonally. Indeed, we found that during the long dry season group size decreased (K = 12.2, p < 0.01), and activity patterns (x² = 997.9, p < 0.001) and diet composition changed (x² = 288.7, p < 0.001). Group size interacted with travel distance during the dry season resulting in smaller groups and shorter travel distances (t² = 0.42, t = 4.54, p < 0.001). While some species use some of these strategies to withstand periods of lower resource production in the forest, this study demonstrates that, similar to fission-fusion in Ateles and Pan, flexibility in group size is also used frequently by Chiropotes.

American Journal of Physical Anthropology

APA ABSTRACTS 149

Take a load off – intrinsic foot joint kinematics responding to load.

THOMAS M. GREINER1 and KEVIN A. BALL2. 1Department of Health Professions, University of Wisconsin – La Crosse, 2Department of Physical Therapy, University of Hartford.

Humans share a pedal anatomy that is fairly uniform among primates and different from other mammals. Yet, the foot is frequently cited as one of the more distinctively human features. This research asks: are the uniquely human features of the foot primarily artifacts of functional application, or are they rooted in anatomy? This study
addresses that question by comparing how the primate foot responds to load under experimental conditions. Data are derived from feet of human, chimpanzee, and baboon cadavers. Each specimen was subjected to a vertical load via the tibial shaft while monitoring positions of the calcaneus, talus, cuboid and navicular. Functional alignment movement analysis was used to derive 6 DOF movement patterns as well as the orientation of rotational axes for the joints formed between adjacent pairs of these bones.

Conventional kinematic analyses report joint orientations, while they occur about the orthogonal axes of the anatomical reference frame. When presented in this fashion results suggest a strong functional similarity between humans and chimps, to the exclusion of baboons. However, when the orientation of the rotational axis is considered the human foot is shown to be unique, while chimps and baboons are more similar. These findings suggest a functional progression from monkey to ape to human. Consequently, the foot can be viewed as an extension of the primate pedal condition. The orientation of the stem hominine may not have been recognizably distinct from that of the ancestral hominid condition.

Support provided by a UW Faculty Research Grant. Nonhuman specimens provided by the University of Louisiana at Lafayette-New Iberia Research Center, University of Washington NPRC, the Southwest Foundation for Biomedical Research and the University of Illinois at Chicago Biologic Resources Laboratory.

First examinations on neolithic human bones from Göbekli Tepe, Turkey.

JULIA GRESKY. German Archaeological Institute, Berlin.

Göbekli Tepe is the earliest known temple complex, located in the eastern part of Turkey. Until now, no graveyards or burial structures exist in the buildings had been found. But as the structures were filled up with soil in Neolithic times, people took the soil from the surroundings. In this soil, 129 human bone fragments were found, the most common type being skull fragments. Age distribution shows 15 fragments belonging to subadults and 114 to adults. Males were represented by 18 fragments, females by 13, and in 98 fragments no statement about the sex could be made. Mostly inflammatory but also hemorrhagic diseases of the external lamina of the skull vault were found in 14/58 fragments, in the internal lamina in 8/32. The joints showed degenerative changes in 1/13 extremity joints and 1/2 vertebral joints. Diseases of the teeth could be examined in 13 teeth. Out of the 13 teeth one had karies, six showed calculus, three had transversal enamel hypoplasias and three showed severe attrition. There were no signs of abscesses in any of the mandibles or maxillas. In one case a severe inflammatory process of the nasal cavity had occurred. Two fragments had signs of burning, there showed cut marks and one frontal fragment had geometric carvings on it. Even if the burials were not inside the cult-place, they had different kinds of artificial treatment though they possibly belong to this place.

Population biodistance in ancient central California.

MARK C. GRIFFIN. Department of Anthropology, San Francisco State University.

The Vineyards site (4-CCO-548) is a central California multi-use site which dates to the Middle Archaic (4350 and 550 BC). The remains of nearly five-hundred individuals were recovered from 4-CCO-548. Mean measures of divergence were derived from frequencies of noncontemporary cranial data. The MMD's were used to place the Vineyards sample in a taxonomic context with other contemporaneous regional samples. Tremendous biological variability has long been attributed to the early Native American inhabitants of the Central Valley of California. Some researchers have attributed the distinctive dissimilarity between samples to in-migrations of new people to the area. Others have found marked diversity not only between cultural horizons but also between sites attributed to the same horizon. This diversity has been attributed to isolation by distance due in part to the sedentary life style of Central California populations. The results of the present biological distance analysis in large part mirrors results found in previous ones. That is, the estimated distances between populations is quite large and taxonomic diagrams based on those distances reveal very few close relationships. This may lend further support to the contention that precontact California Native American groups practiced a relatively strict form of endogamy. However, another possibility must also be considered. Genetic drift is not just a phenomenon of geographic separation but also can be due to temporal separation. The difficulties presented by the inadequate California chronologies force researchers to place population samples in extremely long time sequences with little meaningful internal separation of those large temporal associations.

Who is more bipedal? Positional behaviour in captive bonobos and chimpanzees.

STEFFI GROTE1, JOSEP CALL2, and TRACY L. KIVELL1. 1Department of Human Evolution, Max Planck Institute of Evolutionary Anthropology, Leipzig, Germany, 2Department of Developmental and Comparative Psychology, Max Planck Institute of Evolutionary Anthropology, Leipzig, Germany.

Although bonobos are often considered to be more bipedal than chimpanzees in the wild, previous research as shown that this is not the case in captivity and that both species are equally bipedal. We provide a further contribution to this controversy through an analysis of positional behaviour in captive bonobos (Pan paniscus) and chimpanzees (P. troglodytes) at the Leipzig Zoo, Germany. We analyzed video data collected over a period of nine years on bonobos (N=8) and chimpanzees (N=8) paired to the same sex and similar age. Locomotor behaviours were quantified using a step sampling method, postural positions were measured in time and the substrate use was noted for both species. Chi-square tests of variation in the frequency of each positional behaviour were conducted both between interspecific pairs and across age-classes within and between species.

Results revealed that bonobos engaged in significantly more bipedalism and suspensory behaviour than chimpanzees. Infant and adult chimpanzees exhibited more quadrupedal fist-walking and knuckle-walking respectively, than bonobos. Chimpanzees were altogether more terrestrial than bonobos, although mean frequencies of positional behaviours varied widely across individuals and age-classes. Intraspecific comparisons showed significant changes in locomotor behaviour throughout ontogeny in both species. These results support previous locomotor research in the wild that documents similar ontogenetic changes in locomotion and significant variation in the frequency of bipedalism versus quadrupedalism between bonobos and chimpanzees.

This study was funded by the Max Planck Society.

Population density and group composition in Tarsius pumilus.

NANDA GROW and SHARON GURSKY-DOYEN. Department of Anthropology, Texas A&M University.

Between June and September 2010, I conducted a population and group census of two tarsiers, Tarsius pumilus, as part of a study of their high-altitude behavioral ecology. Sampling took place within a 1 km² area encompassing altitudes of 2100-2300 m on Mt. Rore Katimbu in Lore Lindu National Park, Central Sulawesi, Indonesia. Over the course of 60 nights, an average of 12 mist nets were positioned and checked nightly for a total of 5,600 net-hours. Within 20 one-hectare plots, I observed five groups containing a total of 18 individuals. The mean number of groups per hectare was 0.25, with a mean of .9 individuals per hectare. The average distance between sleeping sites of...
neighboring groups was approximately 165 m. The number of groups within the 100 ha area that was sampled is estimated to be 25, with an estimated population density of 90 individuals per 100 ha. Results suggest that in second-
ary moss forest, pygmy tarsiers live at a density higher than previously thought, although at a lower density than low-
land Sulawesian tarsier species.

Group composition was variable. The mean group size was 3.6 individuals, and group size ranged from 2 to 5 indi-
viduals. The presence of multiple adult males and females in some groups sug-
gests they may have multi-male/multi-
female social groups. These results may be influenced by the time of the study; all groups contained an infant, a juve-
nile, or a lactating or pregnant female, indicating that the study occurred during a birthing season for pygmy tarsiers.

This study was funded by National Sci-
ence Foundation Doctoral Dissertation Improvement grant number BCS-
1028885, 2Department of Anthropology, The Ohio State University, 3Department of Oral Biology, University of Newcastle upon Tyne, 4Department of Anthropology, University of Auckland, 4Department of Cell and Developmental Biology, Uni-
versity College London.

The enamel extension rate, the rate at which enamel-forming cells differentiate along the enamel-dentine junction (EDJ), reflects how fast a tooth grows in height. Here we analyze how enamel extension rates change along the EDJ in teeth from diverse modern human populations. We also ask whether that change is related to variation in the way perikymata, growth increments on the surface of lateral enamel, are dis-
tributed along the crown. As surface structures, perikymata are an impor-
tant source of information about crown growth in fossil homins. Modern humans have been shown to share a pattern of perikymata distribution different from that of Neandertals, sug-
suggesting differences in the way their lateral enamel grew. In our modern human samples, we find that enamel extension rates in the first-formed enamel are often 10x greater than they are in the last-formed enamel, such that much of a tooth’s crown height is established in a relatively short time period. Statistically significant declines in extension rates are also found in the lateral enamel, and the degree of decline is related to the distribution of perikymata on the tooth crown. While this finding provides insight into the causes of modern human variation in perikymata distribution, it does not reveal the causes of the Neandertal perikymata distribution pattern, as other enamel growth variables can affect how perikymata are distributed. Indeed, previously published data on extension rates in the Neandertal per-
manent molar from La Chaise fall within the bounds of changes in modern human extension rates along the EDJ.

The Homo erectus from Kocabas in Turkey and the first settlements in Eurasia.

GASPARD GUIPERT1, AMELIE VIALET2 and MEHMET CHAT ALCICEK3. 1Antenne de l’Institut de Paléontologie Humaine, CEREGE, Europole de l’Arbois, Alpes-Provence, France, 2Fondation Institut de Paléontologie Humaine, Paris, France, 3Pam-
mukkale University, Department of Geology, Denizli, Turkey.

Few fossil hominids are known in Tur-
key. Among them, a partial skull was discovered in 2002 by one of us (M.C.A.) in the Basin of Denizli, near Kocabas, South-West of Turkey. Dated to 500 to 300 Ka, it constitutes an opportunity to assess the modalities of the settlements in this region and, in a broader context, through Eurasia. The preserved frontal and parietal bones fragments were attributed to Homo erectus (Kappelman et al., 2008). Although a first 3D-recon-
struction of the fossil was done, the main part of the frontal bone was still missing.

We present a new reconstruction. CT data were obtained in the Pamukkale University Hospital (Philips Scanner, 0.8 mm thickness, 120 Kv, 175 mA) and they were exported as DICOM files (512×512) and postprocessed using Mimics 13.1 (Materialise) and Rapid-Form 2006 Inus Technology. Cutting planes and anatomical land-
marks were used to connect the bone fragments. The left part of the supraor-
bital torus was completed by mirroring the right one. Early, Middle and Late Pleistocene hominids from Europe, Africa, and Asia were used as compari-
sions to test a reconstruction of the dam-
gaged frontal scale of Kocabas.

Results show morphological and ana-
tomical similarities with the asian Homo erectus such as: a flatness of the biparietal vault, a strong post-orbital constriction, an encephalic rostrum. Specifically, the Kocabas fossil is closer to those from Zhoukoudian in China showing a strong sagittal convexity of the frontal scale, a marked prominence of the lateral part of the supra-orbital torus and a supratoral depression.

The mediation of increased ener-
getic demands by lactating wild chimpanzees: behavioral and hormo-
nal considerations.

SHOLLY GUNTER1, KEVIN B. POTTS2 and JANINE L. BROWN4. 1Department of Anthropology, Yale Uni-

versity, 2Department of Anthropology, Fordham Science and Arts, Brooklyn University, 3Department of Biology, Augs-
burg College, 4Smithsonian Conservation Biology Institute, National Zoological Park.

In general, lactating females have higher energetic demands than their non-lactating counterparts. Females can meet the demands of rising energetic costs, without mobilizing stored energy, by reducing energy expenditure and by increasing energy intake. Elevated glu-
cose metabolism as a result of both increased energy intake and demand should result in elevated levels of uri-
nary c-peptide in lactating females. To test for changes in behavioral patterns and urinary c-peptide in response to the elevated energetic demands of lactation, we collected behavioral and hormonal data from 24 lactating and 18 cycling, non-lac-
tating female chimpanzees over a 12 month period at Ngogo, Kibale National Park, Uganda. A comparison of the two groups demonstrated that lactating females decrease their energy expenditure by spending significantly more time rest-
ing and less time traveling than non-lactat-
ing females. Lactating females also increase their energy intake by feeding sig-
ificantly longer than non-lactating females. However, the difference in mean urinary c-peptide levels between the two groups was not significant. The lack of elev-
ated c-peptide levels among lactating females may be due to reduced diet quality or, more likely, increased insulin sensi-
tivity during lactation. Variation in insulin sensitivity, which is affected by factors such as body mass and reproductive status, should be considered when using c-peptide as a biomarker in field studies. Addition-
ally, our assessment is that c-peptide is best used as an indicator of energetic intake or metabolic glucose demand, not overall energetic status. This study was funded by the US Ful-
bright Program and the LSB Leakey Foundation.

The effect of substrate compliance on gibbon leap biomechanics.

MICHAEL M. GUNTHER1, EVIE VERECKE1,2, ROBIN H. CROMPTON1, KRISTIAAN D’AOUT2,3, HOLGER PREUSCHOFT4 and ANTHONY J. CHANNON2. 1School of Biomedical Sciences, University of Liv-

erpool, 2Laboratory for Functional Morphology, University of Antwerp, Centre for Research and Conservation, Royal Zoological Society of Antwerp, 3Department of Anatomy, Medical School, Ruhr University.

American Journal of Physical Anthropology
The storage and recovery of elastic strain energy in the musculoskeletal systems of animals has been studied extensively, but the external environment represents a second potentially useful energy store which is often neglected. To date no such energy recovery mechanisms have been demonstrated in leapers, despite indications of energy recovery by tree swaying orangutans. We used a forceplate and two high-speed video cameras to conduct a biomechanical analysis of captive gibbons leaping from stiff and compliant poles. We determined the compliant pole deflection by using different strategies. Two leap types were used: slower orthograde leaps used a wider hip joint excursion to negate the downward movement of the pole with no increase in work done on the centre of mass. The greater hip excursion also minimised the effective leap distance during orthograde leaps. More rapid, prongrade leaps conversely applied force earlier in stance, where the pole was effectively stiffer, minimising deflection and potential energy loss. Neither leap type appeared to usefully recover energy from the pole to increase leap performance, but the gibbons demonstrated an ability to adapt their leap biomechanics best to counter the negative effects of the compliant pole.

A uniquely modern human pattern of early brain development and its implications for middle-late Pleistocene cranial diversity and cognition.

PHILIPP GUNZ, SIMON NEUBAUER and JEAN-JACQUES HUBLIN. Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.

Modern humans are significantly more variable in neurocranial shape than Neanderthals and chimpanzees. High levels of shape variability can already be observed near the emergence of our species in Pleistocene Africa. Here we study the developmental processes that underlie this pattern of cranial diversity using geometric morphometrics. Comparing adult and subadult modern humans (N=57), Neanderthals (N=10) specimens and chimpanzees (N=61), we show that many aspects of the endocranial developmental pattern are shared by the three species. However, in the first year of life modern humans depart from this presumably ancestral pattern. The characteristic globular braincase of adult modern humans is largely the result of a developmental phase that is unique to Homo sapiens and not present in our closest living and fossil relatives. During this "globularization-phase" directly after birth, the cranial bones are thick and the sutures are open. The species differences of the perinatal developmental trajectories therefore most likely reflect underlying differences in the tempo and mode of early brain development.

In modern humans the largest variation of neurocranial shape within and between populations corresponds to a contrast between more globular and more elongated crania. We therefore suggest that the evolution of the postnatal "globularization-phase" contributes to the high levels of neurocranial variability among modern humans. We speculate that a shift away from the ancestral pattern of brain development occurring in early Homo sapiens underlies brain reorganization and that the associated cognitive differences made this growth pattern a target for positive selection in modern humans.

Supported by EU FP6 Marie Curie Actions grant MRTN-CT-2005-019564 "EVAN" and by the Max Planck Society.

Inferences from variation in linear enamel hypoplasias in overall frequencies, presence or absence of sexual dimorphism and in the location of the lesion in the central incisors in different generations of three agricultural populations from the state of Yucatan, Mexico.

FRANCISCO D. GURRI. Department of Population and Environment, El Colegio de la Frontera Sur-Unidad Campeche (ECOSUR-Campeche).

Linear enamel hypoplasia (LEH) variation responds to living conditions. Because females are more ecosensitive than males and not all areas of a tooth are equally sensitive to LEH formation, it was expected that LEH frequency thresholds associated to presence or absence of sexual dimorphism and to particular LEH distributions within the surface of a tooth could be found. Frequencies, presence or absence of significant sexual dimorphism and lesion location in the central incisors were compared between generations and between living agricultural populations that differed in their degree of exposure to infectious diseases, sanitary installations and access to food and medicine during early childhood. Significant sexual dimorphism was found only in our populations with overall frequencies between .65 and .64. The lesions in the central incisors of the pre-vaccination campaign populations were more evenly distributed as shown by significantly more platycuric distributions than those of the younger and better off populations with overall LEH frequencies below .6 and above .27. Finally, overall LEH frequencies were .06 in the most affluent modern peasants with access to modern day health care. A table is presented that associates population LEH frequency with sexual dimorphism and LEH distribution in the central incisors in different published samples and proposes a scale that may be used to infer living conditions and interpret general change in archaeological populations.

This study was funded by NSF grant SBR#0420727, the State of Yucatan and CONACYT, Mexico grant 29264-H.

Functional morphology of the Theropithecus brumpti forelimb.

EMILY H. GUTHRIE. Department of Anthropology, University of Oregon.

To better understand forelimb functional morphology and locomotor mode of the putatively forest adapted fossil baboon Theropithecus brumpti, linear measurements were collected from all available associated postcranial material as well as an extensive cercopithecoid comparative sample. Additional aspects of behavior (e.g. feeding traits, habitat preferences) were compiled for each species.

Although sometimes described as the arboreal theropith, when T. brumpti forelimb morphology is compared to 1) the comparative sample and 2) other fossil and extant Theropithecus, it becomes clear that T. brumpti was not an arboreal quadruped. T. brumpti's forelimb exhibits signals of terrestriality including relatively narrow scapular infraspinous fossa, significant retroflexion of the humeral medial epicondyle and olecranon process. This is concordant with signals of terrestriality exhibited in the T. brumpti hand (Guthrie and Frost, 2010).

Features historically used to reconstruct T. brumpti as more arboreal than other members of the genus are interpreted here as part of a suite of traits that characterize early Theropithecus including early T. owaldi (e.g. moderate indentation of the scapular glenoid fossa, humeral head that is even with greater tuberosity). Furthermore, this suite of traits is better interpreted as foraging adaptations perhaps related to forest floor locomotion and gleanig which may be primitive for Theropithecus and possibly for papionins (Fleagle and McGraw 2002).

This study of was funded by the Geological Society of America, the Paleontological Society, the National Science Foundation, the Leakey Foundation and the University of Oregon.

A model for evaluating trauma patterns in the context of the Colombian conflict.

ANGELICA GUZMAN1, DIEGO CASALLAS2 and CESAR SANABRIA1.

1National Institute for Legal Medicine and Forensic Sciences (INMLCF), 2General Attorney Bureau, Colombia.

Since the 1960s, Colombia has supported a complex armed conflict, in...
which different actors such as guerrilla and paramilitary groups have operated through several interests, criminal activities and human rights violations. In 2003 the Government signed a peace accord which provided a demobilization program to armed groups combatants. This transitional justice model has confronted the victims demands for reparation, requiring a proper clarifying of the fate of the missing. In this context of strengthening the strategies in the search, recovery and identification of missing persons in Colombia, this research systematizes the physical evidence and information related to the circumstances of death of the 3407 exhumated victims analyzed by forensic experts from state institutions, into a Geographical Information System (GIS) to characterize and differentiate based partly on qualitative evidence. We aim to substantiate these observations, namely the relative development of the ulnar deviators in vertical clingers, and the diversity of the prosimian forearm and hand. Several observations reported in the literature suggest four possible scenarios that explain the variation in skull form and hand and forearm proportions: 1) Multiple gunshot wounds will be expected in combat casualties; 2) Gunshot wounds in the skull, sometimes associated to blindfolds and/or ligatures, as evidence of executions; 3) Fatal injuries in association to dismemberment, as an intention to hide the corpse; and 4) Dismemberment without fatal injuries, as evidence of torture. This analysis provides a synthesis of the wounding patterns, constructing an epidemiological framework in the Colombian armed conflict, that contributes to the interpretation of the circumstances of death of the victims to ensure not only the accountability of perpetrators but to fulfill the needs of truth that demand their families.

Comparative and quantitative myology of the prosimian forearm and hand.

AKUA GYAMBIBI and PIERRE LEMELIN, Division of Anatomy, University of Alberta.

Several observations reported in the literature, namely the relative development of digital flexors and some intrinsic hand muscles in lorises and the dominance of the ulnar deviators in vertical clingers, are based partly on qualitative evidence. We aim to substantiate these observations through analysis of quantitative muscle data from a broad sample of strepsirrhine and tarsier species. The forearm and hand of 17 fresh-frozen specimens representing six families and 12 species were dissected. Selected muscles without their tendon(s) were weighed fresh and wet (48 hours in 10% formalin solution) to the nearest 0.01 g. Muscle weights were compared by limb compartment and functional group, as well as with the actual body mass of the specimens. Forearm muscle and body masses are highly correlated ($r = 0.98$) and scale with a slope of 1.18, which is slightly lower than the 1.23 slope reported by Demes et al. (1998) for hind-limb muscles of prosimians. The digital flexors and flexor muscle compartment of Nycticebus represent 46% and 55% of total forearm muscle mass, well within the range of other prosimians. Relative mass of the ulnar deviators of vertical clingers is lower than that of pronograde quadrupeds of similar size. In contrast, the mass of adductor pollicis of Nycticebus is greater compared to other taxa (52% of hand muscle mass), which correlates with the extreme thumb divergence of lorises. Despite lacking predictable quantitative variation, the deep flexor muscles of prosimians show important differences in tendinous arrangement that parallel differences in grasping behavior.

Funded by NSF SBR-9318750 and Natural Sciences and Engineering Research Council of Canada.

Computer-assisted detection of dental incremental growth structures.

SERGE HAENN1,2, SUSANNE K. BUTER1,2 and CHRISTOPH P.E. ZOLLIKOFER1,2. 1Anthropological Institute & Museum, University of Zurich, 2Department of Informatics, University of Zurich, Switzerland.

Historical analyses of dental thin sections are conducted to obtain various developmental data, ranging from enamel deposition rates and crown/root extension rates to estimates of an individual’s age at death. Conventional methods rely on manual counting and measurement of incremental growth structures found in dental hard tissues. However, these analyses are tedious to perform and are prone to observer errors, hence computational tools and algorithms are needed to facilitate the identification of growth structures, and to increase measurement reliability. Here we present an interactive software tool that supports researchers in annotating and counting incremental growth structures on digital images of dental cross sections. The software makes use of line-detection algorithms for fast automated identification of growth lines. These algorithms can be tuned to specific incremental structures such as daily increments and Retzius lines. Software-based feature detection yields a preliminary set of incremental lines, the position and orientation of which can be verified and/or adjusted via user interaction. The software comprises additional modules for metric analyses and for the management and permanent storage of structural annotations. The proposed semi-automated approach has been validated for daily incremental and Retzius line counts on human tooth crowns. The software tool is platform-independent and freely available to interested researchers.

Does treating intestinal helminth infections reduce smoking behavior? Results of a double-blind, placebo-controlled, randomized control trial among Central African foragers.

EDWARD H. HAGEN1, CASEY ROULETTE1, MARK REMIKER1, JENNIFER WILCOX1, BARRY S. HEWLETT1, ROGER J. SULLIVAN2 and DIDIER MONCHY3. 1Department of Anthropology, Washington State University, 2Department of Anthropology, California State University Sacramento, 3Institut Pasteur de Bangui, Central African Republic.

Humans, like other animals, might have an evolved propensity to consume plant neurotoxins as a defense against pathogens. Nicotine is a potent neurotoxin with proven efficacy against intestinal helminths. Hence, ‘recreational’ tobacco use might protect against helminth infections. Moreover, as a form of self-medication, individuals regularly exposed to soil-transmitted helminths might (unconsciously) increase tobacco consumption in response to infection, reducing consumption when the infection abates. To test this hypothesis, we conducted a double-blind, placebo-controlled, randomized control trial among Aka foragers of the Central African Republic, a tobacco-using population with a high prevalence of helminth infection yet little access to Western anti-worm medicines. Because most Aka men smoke and most Aka women do not, the study was restricted to men. Upon entrance in to the study, participants provided one stool sample and one saliva sample each day for three days. Worm burden was determined by estimating helminth eggs per gram of stool. Smoking levels were estimated by assaying salivary cotinine, a nicotine metabolite. Participants were then randomized in to two groups. The treatment group received a single, 400 mg dose of albendazole, a commercial drug effective against the most common species of intestinal helminths. The control group received a placebo of identical appearance. Participants and researchers were blind to group assignment. After one-to-two weeks, participants provided another set of stool and saliva samples. We predicted that, compared to the control group, the treatment group would exhibit reduced smoking behavior. This study was funded by the Washington State University Alcohol and Drug Abuse Research Program.

Testing the Neolithic demographic transition: a case study from Southeast Asia.

SIAN HALCROW and NANCY TAYLES. Department of Anatomy and Structural Biology, University of Otago.

Recent excavations at Ban Non Wat in Northeast Thailand provide a large...
sample (n=636) of human skeletal remains and long occupation covering two millennia from c1700BC. This offers a unique opportunity to assess the relationship between agricultural development and demography in Mainland Southeast Asia. Paleodemography has as one of its research foci the effects of the origin and intensification of agriculture. The general model of demographic change in one of dramatic population increase, identified as the 'Neoolithic demographic transition'. This is based on the premise that constraints on fertility were removed by the availability of a rich food supply. We present new demographic data from Ban Non Wat to test the hypothesis that the early agriculturalists in this environment did not experience a 'demographic transition'. Our data support this hypothesis, and instead propose an increase in infant mortality during the latest phase of Ban Non Wat and at the nearby contemporary site of Noen U-Loke, for a population increase occurring prior to the Iron Age'. This is consistent with archaeological evidence of major socio-political changes and geoarchaeological evidence of agriculture intensification in the region at that time.

Evaluation of methods for preserving fecal microbial DNA from the spider monkey

VANESSA HALE1, CHIA TAN2, TSANG LONG LIN3 and CHING CHING WU4. 1School of Veterinary Medicine, Purdue University, 2San Diego Zoo Institute for Conservation Research, 3Animal Disease Diagnostic Laboratory, Purdue University School of Veterinary Medicine.

Gut microbes play a critical role in the health of humans and animals. However, there have been few studies examining the host-microbe relationship in wildlife. Gut microbial populations can be obtained non-invasively via fecal samples and analyzed to assess the health of wildlife species. This study was undertaken to determine a practical approach to preserve monkey feces for microbial DNA extraction. Fecal samples were collected from spider monkeys (genes Ateles) at the Columbian Park Zoo, Lafayette, Indiana. Samples were stored at -80°C, -20°C, 4°C, in RNA Later at room temperature, and on Whatman FTA cards for a period of time prior to DNA extraction. Fecal DNA was extracted using the Qiagen QIAamp DNA Stool Mini Kit. Samples frozen at -80°C and -20°C and samples stored in RNA Later produced a high DNA yield (20-60μg) but were subject to significant reductions in DNA recovery over two months (p<0.01). Refrigerated fecal samples showed no significant difference (p>0.01) in DNA yield (average = 28.6 μg) over two months, but the sample modified after three weeks. DNA yield from FTA cards was low but consistent (average = 11.3μg) with little reduction in DNA recovery over two months. The amount of DNA extracted from the FTA cards was sufficient for 16S rRNA PCR and sequencing. The results indicated that FTA cards are a convenient and effective tool for preserving microbial DNA in monkey feces – particularly if fecal samples cannot be processed immediately. This study was funded by Morris Animal Foundation and Purdue University School of Veterinary Medicine.

How big is "giant"? New body size estimates for Protopithecus brasiliensis.

LAUREN B. HALENAR. City University of New York, New York Consortium for Evolutionary Primatology.

The purpose of this study is two-fold: First, to create statistically robust predictive regression equations for body mass, total body length, and body length from postcranial elements using a platyrrhine reference sample, data that does not exist elsewhere in the literature. Second, to apply those regression equations to the "giant" platyrrhine Protopithecus brasiliensis, a little-studied taxon represented by a nearly complete skeleton. Care was taken in selecting the reference sample and method of regression. Building on results of previous work with other platyrrhine families, different skeletal elements, different subgroups of the reference sample, and different regression models lead to different body size estimates with different standard errors and prediction errors. However, relatively tight clusters of estimates around 20 kg, total length of 1675 mm, and head and body length of 710 mm are obtained, placing the fossil in the size range of a large male baboon. While not quite as large as other platyrrhine estimates for the fossil, this new estimate is still approximately 150% larger than the largest living platyrrhines. Confirmation of its place in a "giant" size class should have a profound effect on reconstructions of various aspects of the paleobiology of Protopithecus. This research was made possible by NSF DDIG #0925704.

Mercury in bone protein vs. bone mineral as a biomarker of marine diet.

CARRIN M. HALFFMAN. Department of Anthropology, University of Nevada at Las Vegas.

Evolutionary theory suggests that biological parents will exhibit greater attachment and investment in their offspring than step-parents, with considerable research in humans consistent with this expectation. Here, we ask whether similar patterns hold among dog owners: will "biological" dog owners (who acquire a dog) exhibit differential involvement with their dogs compared with "step" dog owners (for whom someone else such as a spouse acquired the dog)? To address this question, we recruited 895 dog owners (711 women) aged 18-79 to complete a survey administered either in person or online. The survey contained basic sociodemographic information and items tapping five dimensions of human-dog dynamics: attachment, investment, punishment, anthropomorphism and general attitudes toward dogs. Preliminary results indicate that "biological" dog owners exhibit significantly greater attachment, investment, and more positive attitudes toward dogs than their "step" dog owner counterparts. No differences in punishment or anthropomorphism appeared between groups. These patterns remained even after adjusting for potential confounding variables such as owner's age, dog's age, and dog size. We discuss these findings with respect to the ways in which dogs increasingly serve a role as human "family members".
the proximate processes shaping these patterns of human-dog dynamics, and the significance of such cross-species behavioral investment for evolutionary theory.

Fluvial transport of human remains at Actun Tunichil Muknal, Belize.

CHRISTINE HALLING1, STEPHEN NAWROCKI1 and SHEKHAR GIBBS2.

1Maderas Rainforest Conservancy, 2Floridian Biology, University of Indianapolis; 3Department of Anthropology, Galen University.

The Mayan cave site of Actun Tunichil Muknal in Belize contains human remains that have been affected by complex geological and cultural processes. Previous examinations of ATM have provided detailed analyses of the skeletons and produced GIS-based maps, permitting spatial interpretations of artifact and bone distribution patterns. Underestimated until now is the degree to which water flow may have affected the current locations and distribution of the individuals independently of cultural factors. This study investigates taphonomic effects within ATM and their impact on the distribution of the human remains, particularly those effects related to water flow and sedimentation. Patterns of bone orientation, placement with respect to running water channels and pools, and non-random clustering suggest that fluvial transport has been and continues to be a significant complicating factor throughout the cave. Additionally, some individuals are located at low points or in basins that are positioned downstream in the direct line of water flow, demonstrating a characteristic pattern of bone orientation and compaction that is not consistent with a bundle burial or other deliberate placement by humans. In summary, it is clear that many bones have been displaced not by human action but by water action, potentially forcing us to re-examine our interpretations of Mayan rituals and death practices. Both behavioral and physical environment affect the distributional characteristics of the artifact assemblage. The effects of relevant taphonomic processes must be acknowledged and subtracted before we can hope to interpret the cultural meaning that may be embedded within the site.

Monkey census by vocalization: an effective approach.

ANDREW R. HALLORAN1,2, AMY B. MILIN1,2 and FALK HUETTMANN1,3.

1Maderas Rainforest Conservancy, 2Florida Atlantic University, Department of Anthropology, 3University of Alaska, Fairbanks. Wildlife and Biology Department.

Halloran et al (2010) detailed a census methodology for Cebus capucinus by analyzing the prosodic features of each individual’s alarm call and statistically grouping the calls together by variance. A cluster analysis gave the precise number of callers in each sample tested. In order to study the effectiveness of such an approach, this methodology was performed and compared with a concurrent traditional grid sampling methodology in the same area and over the same period of time. For our census, alarm calls were collected from a site at Ometepe, Nicaragua. These calls were analyzed for prosodic features such as duration, onset abruptness, and the first three spectral peaks. These results were standardized to equal distance units and then clustered by using Ward’s minimum variance cluster analysis. At this point a ratio was calculated, based on neighboring populations, to determine the number of callers to the number of group members. The ratio revealed the same number of monkeys in the area as the traditional census using method. Since the census by vocal analysis revealed the same number of monkeys as the traditional sampling method, we feel that vocal analysis could be a convenient, effective, and efficient means in counting an arboreal and transient primate species such as cebus capucinus.

Patterns of variation in development of the deciduous dentition of Macaca nemestrina.

EMILY HAMMERL1,2 and JOYCE SIRIANNI1.

1Department of Anthropology, University at Buffalo, 2University of Nebraska Lincoln.

Permanent dental development is frequently used as a proxy for somatic growth and development as well as in estimation of the pace of life in extinct species. Schedules of permanent tooth development are available for some primate species, but those of the deciduous teeth are few and far between. We know that later occurring developmental events are more variable and several authors have given convincing evidence that they are more influenced by species-level evolutionary diversity. In light of this, this research considers the pattern and timing of variation in the growth of the deciduous dentition in Macaca nemestrina (pigtailed macaque). Standardized lateral cephalograms were taken on a total of 144 male and female fetal and neonatal M. nemestrina ranging in age from 60 to 209 gestational days. The specimens in this sample were a result of timed matings and ages were determined from ±1 post-ovulatory day. A stage-based scoring system based on the Demirjian method was used to assess development of both maxillary and mandibular developing deciduous teeth. Summary statistics are generated to describe the overall pace of development. Patterns of variation are characterized by both a significant increase in the standard deviation of tooth development scores in the last third of fetal development as well as an increase in the spread of ages associated with individual tooth development stages including crown completion and root extension. Discriminant analysis shows sexual differences in development of dm1 from 130 to 140 gestational days, Wilks’ Lambda of 0.845 and p = .006. This research was supported in part by National Institutes of Health grants DE-02918 and RR-00166.

Hindlimb morphology and hip postures in catarrhine primates.

ASHLEY S. HAMMOND1, J. MICHAEL PLAVCAN2 and CAROL Y. WARD1.

1Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, 2Department of Anthropology, University of Arkansas.

Apes use more varied hindlimb positions than monkeys, particularly terrestrial species, in order to negotiate a complex 3D environment. Femoral and pelvic morphology both affect and reflect hindlimb positional adaptations, but the relative influence of particular aspects of hip and thigh morphologies on hindlimb postures is unknown, affecting our ability to use these features to interpret locomotor behavior in fossil taxa. This study uses articulated 3D polyhedral models of the pelvis and femur to simulate range of abduction during loading, and evaluates effects of different aspects of morphology on femoral postures. Continuous laser scan data of the pelvis and femur were collected for a large sample of extant primates, as well as fossil apes and hominins. Microscribe landmark data of intact pelvises were used to orient inanimate scans in 3D virtual space. Morphological variation and range of thigh abduction were quantified with PolyWorks software. Our results show significant variation in femoral postures, and thus knee position, among species for any given hip position. In particular, more suspensory apes have femora that are inherently more abducted in neutral hip positions than cercopithecids. Features most influential on femoral postures include neck-shaft angle, neck length, femoral head and acetabular orientation, fovea capitis position, and bicondylar angle. Acetabular fossa size and greater trochanter height were less significant. Results of our study provide a basis with which to evaluate locomotor adaptations in extinct primates. This study was funded by NSF, Wenner Gren Foundation, LSB Leakey Foundation.

Loris locomotor behavior in relation to skeletal morphology: disjunction between assumed mobility and utilized range of motion.

JANDY B. HANNA1, LAP KI CHAN2 and DANIEL SCHMITT3.

1West Virginia School of Osteopathic Medicine, Lewisburg, WV, 2The University of Hong Kong, Hong Kong, China, 3Duke University, Durham, NC.

An underlying assumption of many studies of primate functional anatomy...
is that skeletal morphology directly reflects an animal's movement patterns. For example, expansion of humeral head is assumed to relate to greater shoulder mobility, but Chan (2008) found that passive shoulder mobility of lorises with a relative expanded humeral head is the same or less than that of lemurs. This project explores this disjunct between anatomy and range of motion by quantifying active 3D shoulder motion during slow climbing and bridging in lorises. These data are used to test the hypothesis that active, rather than passive, shoulder mobility influences shoulder morphology of lorises. We videorecorded two subjects each of Loris tardigradus (LT) (0.175-0.205kg) and Nycticebus pygmaeus (NP) (0.420-0.516kg), bridging across substrate gaps of several widths and orientation. The shoulder and limb positions were digitized using Innovision Systems, Inc™ software to calculate excursion (flexion and abduction) of the humerus with respect to the trunk. These data were plotted on a polar coordinate system and compared to the passive range of motion reported by Chan (2008). The results showed that the excursion of the arm in both species is comparable to those used during arboreal quadrupedalism (LT mean = 100°; NP mean ≈ 125°) which is less than the range of motion predicted lorisid skeletal morphology (LT mean = 228°; NP mean = 171°). These results suggest that previous methods of extrapolating mobility from various shoulder features, including glenohumeral skeletal morphology, are problematic and argue for cautious functional interpretation of primate fossil material.

This study was funded by NSF BCS-0749314.

Teaching evolution in the anthropology classroom: the importance of examples relevant to human and non-human primate evolution.

DARCY HANNIBAL1 and MELISSA CHEYNEY2. 1Department of Anthropology, University of Oregon, 2Department of Anthropology, Oregon State University.

Evolution by means of natural selection is the foundational theory linking all life sciences and one of the few paradigms consistently represented in all four sub-disciplines of anthropology. It is essential, therefore, that students in any life science course attain a basic understanding of evolutionary theory, particularly as it pertains to humans. However, research indicates that many undergraduate students do not understand evolutionary theory any better at the end of a course than they did at the beginning. Students often continue to hold to various misconceptions of evolutionary theory which potentially contribute to the misuse of an inaccurate version of evolutionary theory and contribute to erosion of science literacy. While many instructors bemoan students who refuse to accept evolutionary theory, those who accept evolutionary theory, but do not realize that they misunderstand it, present a greater challenge. We test the use of a teaching method designed to address student misconceptions of evolution. We designed and administered an experimental lab to address misconceptions of evolution and matched pretest and posttest surveys to assess students misconceptions prior to and following the experimental lab. Unlike previous studies, the lab and surveys are specific to primate and human evolution for use in an anthropology course. Matched pretests and posttest surveys completed by 89 undergraduate study subjects were scored and analyzed using the paired sample t test procedure. Compared to previous studies, a greater percentage of students showed improved scores between the pretest and posttest. The difference between the pretest and posttest scores, however, is modest.

Non-metric trait variability expressed in the deciduous molars of chimpanzees and gorillas.

ANNA M. HARDIN and SCOTT S. LEGGE. Department of Anthropology, Macalester College, St. Paul, Minnesota.

Non-metric dental traits are a well-established tool for anthropologists investigating population affiliation and movement in humans. Nonetheless, similar traits in the great apes have received considerably less attention. The present study provides data on non-metric trait variability in the deciduous molars of great apes from museum context. Twenty-two traits are observed in the upper and lower deciduous molars in specimens of Pan troglodytes, Pan paniscus, Gorilla gorilla, and Gorilla beringei. Overall trait variability is assessed across the species. Pan troglodytes demonstrates the greatest number of variable traits (74.1%), whereas Pan paniscus has the fewest (51.9%). Five traits were found to be fixed as either always present or always absent across the study group. This study demonstrates the variability of non-metric traits in the deciduous molars of chimpanzees and gorillas. These traits could potentially be used in the same way that similar traits are in humans, namely group affiliation and population movements through time. Further, this study establishes scoring guidelines and methodology relevant to deciduous dental morphological characteristics found in the great apes, but not necessarily in humans.

This study was funded by a grant from the Paul Anderson Interdisciplinary Summer Research Fund and Macalester College.

Estimating the distribution of probable age-at-death from the dental remains of immature human fossils.

ASHLEY STINESPRING HARRIS, LAURA SICKELFORD and LYLE KONIGSBERG. Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL.

Moorerees, Fanning, and Hunt presented graphs of "mean attainment age" for ten permanent teeth (maxillary incisors and all mandibular teeth) and three deciduous teeth (mandibular canine and molars). The graphs presented in these articles have been widely cited, but often erroneously implemented to estimate age or to infer correlations in development between teeth. Since individual probit models using the logarithm of conception-corrected ages were used to create these attainment stages, this graphical information can be back-transformed into parameters for estimating age-at-death for dental remains from immature fossils.
For the current analysis, 358 points from tooth formation graphs in Moorrees, Fanning and Hunt were digitized using DataThief III, version 1.5. Specifically, the digitized points for each transition were conception-corrected and converted to the logarithmic scale. The sum of squares for the predicted points around the digitized points was minimized, resulting in median ages of attainment on a base 10 logarithmic scale at each formation stage for the teeth evaluated. These derived median ages of attainment can subsequently be used to estimate a probable age-at-death distribution for immature fossil specimens. These distributions are calculated two different ways: 1) using only a within-tooth variance and 2) using a total variance that includes a between-tooth component. For this study, sexual behaviors indicating the periovulatory period were presented using the parameters derived from the Moorrees, Fanning and Hunt studies and tooth formation is scored for 47 immature early modern humans and 19 immature Neandertals.

Variation in sexual strategies and paternity skew in wild black and white colobus monkeys (Colobus guereza).

TARA R. HARRIS1,2,3, STEVEN L. MONFORT2 and LINDA VIGILANT3.

1Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany, 2Smithsonian Conservation Biology Institute, Front Royal, VA, 3University of Minnesota, St. Paul, MN.

For most primates, little is known about the extent to which both male and female sexual strategies vary within populations, and how they interact to influence patterns of reproductive success. We combined observational, hormonal, and paternity data to examine female and male sexual strategies and paternity skew in multiple neighboring groups of wild guerezas (Colobus guereza) in Kibale National Park, Uganda. Female guerezas lack sexual swellings and, like many anthropoid primates, mate flexibly both during and outside of the periovulatory period, including well into pregnancy. We observed a wide range of variation in the reliability with which female sexual behaviors indicated the periovulatory period, the extent to which females displayed sexual behavior outside these fertile periods, and the extent to which they solicited and mated with multiple males. In most groups, though, primary males (i.e., the sole or highest-ranking males) had the greatest access to females and largely monopolized copulation. In accordance with these observations, the vast majority of infants we genotyped across eight unit- and multi-male study groups were sired by their groups’ primary males. By combining inferences from behavioral, hormonal, and paternity data, we conclude that interactions between differing female and male sexual strategies in guerezas may ultimately result in similar patterns of paternity skew. However, much sexual behavior in guerezas apparently has nonreproductive functions.

Seasonal variation in sexual segregation in spider monkeys (Ateles geoffroyi yucatanensis).

KAYLA S. HARTWELL1, HUGH. NOTMAN1,2 and MARY. S.M. PAVELKA1.

1Department of Anthropology, University of Calgary, Canada; 2Anthropology Program, Athabasca University, Canada.

Sexual segregation, the separation of males and females socially, spatially, or by habitat, has been documented and recognized as an important aspect of the sociobiology of many vertebrates (i.e. ungulates, bats, whales, and fish). However, it has not been quantified or systematically examined in any primate species. We investigated temporal and spatial sexual segregation in a population of spider monkeys in Belize. Using data collected over a 23 month study, we used the Sexual Segregation and Aggregation Statistic to test three hypotheses: 1) the sexes segregate, 2) the sexes aggregate, or 3) the sexes group at levels expected by random association. Spider monkeys live primarily in sexual segregated societies. We found that aggregation never occurred in this population. Significant segregation accounted for 65% of all months; however the degree of segregation varied monthly and between the two study years. Males and females associated at random during two periods of the year: May-June and December-January. We examined two possible ecological factors contributing to sex segregation and suggest that variation in monthly food availability and seasonal birthing peaks may contribute to these patterns. The separation of males and females has yet not identified as a factor underlying fission-fusion dynamics. Sexual segregation might reveal an important new source of variation in primate social grouping patterns.

This study was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) and research funds from Athabasca University.

Three dimensional evaluation of Neandertal facial features in the European and African Middle Pleistocene human fossil record.

KATERINA HARVATI1, JEAN-JACQUES HUBLIN2 and PHILIPP GUNZ2.

1Eberhard Karls Universität Tübingen and Senckenberg Center for Human Evolution and Paleoecology, 2Max Planck Institute for Evolutionary Anthropology.

The classification and phylogenetic relationships of the Middle Pleistocene human fossil record remains an intractable problem in paleoanthropology. Researchers have noted broad resemblances between European and African fossils from this period, suggesting a single taxon ancestral to both modern humans and Neandertals. Others point out ‘incipient’ Neandertal features in the European sample, and argue for their inclusion in the Neandertal lineage exclusively, following a model of accretionary evolution. We evaluated eight proposed ‘incipient’ Neandertal facial, neurocranial and basi-cranial traits: infraorbital shape / orientation; glabellar projection relative to the browridge; forward projection of the sagittal orientation of the face; juxta-mastoid eminence size; occipital plane convexity; mastoid process reduction; mid-facial prognathism; and pro-prim formation size. These features were captured using 3-D landmark and semi-landmark coordinates and analyzed as three separate datasets to maximize samples. A large number (n = 66) of Pleistocene hominins from Europe and Africa, and a comparative sample of seven widely defined modern human geographic populations was included in the analysis. The coordinates were superimposed using Generalized Procrustes Analysis and analyzed using mean configuration comparisons, principal components analysis and Procrustes distances.

Results show that a few of the traits examined follow the predictions of the Accretion Model and relate the mid Pleistocene European material to the later Neandertals. However, most showed Middle Pleistocene Europeans to be nearly identical to the African Middle Pleistocene samples until the Holstein period. We suggest that some commonly cited ‘incipient’ Nean-derthal features might instead repre-sent plesiomorphic traits.

This study was funded by the Marie Curie Action grant MRTN-CT-2006 019564 ‘EVAN’ and the Max Planck Society.

Consequences of contact: evaluation of health patterns using enamel hypoplasias among the Colonial Maya of Tipu.

AMANDA R. HARVEY. Department of Anthropology and Sociology, The University of Southern Mississippi.

The Colonial Maya population from Tipu was analyzed to investigate health changes associated with European contact. Located in western Belize, Tipu was occupied from 1541-1704, and consists of a Spanish mission church with 588 interments. Enamel hypoplasias are used to explore growth disruptions resulting from non-specific physiological stress. Standard methods of scoring (Buikstra and Ubelaker 1994) were employed to assess frequency, severity, color, and type of episode in the permanent anterior dentition. For analysis,
individuals were placed into age groups of 6-17, 18-35, 36-50, and 51+ years. The population was also considered for differences by sex and tooth type. Results showed a mean of 1.28 hypoplasias per tooth with canines averaging more episodes than incisors and maxillary teeth more than mandibular. Females displayed approximately 0.33 more lesions per tooth than did males, and those dying as juveniles had only slightly more episodes than those surviving to adulthood. Over 90% of the episodes recorded were of mild severity. No differences in patterns of severity by sex were noted, and juveniles demonstrated a higher frequency of moderate and severe hypoplasias. Mean age at formation was consistent across sex and age groups with most forming from 0-3 years on incisors and 4-6 years on canines. These data suggest that overall the population at Tipu was relatively healthy despite European contact, which is also reflected in low frequencies of other indicators, such as anemia and infection. Similarly, there was not extensive evidence of epidemic disease, in effect showing adaptation despite notable culture change.

Early modern human footprints from Engare Sero, Tanzania

KEVIN G. HATALA1,2, BRIAN G. RICHMOND1,2, WILLIAM E. H. HARCOURT-SMITH3,4,5, VINCENT ROSSI1, ADAM METALLO1,2, CYNTHIA M. LIUTKUS1, BRIANA L. POBINER1, HEATHER DINGWALL2, GODFREY OLLE MOITA2 and JIM BRETT10.

The Engare Sero footprint assemblage contains trails and some isolated prints of multiple individuals walking on a surface of wet volcanic ash close to 150 m² in area over a relatively short period of time. Preliminary analyses of the footprints show that the foot morphology reflected in the prints is anatomically modern in form, and that some of these individuals were moving at a comfortable walking pace, while others were almost certainly running. The walking footprints show stride lengths that fit well within those of the Dassenech experimental group. Based on their sizes, the footprints were likely made by individuals ranging from adults to children and provide new data on group composition in early modern humans. This study was funded by National Geographic, grant number 8748-10, and the National Science Foundation, grants BCS-0924476 and DGE-0801634.

Comparative evidence for the evolution of aging in our lineage: humans vs. chimpanzees.

KRISTEN HAWKES. Department of Anthropology, University of Utah, Salt Lake City.

As products of a common evolutionary history we share many aspects of our age-specific schedules of development, reproduction, and senescence decline with the other great apes. But some aspects of these schedules clearly distinguish humans. Hypotheses about what happened in our evolution benefit from attention to both similarities and differences between the life histories of humans and the other apes. Here I review research regarding the mapping of aging rates in humans and chimpanzees, including mortality and fertility schedules, ovarian follicular stocks, and circulating levels of adrenal steroids. The comparisons focus on females because life history tradeoffs differ between the sexes, and menopause has been of particular interest, drawing explicit consideration in classic contributions to evolutionary theories of senescence. In addition, conflicts of interest that arise from female tradeoffs have been persuasively linked to the evolution of distinctively human cognitive and social capacities.

Deep genealogy, Neandertal ancestors, and our accelerating evolution.

JOHN HAWKS. Department of Anthropology, University of Wisconsin-Madison.

Anthropologists have long confused aspects of these schedules clearly distinguish humans. Hypotheses about what happened in our evolution benefit from attention to both similarities and differences between the life histories of humans and the other apes. Here I review research regarding the mapping of aging rates in humans and chimpanzees, including mortality and fertility schedules, ovarian follicular stocks, and circulating levels of adrenal steroids. The comparisons focus on females because life history tradeoffs differ between the sexes, and menopause has been of particular interest, drawing explicit consideration in classic contributions to evolutionary theories of senescence. In addition, conflicts of interest that arise from female tradeoffs have been persuasively linked to the evolution of distinctively human cognitive and social capacities.

American Journal of Physical Anthropology

AAPA ABSTRACTS
increase. Fat and protein intakes increased by more than 65% and 75% respectively. The prevalence of NCDs has risen substantially in Samoa over the last 30 years. Modernization of the traditional diet and a concurrent decrease in physical activity resulted in chronic positive energy balance and a greatly increased risk of obesity and other NCDs.

This study was supported by the U.S. National Institutes of Health Grant R01-HL093093.

Eye size and locomotion: A test of Leuckart's Law in mammals.

AMBER N. HEARD-BOOTH and E. CHRISTOPHER KIRK. Department of Anthropology, University of Texas at Austin.

Leuckart's Law proposes that animals capable of achieving fast locomotor speeds require large eyes in order to enhance visual acuity and avoid collisions. Leuckart's Law is invoked to explain the relatively large eyes of some birds, but remains untested in non-avian vertebrates. The goal of this study is to test the relationship between eye size, locomotor speed, and locomotor agility in mammals.

Data on axial eye diameter (AD), maximum running speed (MRS), and locomotor agility (LA) were collected from the published literature for 86 species from 10 mammalian orders. In mammals generally (n=50 species), AD is significantly positively correlated with MRS (Pearson's r=0.81, p<0.01). Partial correlations further show that MRS explains 36% of the variance in residual AD when body mass is held constant. Speed data are limited for primates, but ranks of LA are available for 36 primate species. Although mean AD is shortest for "slow" and longest for "fast" primates, we found no significant difference in AD between LA categories (Kruskal-Wallis H=0.35, p=0.99).

Our analysis supports the expectations of Leuckart's Law by demonstrating that faster-moving mammals tend to have larger eyes than slower-moving mammals. However, we found no significant relationship between eye size and locomotor agility in primates. This latter result does not necessarily contradict Leuckart's Law. We therefore conclude that maximum speed of locomotion is one of several factors (e.g. activity pattern, diet) influencing the evolution of eye size in mammals.

A study of modified teeth from archaeological sites in Illinois: recent and archival examples.

The intentional modification of dentition (unlike tattoos, scarification, piercings, hairstyles, and clothing) leaves tangible evidence of cultural behavior observable by bioarchaeologists. The meaning behind these modifications remains elusive, whether an enhancement of beauty, a mark of status or ethnicity, or a symbol of social or religious importance marking a rite of passage or of office. The majority of known culturally modified teeth in North America are from Mississippian sites located in the American Bottom region of Illinois near Cahokia, the preeminent Mississippian cultural center in eastern North America. A number of additional examples have recently been identified from current archaeological work and curated museum collections. Good temporal and contextual control for these teeth provides much needed new information on the frequency and geographical distribution of modified teeth in Illinois. This poster describes variations in style and the phylogenetic appraisal of morphological evolution and taxonomic affinity. Integration and modularity are developed into a new method of identifying these two modules.

Convergent evolution of diurnal amniote eye design and visual acuity in anthropoid primates.

CHRISTOPHER HEESY. Department of Anatomy, Midwestern University.

Many diurnal amniote taxa possess an eye design hypothesized to be optimized for high visual acuity. This design includes a relatively long axial diameter of the eye, which correlates with increased focal length, relative to a smaller corneal diameter. However, non-anthropoid mammals, regardless of activity pattern, appear to differ from other amniotes in retaining an eye design optimized for high visual sensitivity, with a shorter axial length of the eye relative to the corneal diameter. Non-anthropoid mammals, regardless of activity pattern, appear to differ from other amniotes in retaining an eye design optimized for high visual acuity and is typically restricted to scotopically adapted amniotes. Only anthropoid primates are known among mammals to have evolved proportions of the eye similar to non-mammal diurnal amniotes. However, the relationship between eye shape and visual acuity has yet to be evaluated within non-primate mammals. Also, the degree to which anthropoid eye morphology diverges from the typical diurnal amniote eye design and visual acuity requires evaluation.

Data were compiled on corneal diameter and axial eye length as well as on behavioral and anatomical estimates of visual acuity in mammals and birds. Both anthropoid and birds are statistically separated into nocturnal and diurnal groups by measurements of axial diameter and estimates of visual acuity. Non-anthropoid mammals (including strepsirhines, and possibly have re-evolved an eye shape more typical of the general amniote pattern.

Cranial non-metrics and macromorphoscopics in OsteoWare.

JOSEPH T. HEPNER. Joint POW/MAIA Accounting Command, Central Identification Laboratory, Hawaii.

Non-metric and macromorphoscoic traits are often fraught with error introduced during the data collection process. One of the unique aspects of OsteoWare is a suite of traditional cranial non-metric traits, in addition to a series of novel macromorphoscoic traits used by forensic anthropologists assessing ancestry. Collecting cranial non-metric data in OsteoWare is an intuitive, menu-driven process, a feature designed to decrease observer error and idiosyncratic interpretation of trait states. Individual character states for each macromorphoscoic trait are clearly defined and illustrated with line drawings focusing on the region of interest. The end user of OsteoWare will find each of these features to be a convenient and practical method for collecting cranial non-metric and macromorphoscoic trait data. This presentation outlines the criteria for collecting cranial non-metric and macroscopic trait data. Case studies and example material will be presented from the Smithsonian Institution collections to demonstrate the efficiency and effectiveness of these two modules.

Exploring integration and modularity of the Papio hamadryas ursinus cranium.

JASON HEMINGWAY. School of Anthropological Sciences, and Institute for Human Evolution, University of the Witwatersrand, South Africa.

Integration and modularity are fundamental concepts key to understanding morphological evolution and taxonomic diversification. As skeletal morphology forms the basis for systematic description and the phylogenetic appraisal of extinct taxa, there has been an increased interest in these concepts within the paleoanthropological community. In the current study, geometric morphometric methods were used to...
investigating modularity in an ontogenetic sample of Papio hamadryas ursinus cranial without their a priori designation. Forty-three 3D landmarks were obtained from each specimen. After superposing the landmark configurations using a generalized partial procrustes analysis, orthogonally projected to the tangent plane, the effects of allometry and sexual dimorphism on cranial variation were removed by multivariate regression. As modules are internally integrated regions that are relatively independent from each other, co-variation between cranial modules should be weaker than other random partitions of the cranium. The 2-block partial least squares RV coefficients for all possible pairs of spatially-contiguous landmark subsets were then calculated and significance determined post hoc. The nasal-premaxillary-maxillary region and posterior cranial vault were found to be modular in nature and, with the exception of areas of contact, statistically independent from one another. The same can be said of the cranial vault and anterior occiput. The maxillary portion of the face and anterior occiput, on the other hand, displayed a strong degree of integration likely reflecting the involvement of the latter in lower facial development and positioning.

This study was funded by the NRF and the Palaeontological Scientific Trust.

To the West: A dental morphology investigation of gene flow between populations of the Iranian Plateau and the macro-Mesopotamian interaction sphere during the last three millennia B.C.

BRIAN E. HEMPHILL. Department of Physics, Geology and Anthropology, California State University, Bakersfield.

Despite archaeological evidence at the Bronze Age site of Tepe Hissar in northwestern Iran of contact with populations of south Central Asia and the Indus Valley, biological evidence of gene flow between populations of these regions was found to be starkly absent (Hempill 2010). Such results suggest either inter-regional gene flow was absent, or that the Tepe Hissar population experienced gene flow with commercial partners of other regions. Hasanlu, located in northwestern Iran astride a crossroads leading to Mesopotamia, contains archaeological evidence of extensive contact with Mesopotamian populations. This research tests whether the inhabitants of Tepe Hissar experienced gene flow with populations involved in the macro-Mesopotamian interaction sphere found in northwestern Iran. This investigation is based on assessment of 17 tooth-trait variations scored in accordance with the Arizona State University Dental Morphology System in a sample of 136 individuals recovered from Tepe Hissar, 70 individuals recovered from Hasanlu, and 2,241 individuals of 22 samples of prehistoric and living Central Asians, Pakistanis, and peninsular Indians. These specimens were examined with hierarchical cluster analysis, neighbor-joining cluster analysis, multidimensional scaling and principal coordinates analysis.

Results confirm that Tepe Hissar individuals as possessing closest affinities to inhabitants of Hasanlu. By contrast, Tepe Hissar individuals exhibit little to no affinities to prehistoric Central Asians or to prehistoric or living individuals from the Indus Valley and peninsular India. Hence, it appears commercial contacts between Tepe Hissar and populations to the west did result in significant gene flow, while trade contacts across the Iranian Plateau did not.

Dental evidence bearing on morphological dating of the LBI specimen.

MACIEJ HENNEBERG1, JULIA GRESKY2, ROBERT B. ECKHARDT3 and STEFAN FLOHR2. 1Biological Anthropology and Comparative Anatomy Unit, University of Adelaide, Australia, 2German Archaeological Institute, Berlin, Germany, 3Laboratory for the Comparative Study of Morphology, Mechanics and Molecules, Department of Kinesiology, The Pennsylvania State University, 4Department of Biology, University of Hildesheim, Germany.

The dating of the skeleton LBI from Flores, Indonesia, is less certain than suggested in the literature. Dates from the surrounding deposits are contradictory. Direct dating of the bones has not been performed. Thus, the age of LBI should be considered by other dating techniques. Morphological dating has been applied in palaeoanthropology and is commonly used in archaeology. The aim of the present study was to test whether the condition of the LBI dentition compels the view that the individual represents a member of a new species, or is more consistent with membership in a regional population of extant Homo sapiens. The new evidence provided here comprises observations on the original specimens and photographs of the dentition.

Tooth dimensions are consistent with modern humans. Tooth morphology exhibits numerous concordances with the extant Ramapithecus. The presence of den tal canals in LBI (lower premolars and a canine) indicates a low probability of belonging to a hunter-gatherer society. Dental attrition of LBI is of a type more common in agricultural societies than among hunter-gatherers, the differences in attrition between molars are small. The ante mortem loss of lower right P4 without alterations of the adjacent structures suggests a surgical extraction. Evidence of a Class II restoration with radiolucent material in the lower left M1 has been disputed, but not refuted by an independent examination that until now has been precluded by selectively restricted access to the specimen. Dental modifications would strongly favor an affiliation to a modern society with dental surgery techniques.

The relation between standard error of the estimate and sample size of histomorphometric aging methods.

CHERYL HENNIG and DAVID COOPER. University of Saskatchewan.

Histomorphometric aging methods report varying degrees of precision (measured through standard error of the estimate or SEE). These techniques have often been developed on variable sample sizes (n) and the impact of this parameter on SEE is poorly understood. This paper explores the relationship between n and SEE through a review of the literature (abstracts, articles, book chapters, theses, and dissertations) and a mathematical simulation. Thirty-eight studies reporting n and SEE in years were included in the current study. Reported SEE values were highly variable ranging from 2.58 to 16.00 years (Mean: 8.51; Stdev: 3.56). To examine the probabilistic relationship between n and SEE we generated a simulated population of 50,000 individuals where histomorphometric 'ages' were assumed to reflect normally distributed random error about chronological age. SEE values were calculated for randomly selected subsamples of varying size. This simulation revealed that in large samples (>100) SEE converges on the level of variation present in the population; however, in smaller samples SEE becomes increasingly variable. In general, this pattern matched the observed pattern of published SEE values. While numerous sources of variation exist between different methods, the impact of insufficient sample size should not be overlooked. Notably, while SEE values as low as 2.58 years have been reported, studies which exceed 150 individuals report a mean SEE value of 11.05 years (Stdev: 1.91). Meaningful comparison of the precision of different approaches requires larger samples than are frequently used and would ideally be based upon standardized samples.

Plant foods and the dietary ecology of Neanderthals.

AMANDA G. HENRY1,2. 1Center for Advanced Study of Hominid Paleobiology, Department of Anthropology, The George Washington University, 2Human Evolution, Max Planck Institute for Evolutionary Anthropology.

Previous research has suggested that Neanderthals had a narrower diet than
did early modern humans, and lacked social and technological advances (like sexual division of labor, and use of projectile weapons) that would have permitted a wider diet. These dietary differences were thought to have contributed to their disappearance. However, this model for Neanderthal behavior is based primarily on data from animal foods. Plant foods are known to be vital parts of modern forager diets, and usually represent women’s contribution to diet. I have examined plant foods in the diets of Neanderthals and early modern humans by identifying the plant microfossils (starch grains and phytoliths) recovered from the dental calculus and stone tools from several populations in Europe, the Near East, and Africa. The results suggest that these two species consumed plant foods in similar numbers, suggesting that they used similarly low-ranked foods like USOs and grass seeds. Environmental differences affected plant food consumption more than species allocation did. There appears to be some intensification of Neanderthal plant use after 50ka. These data suggest a more complex picture of Neanderthal dietary ecology than previously drawn, and that the complex relationship between technology, social behavior and food acquisition strategies among Neanderthals must be better explored.

This study was funded in part by NSF IGERT grants, a Wenner-Gren Dissertation Fieldwork grant and a Smithsonian Predoctoral Fellowship.

Maxillary suture aging: a revision of the visual method for estimating skeletal age of adults.

SAMANTHA M. HENS. Department of Anthropology, California State University Sacramento.

Age determination from human skeletal remains is an important biological parameter in both forensic and palaeographic contexts. Cranial sutures, while frequently applied, show low reliability for estimating age at death of adults. Maxillary sutures have seldom been tested after their original introduction by Mann and coworkers (J Forensic Sci (1991) 36:781-791). This study presents the results of a revision of the original maxillary suture method on a large sample (n=483) of known sex and age from the Human Osteological Collection at the Department of Human Anatomy, University of Torino, Italy. Palate sutures were scored in five regions that were combined to form a summary score from which an age at death estimate was obtained. Results indicate significant differences in suture closure between males and females. Males exhibit stronger correlations with age for all indicators. Correlations are similar to, or stronger than, those reported for other age estimation methods from the pelvis. However, age ranges are wide in both sexes. Several summary scores were found to have similar mean ages, ranges and distributions. These were grouped together to produce four palatal suture stages that show highly significant age differences. Although the sutures indicate only broad stages of life, they contribute helpful information to age-at-death estimation, especially for older individuals where other methods are less effective. The research was funded in part by a grant to the author from the Office of Research and Sponsored Projects, California State University Sacramento.

A revised method for sex identification and age estimation at death. Indicators for the study of immature skeletal remains.

PATRICIA OLGA HERNANDEZ and MARIA EUGENIA PENa. Escuela Nacional de Antropologia e Historia, INAH, Mexico.

The study of past populations emphasizes the need for information on living conditions of children given their vulnerability under poor hygienic and health environments that characterized most of the earlier populations which result in differential mortality among groups. However, the study of that segment of the skeletal samples was prevented by technical and methodological difficulties faced on assigning sex in children and making and accurate estimate of age at death among for ages under seven or eight years. The purpose of this paper is to show the application of a methodology recently developed at INAH (Mexico) to identify sex based in morphological features from ilion, skull and mandible. The results were confirmed both by a statistical procedure, as discriminant functions and DNA analysis. The age estimate was done by dental and cervical vertebrae indicators, the latter developed from a sample of contemporary groups and adjusted to skeletal remains. The study sample includes 184 subadult skeletons from San Gregorio Atlapulco, Xochimilco osteological series, dated for the beginning of the Colonial period. This study was funded by the Council of Science and Technology CONACYT, grants No. 53129 and 53252.

Use of auditory and olfactory signals in night monkeys (Aotus nancymaeae).

JAMES P. HERRERA1,2, LINDA L. TAYLOR2 and SIAN EVANS5. Interdepartmental Doctoral Program in Anthropological Sciences, State University of New York at Stony Brook, 2Department of Anthropology, University of Miami, FL, 3DuMont Conservancy for Primates and Tropical Forests, Goulds, FL.

Communication is a key element in social behavior, and theory suggests signals modify the behavior of other individuals. Some primates are reported to emit distinct communicative signals in well defined behavioral contexts. Night monkeys (Aotus sp.) are secondarily nocturnal, having evolved from a diurnal ancestor. In contrast to most other nocturnal primates, night monkeys travel and forage as cohesive family groups. We predict that night monkeys use vocal and olfactory signals in specific behavioral contexts to communicate clearly with group members in the dark. We collected data on the frequency of vocalizing and scent-marking on three species of night monkeys (A. nancymaeae) at the DuMont Conservancy. We recorded continuous focal animal behavioral data on 20 males and 13 females. We analyzed the behavioral contexts in which signals were produced using 1-tailed tests. We found that signals were given in specific contexts more frequently than predicted by chance (χ² tests). Individuals peep, chuck and scent mark while moving around the enclosure and engaging in affiliative interactions with group members (71-93% of occurrences, p < 0.001). Trills were emitted while feeding (81-87%, p < 0.001). Males hooted while perched and scanning their surroundings, followed by affiliative interactions with group members (70%). Night monkeys also concatenate vocal signals and emit combinations in specific contexts. Our results suggest that night monkeys have specific vocal and olfactory signals that may facilitate group travel, cohesion and feeding. Having non-visual signals for such information is prevalent in other primates, but may be especially important for communication at night. This research was supported in part by an NSF GRF, Turner Fellowship and AGEP Scholarship (JPH).

Reconstructing hominin and mamalian evolution by combining palaeomagnetic, uranium-lead and stable isotope analyses on speleothems from cave deposits; examples from the Plio-Pleistocene of South Africa.

ANDY I.R. HERRIES2, ROBYN PICKERING2, PHIL HOPLEY4,5 and HAZEL READE2. 1UNSW Archaeomagnetism Laboratory, Institute of Archaeological and Palaeoenvironmental and Anthropological Studies, Soms, University of New South Wales, Australia, 2Geomagnetism Laboratory, Oliver Lodge, University of Liverpool, UK, 3University of Melbourne, Australia, 4Department of Earth and Planetary Sciences, Birkbeck College, University of London, UK, 5Department of Earth Sciences, University College London, UK, 6Department of Archaeology, University of Cambridge, UK.

The recent cross-correlation of multiple geochronological techniques, including
palaeomagnetism, uranium-lead, electron spin resonance and biochemistry has led to the ability to accurately date the southern African early hominin bearing palaeocave deposits. This has allowed the first accurate seriation of the southern African sites and hominin species for cross-correlation with eastern Africa. In many of the palaeocaves there are thick speleothem sequences ideal for stable-isotope analysis used for reconstructing palaeoclimate and palaeo-vegetational changes during the period when they formed. These deposits can now be directly dated using a combination of uranium-lead and palaeomagnetism. This work has also enabled the identification and direct dating of short geomagnetic field events that can be used in the future to more precisely confine the age ranges for the palaeocaves and hominins. A number of current multi-disciplinary work are presented from the sites of Makapansgat, Sterkfontein, Malapa and Hoogland.

Bioarchaeological investigations of Bronze and Iron Age burials from Mitrou and Tragana Agia Triada in central Greece.

NICHOLAS P. HERRMANN1, J. ROCCO de GREGORY1 and HILLARY SPARKE2. 1Department of Anthropology and Middle Eastern Cultures, Mississippi State University, 2Department of Anthropology, University of Alberta.

Recent bioarchaeological studies in central Greece have attempted to synthesize paleodemographic and health indicators from Bronze Age human skeletal samples. Archaeological excavations under the direction of Drs. Aleydis Van de Moortel (University of Tennessee) and Eleini Zahou (14th Ephorate of Prehistoric and Classical Antiquities, Lamia, Greece) at the site of Mitrou, located in East Lokris of central Greece, have produced a diverse burial sample dating from the Early Helladic to Proto-Hellenic. A series of osteological and demographic analyses from Mitrou presents data on 68 animal remains (fishes, bovids, caprines, canids and foals). The marking rates of the individuals (1) the consumption of terrestrial local food resources, and (2) the lack of regular consumption of fishes and C4-plants (Δ13C: −20.4 to −19.3‰; δ15N: 6.5 to 10.6‰; N=91). Therefore, this study revealed differences between the two funerary groups. The group (2) exhibits a wider isotopic variability and lower nitrogen values than the group (1), which could indicate a more opportunistic access to food items by the group (2). If one accepts that a limited access to animal proteins is linked to low social status, the funerary group (2) could be considered as the less wealthy people buried in the dedicated horse remains area. Social and/or cultural factors might be involved in the dietary distinctions observed between both funerary groups. This work was funded by INRAP.

American Journal of Physical Anthropology

Bronze to Early Iron Age populations in central Greece. Data presented from Mitrou and Agia Triada focuses on demography, oral health, and paleopathology. Results are compared to earlier osteological studies in the region as well as findings from numerous contemporaneous burial samples from across Greece.

Dietary and funerary practices of French Roman population: first isotopic evidence.

ESTELLE HERRSCHER1, SYLVIE KLIJESCH-PIJLOT1, CELINE BEMILL1 and SEBASTIEN LEPET2. 1UMR CNRS 6636, LAMPEA, Aix-en-Provence, France, 2INRAP Haute Normandie, Grand Quevilly, France, UMR CNRS 7209, Archeozoologie, Archéobotanique, MNHN, Paris, France.

Excavation of the Roman suburban necropolis of Eyrevex (1st-IVth c. AD) revealed two distinct funerary practices: (1) bodies buried in decubitus dorsalis as expected and well known for the period, and (2) bodies buried in various positions, associated with equid remains. Using stable isotope analyses on bo long collagen (δ13C, δ15N), this study aims to assess the relationships between dietary and funerary practices. In order to answer to this issue, 91 human were analyzed. Moreover, to define the local environment, analyses were also performed on 68 animal remains (fishes, bovids, caprines, canids and foals). Results highlighted (1) the consumption of terrestrial local food resources, and (2) the lack of regular consumption of fishes and C4-plants (Δ13C: −20.4 to −19.3‰; δ15N: 6.5 to 10.6‰; N=91). Therefore, this study revealed differences between the two funerary groups. The group (2) exhibits a wider isotopic variability and lower nitrogen values than the group (1), which could indicate a more opportunistic access to food items by the group (2). If one accepts that a limited access to animal proteins is linked to low social status, the funerary group (2) could be considered as the less wealthy people buried in the dedicated horse remains area. Social and/or cultural factors might be involved in the dietary distinctions observed between both funerary groups. This work was funded by INRAP.

The effects of infant presence on the rate of olfactory communication in female ring-tailed lemurs.

CATHRIONA HICKEY and M.TEAGUE O’MARA. School of Human Evolution and Social Change, Arizona State University.

Scent marking is a form of olfactory communication seen as individual advertisement. Chemical profiles are em-bedded with information that identifies the individual, her physical condition, including fertility status, and may be used to advertise (or conceal) the presence of an infant. As the profiles do not remain constant over time this study aims to investigate the effect infant presence has on the rate of female marking to better understand the role of olfactory communication in this social species.

Data were collected on seven social groups of ring-tailed lemurs at the Beza Mahafaly Special reserve, Madagascar from June 2009 through March 2010. In females where the infant survived the length of the study, females showed higher marking post-birth marking rates than during the pre-birth period. The marking rates of the individuals whose infants died during the study also varied significantly between pre- and post-mortality periods, with a peak in post-birth rates and a decline post-mortality. These results demonstrate a significant relationship between infant presence on marking rates of adult females. This may be due to a hormonal response associated with the presence of an infant and/or a time where social change within a troop is observed. This study gives us a better understanding into the role of olfactory communication, a method that is heavily dependent upon in this species. Future work will examine mechanisms that alter scent marking to better understand how genotype, pheromones and social environment interact in female olfactory communication.

Long bone cross-sectional shape and robusticity in mountainous and flat terrain bovids: implications for Neandertal locomotor behavior.

RYAN W. HIGGINS. Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore.

Neandertal tibiae are mediolaterally robust compared to those of anatomically modern H. sapiens. It has been suggested that their mediolateral (M-L) hypertrophy may result from higher levels of habitual M-L loading introduced by locomotion on rugged terrain. To investigate the effects of terrain type on bone cross-sectional geometry, this study present a large comparative sample of flat terrain (73 species) and mountainous (24 species) bovids to see to what extent terrain affects relative anteroposterior M-L rigidity and strength of the forelimb cannon bone (metacarpus). Linear bone dimensions at midshaft were obtained from the literature and used to estimate section moduli and second moments of area using a solid beam model. Average species body mass and robusticity in mountainous and flat terrain bovids: implications for Neandertal locomotor behavior.
terrain bovids, but with more pronounced increases in M-L rigidity and strength. Furthermore, using a specific test case, it was predicted that the only mountainous member of a flat terrain clade (Gazella) would have comparatively medially robust and robust bones. The prediction was confirmed. These findings suggest that M-L hyper-trough may be a morphological signal of mountainous environment inhabitation and that Neandertals may on average have spent more time on rugged, mountainous terrain than anatomically modern H. sapiens. Elevated habitual M-L bending stresses may be introduced on uneven terrain by an increase in laterally angled stepping motions and/or more variation in orientation of ground reaction forces on the feet during locomotion.

A comparative analysis of long bone diaphyseal robusticity in the Lake Mungo 3 skeleton.

ETHAN C HILL and ARTHUR C DURBAND. Department of Sociology, Anthropology, and Social Work, Texas Tech University.

Lake Mungo 3 (LM 3) holds considerable potential for our understanding of the earliest inhabitants of Australia. LM 3 was found in the Willandra Lakes system, an environment that has changed dramatically since the late Pleistocene. As such, LM 3 can provide information about skeletal adaptations to an ancient ecosystem. Further, LM 3 has been described as gracile based on cranial morphology but postcranial analyses of this skeleton indicate relatively high levels of robusticity. This morphological discrepancy has made a diagnosis of sex for LM 3 difficult. The present study will use cross-sectional measurements of the humerus, femur, and tibia from CT scans to address their questions of robusticity that can help inform diagnoses of sex as well as patterns of mobility. Properties of mechanical loading that were calculated include: cortical area, maximum and minimum second moments of area, and the polar second moment of area. These properties, standardized to bone length and body mass, measure compressional, tensile, bending, and torsional strength of long bone diaphyses. There are two purposes for carrying out this study. First, long bone robusticity generally adheres to a gradient of sexual dimorphism. If it can be shown that LM 3 falls higher on this gradient then a diagnosis of male sex for this skeleton would be supported. Secondly, long bone robusticity can provide a unique insight into foraging strategies used by inhabitants of ancient ecosystems. Through the examination of populations which differ in their subsistence strategies, patterns in diaphyseal robusticity emerge that can indicate different mobility patterns and subsistence strategies. Results indicate that LM 3 falls well within the male range of long bone robusticity in both the upper and lower limbs. The lower limbs of LM 3 also exhibit high relative robusticity, which indicates that this individual engaged in mobile, long distance foraging.

This research was funded by the Franklin Grant program of the American Philosophical Society.

The mechanisms that produce the defects of enamel hypoplasia.

HEATHER HILLENBRAND and MERCEDES OKUMURA. Department of Anthropology Kent State University, Department of Anthropology, Miami University, Department of Physical Anthropology, Cleveland Museum of Natural History, 2Department of Physical Anthropology, Sao Paulo, Leverhulme Centre for Human Evolutionary Studies, University of Cambridge.

Sex estimation of non-adult skeletal remains: which sexually dimorphic features are more reliable?

Elevated habitual M-L robusticity, which indicates that this specimen was engaged in mobile, long-distance foraging. This mechanism was later confirmed using a specific test case, which predicted that Neandertals may on average have spent more time on rugged, mountainous terrain.

This research was generously funded by the American Journal of Physical Anthropology.

American Journal of Physical Anthropology

163

AAPA ABSTRACTS

SIMON HILLSON and DANIEL ANTOINE. 1UCL Institute of Archaeology, University College London, 2British Museum, London.

Enamel hypoplasia is the term used to describe defective formation of enamel which results from disruption of enamel matrix secretion during development of the tooth crown. Such defects range continuously from a microscopic accretion of matrix layering up to deep furrows in which the enamel covering of the crown may be missing altogether. Epidemiological studies of living people have matched the defects to episodes of poor health during childhood and laboratory studies have shown that they occur in association with infection, fever and nutritional deficiency. The age at which the growth disruption occurs can be established from the position of the defect in the development sequence of the teeth. In bioarchaeology, the defects are seen as useful indicators of poor health in childhood but they are difficult to interpret because the mechanisms by which the different defect morphologies are produced are little understood.

Specimens from the Post-Medieval crypt at Christ Church, Spitalfields, in London display a range of hypoplastic defects in teeth from children which are little affected by wear and have very good preservation of microscopic incremental features in enamel. This provides an opportunity to study in detail the sequence of matrix secretion events shown by enamel increments during the formation of different types of defects. Prism cross striation counts and brown stripe formation can be established from the assemblage. Defect formation of enamel hypoplasia.

This study was funded by the Wellcome Trust (067257/2/02/Z).

Mother's milk and commensal gut bacteria: what we know and what we need to find out.

KATIE HINDE, LING JIN and LIN TAO. 1Brain, Mind, & Behavior Unit, California National Primate Research Center, University of California Davis, 2Nutrition Laboratory, Smithsonian National Zoological Park, 3Department of Oral Biology, College of Dentistry, University of Illinois at Chicago.

Mother's milk not only provides the energy for infant somatic growth and behavioral activity, but also supplies constituents, such as oligosaccharides, that influence the establishment of com
The final step of osteological documentation includes the composition of a summary report, or paragraph. The Osteoware Summary Paragraph module contains selectable buttons to import components from the following modules: Skeletal Inventory, Age and Sex, Taphonomy, Pathology descriptions, Dental observations, and Cranial Modification, and provides the ability to edit and spell-check the overall composition. This presentation will demonstrate how to use Osteoware to request and manage photographic and radiographic documentation, how to use the PENDING option, and how to compose a summary paragraph. Case studies will be included from the National Museum of Natural History collections. Osteoware is supported by grants from the National Center for Preservation Technology and Stewardship (NCPTT), National Park Service, and the Smithsonian Web 2.0 grant.

A preliminary study on locomotor kinematics of semi-wild Assamese macaques (*Macaca assamensis*) in northern Thailand.

EISHI HIRASAKI1, SUCHINDA MALAIYAVITHONNOD2, and YUZURU HAMADA3. 1Kyoto University, Japan, 2Chulalongkorn University, Bangkok, Thailand.

The global goal of this project is to non-invasively study primate locomotion in wild environment using the advanced apparatus and techniques. In this preliminary study, as the first step, we tried to develop the methods for such measurements in a wild environment. The Assamese macaques (*Macaca assamensis*) at Wat Tham Pla (Tham Pla temple) in northern Thailand were chosen as the subjects because they are originally wild, but are living around the temple areas invaded by tourists. We recorded their positional behavior by using two video cameras, and estimated the kinematic parameters during terrestrial locomotion in this study. Preliminary results revealed that the Assamese macaques walked with more retracted hind limbs and more protracted forelimbs as compared with the Japanese macaques. Consequently, duty factor, which is a measure of stability, was significantly larger in the former species. The Assamese macaques mostly used diagonal sequence gait, but sometimes showed lateral sequence gait. The hands were used in both digitigrade and semi-palmarigrade postures, and were more abducted than those of the Japanese macaques. We hypothesize that these features may be related to their unique locomotor behavior, cliff-climbing. Kinematic analysis in a semi-wild environments still has some difficulties that have to be addressed (e.g., relatively low accuracy, difficulty in calibrations etc.), but constitutes one future direction in the field of primate locomotion studies, given its tremendous potential. Such studies do not produce immediate results, but are still worth doing, and it is necessary to accumulate data steadily.

GIS Spatial Analysis of an Oldowan “living floor” site, FxJj20 AB.

SARAH HLUBIK and JOHN W.K. HARRIS, Rutgers University.

GIS Spatial analysis of the FxJj20 AB site, on the Karari Escarpment in Koob Fora, Kenya, suggests clustering of stone artifacts and bone indicative of activity loci within a much larger site, consistent with the idea of a “living floor”. The 2010 excavation season yielded a high density of artifacts and bone fragments, as well as numerous samples of discolored earth. Included in these finds were small microdebitage artifacts, with maximum dimensions of 5 mm or less, which display no observable orientation, and indicate that the site, is primary context, and was subject to little, if any disturbance. The presence of microdebitage is unique to sites of this age and allows for intrasite analysis of activity areas. Discolored earth has been used by some researchers to indicate the presence of fire on ancient sites and samples from this year’s excavation will be analyzed and will report on preliminary results of the results. GIS analysis has been used by other researchers to indicate the presence of ‘phantom hearths’ by identifying loci of activity around central areas where few to no artifacts are found. Analysis of the original 1973 excavation and current excavation together will provide the opportunity to evaluate FxJj20 AB for the presence of these anomalies in the record. This site will provide insight into the activities associated with tool manufacture, food procurement and occupation and use of the landscape over time. This research was funded in part by the Center for Human Evolutionary Studies, Rutgers.

“The On the Same Page” at UC Berkeley, genetic testing our incoming students.

LESLEA J. HLUSKO, Human Evolution Research Center, University of California Berkeley.

The “On the Same Page” program at the University of California Berkeley is designed to provide all incoming students with a common experience. For the fall of 2010 the common experience was “Bring Your Genes to Cal,” an opportunity to explore the theme of personal medicine through a program designed by the Dean of Biological Sciences and Professor Jasper Rine. Each in-coming student received a saliva kit and a consent form; over 700 of the
5,000 new students mailed in a sample of their genetic material. Each sample was tested for allelic variation of genes that influence how the body uses folic acid and metabolizes lactose and alcohol.

Controversy over this program was immediate and extensive. The program was designed and implemented by faculty from the Department of Molecular and Cell Biology with no input from faculty in other departments. Much of the controversy centered on ethical issues, as students were asked to provide genetic material prior to being given a chance to learn about genetic testing, the ethical and psychological implications, or the evolutionary context in which such variants evolved. In August, the California Department of Public Health ruled that the projectantor of HHO for anthropoid primates and required that the University use a licensed clinical laboratory rather than process the genetic data on campus. Due to financial concerns the University decided to only provide the results in aggregate rather than individually. During this symposium I will report on how this program unfolded over the fall semester.

Metabolic rhythms in haplorhine and strepsirrhine primates.

RUSSELL T. HOGG1, LAURIE R. GODFREY2, GARY T. SCHWARTZ3, and TIMOTHY G. BRO MAG4. 1Department of Pathology and Anatomical Sciences, University of Missouri, 2Department of Anthropology, University of Massachusetts-Amherst, 3Institute of Human Origins & 4School of Human Evolution and Social Change, Arizona State University, 5Department of Biomaterials and Biomimetics, New York University College of Dentistry.

Microstructural evidence from teeth and bone has recently been used to support the hypothesis that growth, metabolism, and reproduction – i.e., life history – are centrally regulated by a neuroendocrine rhythm known as the Havers-Halberg Oscillation (HHO). Many questions about HHO biology and its relationship to life history evolution remain. For example, studies have shown that body mass is a strong predictor of HHO for anthropoid primates, but it cannot explain the unusual HHO patterns of strepsirrhine primates. It is uncertain whether this results from phylogenetic differences in HHO regulation across major primate clades, or whether such differences are eliminated by application of more physiologically relevant predictor variables.

This study examines Retzius line periodicity (a proxy for HHO) gathered from histological sections of haplorhine and strepsirrhine teeth to provide insight into this question. Results for regressions of Retzius periodicity against body mass, brain mass, encephalization, and basal metabolic rate (BMR) show that for all primates, brain mass and BMR are the best predictor variables. However, strepsirrhines still differ in these two relationships with respect to haplorhines. This suggests that while brain mass and BMR are more physiologically appropriate variables for assessing patterns in HHO variation, phylogeny may still play a major role in governing how HHOs of species are linked to ecological forces. Results also suggest that relatively longer HHOs seen in larger-brained subfossil lemurs correspond with their relatively "slower" life history schedules, reinforcing the idea that HHO can influence the evolution of life history in response to specific ecological selection regimes.

This project was funded by NSF grants BCS-0622479 (RTH), BCS-0227338 and BCS-0563988 (LHG and GTS), and 2010 Max Planck Research Award (TGB).

Investigating early diagenesis: The qualitative preservation of collagen in bones after short interment periods.

NADIA HOKE, ANDREA GRIGAT, CLAUDIA MARTIN, CHRISTINA PANKRATZ and GISELA GRUPE. Department of Biology I, Anthropology and Biodiversity, Ludwig-Maximilians-University Munich, Germany.

Shortly after death, all body tissues, including bone and its components, inevitably undergo taphonomic changes that consequently lead to total dissolution of the dead body. Depending on multiple factors, such as burial context, temperature, soil pH, water balance, etc., decomposition is either favoured, causing faster alteration and loss of tissue, or delayed, resulting in a better preservation. Due to the complexity of factors contributing to the taphonomic fate of skeletal tissue in particular, diagenetic pathways are still not fully characterized and understood. Despite the fact that many authors emphasize the crucial role of the first years post-mortem in setting the course for long-term preservation or decay, little systematic research has been conducted in this field.

The aim of this study was to trace the initial bone collagen breakdown from the first years of interment up to later burial periods in order to investigate the mechanism of mineralized peptide degradation under varying soil conditions and the influence of inhumation time. Assessing the integrity of bone collagen is essential for various archaeological analyses, focusing on radiocarbon dating and stable isotope analysis to reconstruct dietary patterns of past populations.

We analyzed a set of long bones from two different cemeteries with burial times ranging from 8 to 60 and 90 to 150 years. Comparative amino acid analysis (HPLC) revealed a selective loss of certain amino acids, showing stronger coherence with soil properties than inhumation time. Histological features and collagen quantity proved to be unreliable markers for collagen quality.

KARA LEE HOLLOWAY1, RENATA J. HENNEBERG2, MIGUEL DE BARROS LOPESE and MACIEJ HENNEBERG1. 1Bilogical Anthropology and Comparative Anatomy Unit, University of Adelaide, Australia, 2Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.

Tuberculosis is a re-emerging disease and is a major problem in both developing and developed countries today. An estimated one third of the world's population are infected and almost two million people die from the disease each year. Bone lesions of active tuberculosis (TB) on 3-5% of active tuberculosis cases and can be used to diagnose the disease in ancient skeletal remains. A meta-analysis was conducted on 394 paleopathological tuberculosis cases from 180 sites in Germany and 90 sites in France to gather patterns of disease occurrence through time. The prevalence of bone lesions was found to significantly decrease over time (P<0.05). The distribution of bone lesions was found to change from mainly spinal in earlier time periods to include more cases in other regions of the skeleton (long bones, joints, hands, feet) in later time periods. This difference in distribution was evaluated using a Chi-squared test and found to be significant (P<0.01). These findings may represent the evolution of the relationship of host and pathogen over time, with the pathogen becoming less virulent but using more of the host's tissues to survive.

The LB1 endocast: un-adorned, un-smoothed, a replication study based on the original CT scan data.

RALPH HOLLOWAY1, TOM SCHOENEMANN2 and JANET MONGE3. 1Department of Anthropology, Columbia University, 2Department of Anthropology, Indiana University, 3Department of Anthropology, University of Pennsylvania.

An essential part of science is the process of replication. Thanks to our colleagues listed below and their Indonesian colleagues at ARKENAS in Jakarta, it has been possible for the authors to independently analyze the original CT scan data for the LB1 cran-
A zoologist’s perspective on the evolution of human ovarian aging: implications for women’s health in the postmenopausal age.

DONNA HOLMES. School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington.

Life expectancy has increased gradually over the course of human evolution—but it has doubled in industrialized societies since the early 1900s, resulting in much longer postmenopausal life spans for modern women. From a comparative biological perspective, human menopause may not require special evolutionary explanation. Midlife fertility loss followed by extended postreproductive life spans occurs in a wide range of other female vertebrates, and is an expected outcome of a finite ovarian reserve produced under particular developmental constraints. In industrialized societies, reproductive aging in women correlates clearly with other clinical aging syndromes such as increasing cardiovascular disease, some cancers, osteoarthritis, and sensory deficits. Intriguing questions remain concerning whether the postmenopausal life span is a human ancestral trait, an adaptation for life in extended kin networks, an artifact of cultural protections against ancestral mortality pressures, or a complex combination of these.

These questions can be addressed more incisively as anthropologists and biogerontologists begin a coordinated effort to obtain more extensive comparative clinical data, particularly a variety of traditional people. These data would ideally include functional measures and clinical predictors of disease, as well as reproductive measures, from midlife, older, and very old age classes. A refinement of scientists’ view of the menopausal transition, and a working knowledge of the ancestral physiological trade-offs inherent in our reproductive health, are both essential for addressing women’s health concerns over the course of the life span.

This work was supported by the Center for Reproductive Biology of Washington State University.

Diet and ontogenetic changes in human mandibular strength.

MEGAN HOLMES, CHRISTOPHER RUFF and EVAN SMITH. LO. Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore.

Mandibular size and shape are commonly used to infer masticatory load history in archaeological human populations and fossil hominins. However, several factors, including genetic programming and functional demands, influence growth and development of the human mandible into its resultant adult form. The degree to which these separate factors drive mandibular morphology is not yet clear. The goal of this study was to quantify and compare ontogenetic trends in mandibular corpus cross-sectional properties between two archeological populations representing distinct dietary habits.

Using bi-planar radiographs and a hollow asymmetrical beam model, strength and rigidity properties were determined in the mandibular corpus in Arikara (n = 42) and Tigara (n = 63) population samples. The Tigara sample represents an arctic population with a demanding dietary regime and robust adult mandibles compared to the Arikara. Ages, determined from dental eruption, tooth development, and epiphyseal closure, ranged from infancy to adulthood. To assess developmental patterns in mandibular strength between populations, residual values from polynomial lines fit through the pooled data set were compared using ANCOVA and independent t-tests.

If differential mechanical environments associated with population-specific masticatory forces drive mandibular form, then divergent growth trajectories should be present between the two populations analyzed here. Results of this study indicate that this is in fact the case for the majority of properties examined. This suggests that while certain morphological characters possess population-specific genetic predispositions, most differences are evident only after the initiation of masticatory demands, supporting developmental plasticity as a major factor in determination of adult mandibular form.
The metabolic cost of walking in Neandertals and Upper Paleolithic Europeans.

MARTIN HORA and VLADIMÍR SLÁDEK. Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague.

It was assumed that because of their shorter lower limbs and greater body mass Neandertals walked markedly less efficiently and economically than Upper Paleolithic Europeans which in certain conditions might play a role in Neandertal extinction. However, other morphological characteristics of Neandertals were proposed to possibly affect locomotor efficiency and economy such as relatively short tibia, posteriorly displaced tibial condyles, thick patella and long calcaneus besides lower limb length and body mass. In this study we aim to utilize all these morphological characteristics to estimate differences in locomotor efficiency and economy between Neandertals and Upper Paleolithic Europeans.

We used a recent biomechanical model of Pontzer et al. (2009) to estimate locomotor efficiency and economy of Neandertal and Upper Paleolithic European expectations. Being aware of the effect of posture on some variables employed in the model (moment arms of the ground reaction force) we developed a trigonometric model that determines the behavior of the moment arms of the ground reaction force during stance phase when given the body segments lengths and the joint angles which allowed us to control the effect of posture.

Our results suggest that Neandertals might use 4 percent less mass-specific energy (were more efficient) and 9 percent more absolute energy (were less economical) to walk a unit distance than Upper Paleolithic Europeans. Furthermore, assuming the same joint angles Neandertals would have shorter moment arms of the ground reaction force especially at the knee and ankle. This study was funded by the Charles University Grant Agency, grant number 168310.

Intra-specific scaling of hind limb posture in wild chacma baboons (Papio hamadryas ursinus): using field data to address typical lab-based questions.

ANGELA M. HORNER, BIREN A. PATEL, LOUISE BARRETT, and S. PETER HENZI. 1Department of Ecology and Evolutionary Biology, Brown University. 2Department of Anthropological Sciences, Stony Brook University. 3Psychology Department, University of Lethbridge.

Biewener’s (1989, Science) experimental data in non-primate mammals (0.04-280 kg) show that as size increases, mammals adopt more extended hind limb joints. An extended limb increases the effective mechanical advantage of anti-gravity muscles (e.g., quadriceps) thereby requiring less muscle force to maintain posture. Although some experimental data supports Biewener’s findings for primates, there are some inconsistencies. For example, Polk (2002, J. Exp. Biol.) and Young (2009, J. Exp. Biol.) found no significant correlation between body size and knee angle in adult cercopithecine monkeys (three species, six individuals, 4.1-24.2 kg), or in squirrel monkeys (six individuals; 0.218-0.535 kg; ontogenetic sample), respectively. These results may be related in part to small sample size ranges and/or too few individuals sampled in both studies. Unfortunately, both issues are often inherent in lab-based primate locomotion research. To clarify this, we examined the relationship between body size and knee angle in a troop of wild chacma baboons (Papio hamadryas ursinus) living in the De Hoop Nature Reserve, South Africa. We obtained video of 33 individuals (1-9 years; 2-29 kg) walked (duty factor <50) perpendicularly to a tripod-mounted camcorder. We measured angle at mid-support for 228 steps and performed regressions using individual means. We found that heavier, older baboons indeed have more extended knee joints ($r = 0.477, p<0.01$). Our results for this single species support Biewener’s general biomechanical hypothesis that larger individuals adopt more extended limbs. Moreover, this study demonstrates the utility of field-acquired kinematics to supplement conventionally acquired lab-based data for answering biomechanical questions.

CAROLINE F. HORTON, GARY D. RICHARDS, REBECCA S. JABBOUR, and CAITLIN L. IBARRA. 1Dept. of Integrative Biology, University of California, Berkeley; 2Dept. of Biomedical Science, A. A. Dugoni School of Dentistry, University of the Pacific; 3Dept. of Biology, Saint Mary’s College of California; 4Institute for Dental History and Craniofacial Study, A. A. Dugoni School of Dentistry, University of the Pacific.

The hominid-bearing Shungura and Usno formations in the lower Omo Basin date to between 4.3-4.1 my. This long temporal span makes the Omo record one of the longest continuous records of hominid evolution. Taxa represented include multiple species of Australopithecus and Homo. Here we provide the first descriptions and interpretations of fragmentary cranial remains attributable to two hominids from the 1969-1975 collections. Specimen L345-11 derives from Submember C9 of the Shungura formation (≈ 2.51 my). This immature specimen is a frag-
Genome discovery in a hibernating primate.

JULIE E. HORVATH. The Department of Evolutionary Anthropology, The Duke Primate Genomics Initiative and Duke Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina.

Primate sequencing efforts have expanded our ability to address difficult research questions relating to evolution and disease. The gray mouse lemur, *Microcebus murinus*, is one of the few lemurs to undergo torpor (hibernation). By identifying genes involved in torpor in the gray mouse lemur, targeted sequencing was conducted on a cDNA library created from polyA selected RNA from a mouse lemur liver using a Roche GS-FLX (454) instrument. These cDNA sequence data were compared to the human genome and combined with the current 2x gray mouse lemur genome sequence to offer clues into the evolution of genes in the primate lineage as well as to offer insight into the genes critical for hibernation. Of the 1.8 million sequence reads obtained, nearly 70% mapped to known human genes while 30% were unmapped. These unmapped reads may provide insight into mouse lemur specific genes. Several genes known to be important in other hibernating mammals, such as *PDK4*, *SIRT1*, *FGF21*, *CLOCK* and *PER*, were identified in this study. The data are currently being evaluated to identify genes under positive selection. This cDNA sequence resource will provide a basis for further research on metabolic regulation in primates, as well as offer an important evolutionary perspective on lemur biology and genome evolution.

This study was funded by the Primate Genomics Initiative at Duke University.

Dental anomalies in the deciduous dentition of a C-Group Nubian child from Hierakonpolis, Egypt.

BRIANA CHRISTA HORWATH and JOEL D. IRISH. Department of Anthropology, University of Alaska, Fairbanks.

The purpose of this study is to describe and discuss a case of "twinned" incisor with an associated talon cusp in a subadult from a cemetery at Hierakonpolis. Excavations at the site's C-Group Nubian cemetery (HK27) unearthed approximately 60 individuals dated from the 11th Dynasty through the 2nd Intermediate period. Of these, remains of a 3-4 year old child, age determined by dental eruption, were recovered from Tomb 37b; they were associated with a more recent "Egyptianized" section of the cemetery. The incisor twinning, i.e., gemination event, and the talon cusp, are present in the right deciduous maxillary lateral incisor; both are unilateral in their expression. Gemination in deciduous teeth occurs at a very low rate; previous studies reported an incidence of 0.4 to 0.9 percent. Talon cusp occurs from 0.6 to 7.7 percent in deciduous teeth. These two anomalies combined make the discovery rare, as only three case studies have been reported in modern dentistry. Twinned incisors and talon cusps, respectively, have been documented in multiple regions of the world -- from Peru to Portugal. The present discovery at Hierakonpolis is the first example in North Africa of either anomaly in a juvenile, and contributes to an ever increasing data set of dental anomalies in the region.

Dr. Renee Friedman kindly facilitated analysis. Funding for the excavation in 2007 was provided by National Geographic Society and Wenner-Gren Foundation; granted to the second author and the Hierakonpolis Expedition.

A case of metastasized prostate cancer from the historic Spring Street Presbyterian Church in Manhattan.

LAUREN R. HOSEK and SHANNON A. NOVAK. Department of Anthropology, Syracuse University.

In 2005, construction crews in New York City unearthed human skeletal remains from what was determined to be burial vaults of the Spring Street Presbyterian Church. This radical abolitionist church, active from approximately 1811-1843, was comprised of a mixed-race congregation that was predominantly working class. Of the some 300 individuals recovered from the site, many of the subadults exhibited pathological conditions, while most of the adults revealed few. Tuberculosis and venereal syphilis was present in a small number of the adults. One individual, in particular, exhibited lesions consistent with prostate cancer. The incomplete skeletal remains of an adult male, 40-44 years of age, designated as Burial 9 in Vault II, has proliferative and lytic lesions on the os coxae, sacrum, and proximal third of the femora diaphyses. This poster will present the case of the suspective, rare case of prostate cancer in an archaeological specimen and to better understand the effects of genetic and environmental factors on the development of prostate cancer.

Skeletal tissue properties: the utility of using indentation modulus and density as proxies for elastic modulus.

JENNIFER L. HOTZMAN. Anthrotech, Inc., Yellow Springs.

An important aspect of modeling mechanical behaviors of structures is determining the correct material properties that greatly influence skeletal tissue mechanical behavior are elastic modulus and density. The purpose of this study is to examine the relationship of these material properties using a female *Macaca fuscata* skull. Density and elastic modulus are expected to exhibit a very strong correlation.

The female *Macaca fuscata* skull underwent micro-computed tomography scanning. The scans yielded grayscale values that were used to calculate cortical bone density. After the skull was scanned, the hard plate was sectioned for microindentation. A total of 7 samples underwent microindentation to determine the hardness of the cortical bone. The hardness values were then used to calculate the elastic modulus of the skeletal tissue. Density and elastic modulus values were determined in the same linear regressions of these variables were performed to determine their relationship.

Both specific, localized areas of bone and larger, regional areas of bone were examined.
examined to determine the relationship between density and elastic modulus. All of the regressions showed a poor correlation; however, it is highly unlikely that these variables are truly uncorrelated. A more likely explanation for this lack of correlation is that indentation and density are relying on different factors to estimate elastic modulus. In this study both variables of interest were determined indirectly which is likely a contributing factor to the demonstrated lack of relationship.

An examination of biological distance and population structure among four coastal Kenyan populations.

AMELIA R. HUBBARD, DEBBIE GUATELLI-STEINBERG and PAUL W. SCIULLI. Department of Anthropology, The Ohio State University.

This study examines biological distance (biodistance) and population structure among four coastal Kenyan populations, and is part of a larger project investigating the concordance between estimates of population structure based, independently, on genetic data and dental data from the same individuals. The aim of the current project is to determine if structure and distance estimates for the selected populations conform to expectations based on these populations’ histories. Presence and absence of twenty-seven dental non-metric traits were scored on 388 impressions collected from four populations (representing two ethnic groups): Dawida and Kasigau (Taita), and Mombasa and Lamu (Swahili). Next, biodistance estimates were calculated using Konigsberg’s modified Mahalanobis distance program. The resultant distance matrix was then used to calculate the r-matrix, which yielded corresponding FST values (a measure of inbreeding within (sub)populations).

The following hypotheses were tested: 1) Taita populations will exhibit higher FST values than Swahili populations because the Taita are more geographically and culturally isolated than the Swahili, and 2) following a model of isolation by distance, the biodistance between the furthest locations (Mombasa and Lamu; Lamu and Dawida/Kasigau) will be largest, while smaller biodistances will be between closely-spaced locations (Mombasa, Kasigau, Dawida).

Preliminary results from a sub-sample of the 388 individuals indicate that some expectations have been met. FST values were higher in the Taita samples and low in the Swahili samples. Unexpectedly, none of the predictions based on the isolation by distance model were met. Explanations for such deviations will be further explored in this poster.

This study was generously funded by the U.S. Department of Education through a Fulbright-Hays Doctoral Dissertation Research Abroad Grant (P0222A90029), a Wenner-Gren Foundation Dissertation Improvement Grant (7962) and the Ohio State University Graduate School.

Understanding Fst and Discriminant Analysis Classifications by means of resampled datasets: the influence of different variables and the extent to which they actually reflect sub-population divergence.

ALEX HUBBE1, ANDRE STRAUSS2, MARK HUBBE3 and DANilo BERNARDO1. 1Departamento de Genetica e Biologia Evolutiva, Universidade de Sao Paulo, 2Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 3Instituto de Investigaciones Arqueologicas y Museo, Universidad Catolica Del Norte.

Classification through Discriminant Functions and Fst are common means of studying the apportionment of global human cranial morphological variation. However, the power of each method in reflecting the influence of population structure is rarely discussed in the literature. In this work we assess the relative capacity of each method in real populations (Asia, Africa and Europe) and in randomly generated ones. Our goals were 1) to investigate the effect of different sets of numbers of variables in each statistic; and 2) to measure their capacity of reflecting the original structure of the populations. Fst and frequency of correct classification (FCC) were calculated for thousand randomly chosen datasets considering progressive numbers of variables for the original and random (mixed) populations. The results for the real populations indicate that both statistics vary considerably when different sets of variables are used, especially when the number of variables employed is small. Besides, both indexes are influenced by the total number of metric traits included in the analysis, although in different ways: FCC increases when more variables are used while Fst reach its higher values with an intermediate number of variables. The results for the random populations show that Fst is close to zero, as expected. On the other hand, FCC can reach 64% of correct classifications even when dealing with populations that are not real. We conclude that both number and type of variables can affect drastically statistics that describe population structure and care must be taken when comparing results obtained from different sets of variables.

Testing evolutionary and dispersion scenarios for the settlement of the New World.

MARK HUBBE1, WALTER A. NEVES2, DANilo V. BERNARDO2 and KATERINA HARVATI3. 1Instituto de Investigaciones Arqueologicas y Museo, Universidad Catolica Del Norte, 2Depar-tamento de Genetica e Biologia Evolutiva, Universidade de Sao Paulo, 3Senckenberg Center for Human Evolution and Paleoenecology, University of Tuebingen.

Recent evidence regarding the settlement of the Americas from diverse fields is found to support different colonization scenarios. The currently available genetic evidence suggests a “single migration” model, in which both early and later Native American groups derive from one expansion event into the continent. In contrast, the pronounced anatomical differences between early and late Native American populations have led others to propose more complex scenarios, involving separate colonization events of the New World. Using large samples of Early American crania, we: 1) calculated the rate of morphological differentiation between Early and Late American samples under three different time divergence assumptions, and compared them to the morphological differentiation expected under neutral conditions; and 2) tested the goodness of fit of three geographic dispersal scenarios for the coloni-zation of the New World by comparing them to the morphological distances among early and late Amerindians, early and late East Asians and Australo-Melanesians. Results indicate that the assumption of a last shared common ancestor outside the continent better explains the observed morphological differences between early and late American groups. Also, a model comprising two Asian waves of migration coming through Bering into the Americas fits the cranial anatomical evidence best, especially when the effects of diversifying selection to climate are taken into account. We conclude that the morphological diversity documented through time in the New World is best accounted for by a model postulating two waves of human expansion into the continent originating in East Asia and entering through Bering.

This study was funded by FONDECYT (11070091), FAPESP (04/01321-6 and 08/58729-8), CNPq (301126-04.6), the Max Planck Gesellschaft and the EVAN MRTN-CT-019564.

Characteristics of bone structure during growth: a comparison of the age-associated patterns of change in cortical bone geometry and trabecular bone microarchitecture in the human tibia.

ZACHARIAH R. HUBBELL1, JAMES H. GOSMAN2, TIMOTHY M. RYAN3, COLIN N. SHAW2, and RICHARD A. KETCHAM. 1Department of Anthropology, The Ohio State University, 2Department of Anthropology, Pennsylvania State University, 3Department of Geological Sciences, University of Texas at Austin.

Human long bone trabecular microarchitectue has been demonstrated to reach its essential adult configuration by the
time an individual reaches late childhood, whereas the geometric properties of cortical bone continue to change past adolescence. The objective of this research is to examine the differing developmental trajectories of trabecular and cortical bone with regard to shape differentiation and strength maturation. Here, we test the hypothesis that the cross-sectional shape of the tibia initially transforms from rounded to triangular in association with the acquisition of bipedal walking and continues to differentiate in shape well into skeletal maturity, in contrast to trabecular bone developmental patterns. High resolution x-ray CT images of the tibial midshaft were taken from 30 individuals ranging developmentally from neonate to skeletally mature from the Sunwatch Village skeletal collection, an Ohio Valley maize-dependent agricultural village (AD 1200-1300). Cortical geometric properties (I\text{max}, l_{\text{min}}, and J) were calculated using a custom code written in IDL. Polar plots of multiple centroid ratio keys successfully discriminated between different sets. We observed a significant effect on the strength of sex as a factor in cognitive sex differences in human cognition. Some researchers cite findings supporting at least some influence of biological correlates of variation in cognition. These researchers are divided though, on whether such biological influences arise from mechanisms shared with other mammals, or rather, from unique pressures during human evolution. Contrary to all of these ideas, a growing contingent supports a completely cultural explanation for the existence of cognitive sex differences in humans. Such researchers cite findings showing how the priming of gender stereotypes can strongly influence the strength of sex as a factor in cognitive task performance. These different perspectives have not been resolved with human research, so to take a different approach, we turned to a nonhuman primate model (Macaca mulatta), in which the effects of enculturation are much reduced, to test these hypotheses. To do so, we adapted the mental rotation task for nonhuman subjects; this task regularly obtains the largest sex differences of any cognitive task. In this task, subjects must discriminate between two sets of images: either the set represents the same object viewed from different angles or two different objects. We observed a significant effect of condition, showing that some monkeys successfully discriminated between same-but-rotated and different sets. We also observed a marginally significant effect of sex, with females showing less discrimination than males. The impact of early and late Middle Pleistocene hominins from Morocco.

JEAN-JACQUES HUBLIN1 and KRISTIN L. KRUEGER2. 1Max Planck Institute for Evolutionary Anthropology, 2Department of Anthropology, University of Arkansas.

Pleistocene hominin fossils from northwestern Africa, especially Morocco, hold great potential for providing clues regarding the evolution and dispersion of Homo. For example, early Middle Pleistocene fossils can present a more comprehensive picture of dietary and behavioral breadth. Consequently, this study seeks to better understand the dietary and behavioral milieu of these hominins through dental microwear texture analysis. High-resolution casts of four individuals were used in this study. The Salé and Thomas Quarry 1 individuals are dated to the early Middle Pleistocene, whereas those from Dar es-Soltane II and Grotte des Contrebandiers are from the early Late Pleistocene. Anterior teeth were scanned using a white-light confocal profiler using a 100x objective lens. The resultant scans measured a total area of 204 x 276 \textmu m2, and were analyzed using Toothfrax and SFrax software packages. Modern human samples were used as a comparison baseline. Results indicate high anisotropy and moderate textural fill volume values for the earlier Middle Pleistocene hominins, whereas the later individuals show low anisotropy and high textural fill volume values. Anterior dental microwear signatures for the later hominins are most similar to those of modern humans from the arctic. This pattern suggests the early Late Pleistocene hominins from Morocco may have participated in more high magnitude or repetitive loading associated with non-dietary anterior tooth use than did the earlier hominins. This study was funded by the National Science Foundation (BCS-0852818).

Children of divorce: effects of adult replacements on survival and dispersal of young owl monkeys in the Argentinean Chaco.

MAREN HUCK1 and EDUARDO FERNANDEZ-DUQUE2,3. 1Department of Anthropology, University of Pennsylvania, 2Centro de Ecología Aplicada del Litoral, Conicet, Argentina.

Although owl monkeys (Aotus azaraei) of the Argentinean Chaco are socially monogamous Neotropical primates, male and female partners are sometimes replaced by intruders from outside the group. The consequences of those replacements on the pair’s offspring have not been evaluated. Here we tested the prediction derived from parental investment theory that juveniles would disappear (as a proxy for death) at younger ages in groups with replacement than in stable groups. We also predicted, as derived from the evolutionary theory of the family, that subadults would disperse at older ages after the replacement of the opposite-sex parent than in stable groups or after replacement of same-sex parents. To test the predictions we compared, taking the immature’s sex into account, the survival and dispersal of owl monkeys (n = 19 males, 15 females, 48 unknown sex) from stable groups and from groups with replacements. Contrary to expectation, we found that juvenile survival was not negatively affected by replacements (G-test, p = 0.36), suggesting that infants and juveniles may be cared for similarly by step-parents and biological ones. On the other hand, and in support of the evolutionary theory of the family, young males dispersed later when the mother had been replaced than in stable groups (x2 test, p = 0.019), but the replacement of the adult male had no significant effect on the dispersal of young females. Our results stress the importance of detailed and sex-specific dispersal/survival analyses as part of any investigation of mating systems and paternal care in primatology.

EFD received financial support from the Wenner-Gren Foundation, the L.S.B. Leakey Foundation, the National Geographic Society, the National Science Foundation (BCS-0621020), the University of Pennsylvania Research Foundation and the Zoological Society of San Diego. MH was funded by the Deutsche Forschungsgemeinschaft (HU 1746/2-1).

Sex differences in cognition in rhesus macaques: a model for understanding human variation in cognition.

KELLY D. HUGHES1 and LAURIE R. SANTOS2. 1Department of Anthropology, Yale University, 2Department of Psychology, Yale University.

There is still much controversy regarding the origins of sex differences in human cognition. Some researchers support at least some influence of biology, citing the consistency of sex differences and biological correlates of variation in cognition. These researchers are divided though, on whether such biological influences arise from mechanisms shared with other mammals, or rather, from unique pressures during human evolution. Contrary to all of these ideas, a growing contingent supports a completely cultural explanation for the existence of cognitive sex differences in humans. Such researchers cite findings showing how the priming of gender stereotypes can strongly influence the strength of sex as a factor in cognitive task performance. These different perspectives have not been resolved with human research, so to take a different approach, we turned to a nonhuman primate model (Macaca mulatta), in which the effects of enculturation are much reduced, to test these hypotheses. To do so, we adapted the mental rotation task for nonhuman subjects; this task regularly obtains the largest sex differences of any cognitive task. In this task, subjects must discriminate between two sets of images: either the set represents the same object viewed from different angles or two different objects. We observed a significant effect of condition, showing that some monkeys successfully discriminated between same-but-rotated and different sets. We also observed a marginally significant effect of sex, with females showing less discrimination than males. The impact
of this finding on current hypotheses is examined. This study was funded by Yale University and International Primatological Society Research Grant.

Biological anthropology in the genomics era.

BRANNON I. HULSEY, FRANKIE L. PACK and GRACIELA S. CARABA, Department of Anthropology, University of Tennessee, Knoxville, Tennessee.

This study explores the current and future impact of the "genomic era" on biological anthropology. Whereas genomics refers to the detailed study of one or few genes in isolation, genetics is the study of organisms using the entirety of their genome and their environments. The term "genomics era" alludes to the seemingly endless research potential released by an arsenal of technological advances of the last decade. The challenges posed by the genomic era to biological anthropologists are significant, and our ultimate goal is to understand how biological anthropologists in general, and anthropological geneticists in particular, can reposition themselves to face these challenges.

We collected interview data and qualitative data based on an online survey from professionals on the ways in which challenges posed by the genomic era may affect their practice of biological anthropology. Questions were structured around teaching, research, and advising. Preliminary results based on interview data alone indicate that, in general, biological anthropologists in anthropology departments suffer from a lack of resources relative to colleagues in other academic departments. Furthermore, results indicate that "both an increase in funding and institutional change (at the departmental and university wide level) is needed. Using the new technologies and methodologies of the genomic era requires time, money, accessibility, new laboratory skills, and bioinformatic training. Anthropological geneticists are struggling to remain competitive in these five areas as the pace of change in genomic technology increases. These results provide a potential roadmap for change for biological anthropologists to remain competitive in the genomic era.

Comparative skeletal maturation of the elbow.

LOUISE HUMPHREY. Department of Palaeontology, The Natural History Museum, London, UK.

Skeletal maturation involves the appearance of ossification centres and fusion of secondary centres with each other and with a primary centre to form a consolidated skeletal element. Skeletal maturation in humans and African apes proceeds through a series of well defined steps, but the timing of these stages relative to chronological age, dental development and the maturation of other skeletal elements is variable. This paper examines species differences in the sequence and relative timing of skeletal maturation of the elbow in humans, chimpanzees and gorillas. Skeletal maturation of the elbow involves several distinct events: coalescence of the ossification centres of the distal epiphysis of the humerus to form a composite epiphysis; fusion of the separate or partly fused ossification centres of the distal epiphysis or of a composite distal epiphysis to the metaphysis of the humerus; fusion of the ossification centre of the medial epicondyle as either a separate centre or as part of a composite distal epiphysis; and fusion of the epiphyses of the proximal radius and proximal ulna. Each individual point of fusion was scored as unfused, partially fused, or completely fused. An age-independent seriation of successive and/or overlapping stages of fusion reveals species differences in the sequence of maturation events within the elbow. Ordering of individuals according to sequential stages of tooth emergence or (non-elbow) skeletal maturation reveals species differences in the relative timing of elbow maturation. The sequence and timing of elbow maturation of fossil hominins is evaluated in the context of differences between extant species.

What is the relationship between mandibular corpus cross-sectional geometry and molar microwear enamel surface texture?

MARK P. HUMPHREY1,2, JASON M. ORGAN3,4,5, J. GARY BLEDSOE1 and KATHERINE C. MACKINNON5. 1School of Dentistry, University of Missouri-Kansas City, 2Center for Anatomical Science and Preparative Medicine, 3Department of Surgery, Saint Louis University School of Medicine, 4Parks College of Engineering, Aviation, and Technology, Saint Louis University, 5Department of Sociology and Criminal Justice, Saint Louis University.

The vertebrate fossil record is heavily represented by craniodental remains, offering the potential to elucidate patterns of evolution in diet across a broad range of taxa. Because the ability to reconstruct feeding (or any) behavior of extinct animals depends on the use of many independent lines of evidence, understanding the relationship between multiple lines of evidence is critical. This study tests the relationship of mandibular corpus cross-sectional parameters to molar occlusal enamel surface texture in two New World monkey taxa with known natural dietary consistencies: *Alouatta* (n=11), whose diet is considered "tough" (with high levels of enamel surface anisotropy - esLsur), and *Cebus* (n=12) whose diet is considered "hard" (with high levels of enamel surface feature complexity - AsfC). The two methods compared here have established records of use in inferring feeding behavior of extinct taxa, especially primates.

Mandibular cross-sectional geometry was obtained via computed tomography, and microwear data were collected from the literature. Results of the mandibular cross-sectional geometric analysis indicate that the corpus of *Alouatta* is both stronger and more rigid in bending and torsion than that of *Cebus*. With these results, we expected AsfC to positively correlate with the texture of the corpus in *Alouatta*. Thus, the relationship between these two variables is expected to be positive, thereby allowing for the inference that the corpus of *Alouatta* is more "tough" than that of *Cebus*.

Race and genetics: concepts and practice in primary care.

LINDA M. HUNT and META J. KREINER. Department of Anthropology, Michigan State University. East Lansing, MI.

While the time-worn idea that the human species can be reasonably divided into four or five biologically distinct races has long been rejected by anthropologists and many biologists, it keeps reemerging in nearly its original form. In the prodigious wave of genetics research following the Human Genome Project, the concept of biological races has been experiencing something of a reinvigoration. Racial/ethnic labels are being used routinely in this context, which promotes the illusion that these labels have the status of legitimate scientific categories. At the same time, racial classifications are increasingly ubiquitous in current clinical research, and permeate the medical literature; most often in the absence of a consideration of whether observed group differences are biological or socioeconomic in origin. Little is known about the uptake of these concepts by clinicians, and the consequences of these questionable practices for the care provided to racially labeled patients. In this paper we report on a study examining the management of chronic illness in primary care clinics in a Midwestern U.S. state. We have conducted clinical observations and interviews with 60 primary care clinicians, focusing on their concepts of race and genetics and how they apply them in their care of minority patients. We will argue that genetics is becoming a euphemism for race, and is used to rationalize racial profiling in the selection of diagnostic and treatment options.
A differential diagnosis of Diffuse Idiopathic Skeletal Hyperostosis (DISH) in a Gorilla gorilla gorilla skeleton.

RANDEE HUNTER and AMANDA AGNEW. Department of Anthropology, The Ohio State University.

Diffuse Idiopathic Skeletal Hyperostosis (DISH), a pathological condition prevalent in modern human populations, has rarely been documented in other hominoids. Although its antiquity has been established, the diagnostic standards are inconsistent. One case of DISH in a non-human primate has been reported in the literature. This investigation provides the first postmortem differential diagnosis of the condition in a Gorilla gorilla gorilla specimen. Antemortem medical records from captivity, macroscopic diagnostic criteria, computed tomography (CT), and histological data are used here to document DISH in a captive female Gorilla gorilla gorilla as a proxy for archaeological context. Furthering our understanding and interpretation of the process this disease takes through three-dimensional CT reconstruction and accompanying descriptions of histological analysis of ectopic growth, this paper builds knowledge of diagnostic signatures of the disease. This skeleton shows diagnostic characteristics of DISH including "candle wax" vertebral ossification, preservation of intervertebral disc space, uninvolved interarticular facets, and histological appearance consistent with the ossification of the anterior longitudinal ligament. However, vertebral patterning and the histological presence of appositional bone growth vary from traditional diagnostic standards supporting a multi-methodological approach to differentially diagnosing DISH. Captive lifestyle conditions for a non-human primate are analogous to the clinically correlated behavioral risk factors. Combining clinical data with human and captive non-human primate skeletal and lifestyle data will aid in further clarification of behavioral reconstructions of past populations. Increasing awareness in human and non-human primates will lead to a more accurate paleoanthropological differential diagnosis and lifestyle interpretation. This project was funded by the Department of Anthropology at The Ohio State University.

A preliminary comparison of spinal extensor-muscle fiber architecture in Galago senegalensis and Nycticebus coucang.

EMMANUEL HUQ, CHRISTINE E. WALL, and ANDREA B. TAYLOR. 1IPAS, Stony Brook University, 2Department of Evolutionary Anthropology, Duke University, 3Department of Community and Family Medicine, Duke University School of Medicine.

Leaping is generally considered a hindlimb-driven locomotor behavior that requires enhanced maximum shortening velocity and excursion of muscles to facilitate acceleration during take-off. However, some investigators have noted that spinal extension is also an important component of leaping. As this movement increases the leap length by extending the spine from a flexed position at the beginning of the take-off phase. We compared absolute and relative measures of fiber architecture (mass, pinnation angle, fiber length [Lf], and physiological cross-sectional area [PCSA] of selected spinal extensors (thoracic and lumbar segments of mm. illocostalis, longissimus, multifidi) between one N. coucang, a habitual leaper, and one Nycticebus coucang, a slow-moving arboreal quadruped. We hypothesized that since G. senegalensis engages in rapid spinal extension during leaping, it should exhibit extensors that are relatively long-fibered and thus well-suited for generating relatively high shortening velocities and excursions compared to those of N. coucang. Relative to the thoraco-lumbar spine length, G. senegalensis has longer, more parallel-fibered extensors compared to N. coucang. As Lf is proportional to maximum shortening velocity/excursion, the relatively long fibers of the spinal extensors indicate that G. senegalensis has the capacity to generate relatively high shortening velocity and greater excursion compared to N. coucang, which would facilitate the rapid back extension during leaping. As an architectural trade-off between maximizing muscle excursion/contraction velocity and force, G. senegalensis also exhibits relatively smaller muscle PCSAs. These results highlight the potential trade-off between maximizing muscle force- and velocity/excursion and add an important dimension to the study of leaping behavior.

This study was funded by the NIH (R24 HD050837-01) and NSF (BCS-0452160).

Acoustic communities: an amendment to the social brain hypothesis.

DELANIE HURST. Department of Anthropology, Indiana University.

The social brain hypothesis states that large primate brains evolved to successfully navigate within complex social systems. Previous research on the subject has restricted group size and visual contact with other individuals. Visual signals convey information such as: behavior, social status, reproductive status, location, sex/age class or winner/loser status; however, vocal communication also transmits these types of social information for many primate species. Furthermore, in densely forested habitats, acoustic signals may propagate further than visual signals. Therefore, a multimodal viewpoint is relevant to how social information is process and the scale of individuals that could be considered part of a “group”. This project postulates that both visual and acoustic cues are relevant to social communication and thus could contribute to the social brain hypothesis. The goal of this study was to assess if vocal complexity positively correlates with Encephalization Quotients (EQ) in primates. Data for complexity and brain body weights were compiled from previous studies for 151 primate species. Complexity was assigned to species satisfying one or more of 4 conditions: (1) repertoire size (2) song complexity (3) individual recognition or age/sex specific calls and (4) acoustic subgroup monitoring. After controlling for group size, this study shows a highly significant correlation between vocal complexity and brain size. These data suggest both acoustic and visual social cues contributed to the social brain and acoustic communities might more accurately define “group” for some species of primates.

First Peruvian Christian mummies? A bioarchaeological analysis of the transitional funerary site of Marcajirca, Huarí -Peru.

BEBEL IBARRA and STEPHAN NAJ2. 1Instituto de Estudio Huariuos - Peru, 2École Pratique des Hautes Études – France.

Marcajirca is a prehispanic funerary site (AD 1400-1640), located 600 km northeast of Lima, that has been continuously explored since 2007 as part of a bioarchaeological field school. One of the objectives is to understand how mortuary rites are implemented according to local rituals. Traditionally, mummified bodies tied in fetal position with ropes and wrapped in blankets (bundles) are placed in either caves or burial houses (chullpas). However, recent discovery of two unexpected burial pits, initially interpreted as ossuaries, prompted further examinations. Careful bioarchaeological excavations and analyses using 14C dating placing both structures in the timing around the arrival of the Christianty (A.D. 1480-1640), revealed that the bones were in fact individual mummies sequentially buried underground. Our on-going working hypothesis proposes that despite ancestral prohibition of body inhalation, when the Extirpation of Idolatries was imposed, as presented in historical documents, forcing the population to bury their dead in designated cemeteries, local “priests” managed to adapt their rituals by “hiding” mummy bundles underground to satisfy both Christian standards of burial and traditional body treatment, effectively creating a transitional ritual of Christian mummies. Despite regular looting of the bundles and disruptions of the site by neighboring farmers, cautious excavations by field anthropologists and contextual approach of the burials was crucial to generate precise data and help shed light on potential original transitional burial practices.

Acoustic communities: an amendment to the social brain hypothesis.
Bony criteria for differentiating osteochondrodystrophies: applications in prehistory.

CAITLIN L. IBARRA1, GARY D. RICHARDS2, CAROLINE F. HORTON3 and HILLARY M. OJEDA4. 1Institute for Dental History and Craniofacial Study, A.A. Dugoni School of Dentistry, University of the Pacific, 2Department of Biomedical Sciences, A. A. Dugoni School of Dentistry, University of the Pacific, 3Department of Integrative Biology, University of California, Berkeley, 4Department of Anthropology, University of California, Berkeley.

Prehistoric and recent skeletal evidence shows instances of gene expression errors that affect skeletal development. One of the more common classes of defects is the osteochondrodystrophies. Errors in development in the osteochondrodystrophies are related to multiple genetic mutations. Here we compare the skeletal morphology of an individual with mutations in the COMP gene (multiple epiphyseal dysplasia/pseudoachondroplasia) to that expressed in individuals with mutations of the FGFR3 gene (achondroplasia). We compiled diagnostic criteria for the above conditions and evaluated them on a sample of individuals with COMP and FGFR3 mutations. The sample of malformed individuals comprises one complete skeleton with a COMP mutation and a skeleton and cranium from two individuals with an FGFR3 mutation. These malformed individuals were compared to a sample of 30 normal individuals. A series of normetric criteria for the differentiation of these two genetic conditions was established. Our comparisons allow us to establish a range of bony criteria for the differentiation of COMP and FGFR3 expression. These criteria include 5 differences in the skull, 5 differences in the thoracic cavity, 25 long bone differences, 8 pelvic differences (os coxae and sacrum), and 2 differences in the feet. Multiple epiphyseal dysplasia and pseudoachondroplasia represent a developmental continuum differentiated by variation in COMP gene expression. Alternatively, FGFR3 gene expression related to achondroplasia does not form such a continuum. Because in life these conditions mimic one another genetically, standard skeletal criteria to differentiate them should clarify diagnoses in prehistoric remains. Funding provided by the Undergraduate Student Opportunity Fund, University of California, Berkeley, CA to CFH and HMO.

Anatomy and isolation in mid/later Middle Pleistocene Indonesia: New insights on the age and anatomy of the hominins from the Solo River Valley.

ETTY INDRIATI1 and SUSAN C. ANTON2. 1Laboratory for Bio and Paleoanthropology, Faculty of Medicine, Gadjah Mada University, Yogyakarta, INDONESIA, 2Center for the Study of Human Origins, Department of Anthropology, New York University, USA.

The last surviving Homo erectus populations have long been considered to come from the Solo River Valley, Java, Indonesia. Both Ngandong and Sambungmacan yield well preserved fossil calvariae that have been considered of either late (≤ 50-100 ka) or middle (200-500 ka) Pleistocene age. The relationship between these remains, those from H. erectus in mainland Asia, and other middle Pleistocene species such as H. heidelbergensis, remains obscure, however, in part because of uncertainties regarding the geological age of the Indonesian populations.

We review the results of our Solo River Terrace (SoRT) project with recent radiometric (40Ar/39Ar) and taphonomic work provides strong evidence of a middle Pleistocene component in the Solo River Valley. We describe previously undescribed remains from Ngandong. Using morphometric analysis, we consider the relationship between the Ngandong and Sambungmacan hominins, other H. erectus, and other Homo species. And, finally, we consider the implications of the differing geological age estimates for interpretations of brain size increase, biogeography, isolation, and relatedness within later genus Homo.

The anatomy of the specimens coupled with a late Pleistocene age suggests regional populations of H. erectus in island Southeast Asia. On the other hand, the Solo River hominins are the contemporaries of fossils from other middle Pleistocene localities, then our morphological results suggest a strong signal of regional isolation (local evolution) amongst H. erectus populations in both mainland China and Southeast Asia. In either case, the morphological signal is one that is distinct from other Homo taxa.

Social behavior and proximity to group members in a captive chimpanzee (Pan troglodytes) identified with sensory integration difficulties.

ELLEN J. INGMANSON1, TERESA MAY-BENSON2, TERRI HUNNICUTT3, STEPHANIE BRACCINI4, INGRID PORTON5, MARYJAYE T. ALEJANDRA L. BAUMAN5. 1Department of Anthropology, Bridgewater State University, 2Occupational Therapy Associates-Watertown and The Spiral Foundation, 3Center for Great Apes, 4Saint Louis Zoo, 5Harvard Medical School/Massachusetts General Hospital.

A young adult female chimpanzee (Pan troglodytes) at the Saint Louis Zoo has been identified with sensory integration and processing difficulties. Holly's behavior manifests through increased levels of stereotypies, problems with social relations and poor occupational performance in routine daily activities. As part of a plan of therapy to improve Holly's situation, baseline frequencies of behavioral activity and social interactions have been assessed using one-minute interval sampling of focal individuals. This study describes social activity and proximity to group members for Holly and her peers during July 2009 and January 2010, in both outdoor and indoor enclosures.

Holly's social behavior and proximity to group members differed from her peers and between enclosures. Irrespective of enclosure, Holly spent more time in close proximity (1m) to other individuals and less time at a distance greater than 4m from all individuals. However, her behaviors when near other individuals were largely self-directed and her attempts at interaction (e.g. grooming) were reciprocated. Close proximity to others for both Holly and her peers was unevenly distributed across group members, but target individuals differed. Some individuals were observed actively avoiding proximity and contact to Holly, but not with her peers.

Holly's sensory integration problems isolate her and have multiple effects on the social dynamics of the entire chimpanzee group. Occupational therapy is focusing on alleviating Holly's abnormal behavior, with a goal of improving the social environment in the group. Widespread application of occupational therapy and sensory integration theory to zoological management may be possible.

Funding for this project has been provided by a gift from the Roberts Family (Bauman) and the Center for the Advancement of Research and Teaching at Bridgewater State University (Ingmanson).

Path analysis of vocally-mediated intergroup spacing strategies in mantled howling monkeys.

JOHN INGRAHAM1 and AMY L. SCHREIER2. 1School of Mathematics and Statistics, Arizona State University, 2Department of Evolutionary Anthropology, Duke University.

The long-distance calls of mantled howling monkeys have been hypothesized to serve the primary purpose of mediating intergroup spacing. Experimental and observational studies have confirmed coordination of vocalizations and movement patterns, but interpretations have produced conflicting models of mutual avoidance, tit-for-tat reciprocation, and boundary marking. To assess the movement patterns in a more general framework, we employ a random walk analysis of male mantled howling monkey vocalizations and movement paths at Omotepe Biological Field Station, Nicaragua in August 2010. Specifically, we predict that howling monkey movement paths will have speed and angle distribution that show biased relationships...
with the angle and frequency of extragroup vocalizations: males will exhibit angular bias either towards or away from out-of-group vocalizations and speed bias in the form of periods of increasing that follow periods of increased frequency of audible vocalizations.

We calculated arboreal movement paths via compass angle intersections from paced reference points and we quantified frequency of male vocalizations via interval-based counting methodology. By constructing an angular histogram representing directional biases of movement with regards to the vocalizations of extragroup males, we find an alternative pattern to the fit-for-tat model of spacing that includes increased specific avoidance, increased withdrawing lateral searches, and occasional direct approach 'place' sub-Saharan neoglossa on a distribution of movement responses as a budgeting process that minimizes intergroup encounters and increases available time and space for foraging. In addition, we found synchronizations of male vocalizations and movement speeds that confirms existing hypotheses regarding the initiation and maintenance of intergroup spacing.

Afridonty: the "Sub-Saharan African Dental Complex" revisited.

JOEL D. IRISH. Department of Anthropology, University of Alaska Fairbanks.

Prior research revealed that, compared to other world populations, Africans south of the Sahara Desert are distinct dentally -- especially in their expression of nine high- and two low-frequency morphological features. This suite of traits was termed the "Sub-Saharan African Dental Complex" (SSADC); it includes the world's highest occurrences of Bushman canine, two-rooted UP1, UM1 Carabelli's trait, three-rooted UM2, LM2 Y-groove, LM1 cusp 7, LP1 Tome's root, two-rooted LM2, and UM3 presence, and among the lowest occurrences of U11 double shoveling and UM1 enamel extension. The SSADC is based on the pooling of several spatially disparate samples and is largely synchronous (i.e., 19th-early 20th centuries); it was, thus, intended as a preliminary characterization. Still, the SSADC helped 'place' the sub-Saharan neoglossa on a global scale, and proved useful in better understanding human origins.

Recent research on movement of west African Iron Age agriculturalists across the subcontinent, sometimes called the "Bantu Expansion," allowed study of many hundreds more dentitions; samples come from throughout west, central, east, and south Africa, and date between the late Pleistocene through mid-1500s AD. Although some spatial and temporal trends are now evident relative to the SSADC including, for example, slightly lower dental complexity in early Holocene Kenyans and Tanzanians, the SSADC stands the test of time and space, as it remains useful in characterizing sub-Saharan Africans globally. Therefore, the SSADC should be moved out of the "preliminary" category and nomenclature (i.e., Turner's Sinodonty and Sundadonty) it is suggested that the complex now be termed "Afridonty."

Funding was provided by the National Science Foundation (BNS-9013942, BNS-0104731, BCS-0840674), the ASU Research Development Program, and the American Museum of Natural History.

NINA G. JABLONSKI1, DENISE SU2, JAY KELLY3, LAWRENCE J. FLYNN4 and XUEPING JI5. 1Department of Anthropology, The Pennsylvania State University, 2Department of Anthropology, Bryn Mawr College, 3Institute of Human Genetics, University of Massachusetts Amherst, 4Peabody Museum of Archaeology and Ethnology, Harvard University, and 5Yunnan Cultural Relics and Archaeology Institute, Kunming, Yunnan, China.

The colobine monkey, *Mesopithecus*, from very late Miocene and very early Pliocene deposits of southern and eastern Europe, Russia, Iran, Afghanistan, and the Pakistani Siwaliks is best known from the Turonian site of Pikermi in Greece where *M. pentelicus* is recognized as a large, unspecialized, semi-terrestrial monkey. We report here on new finds of Mesopithecus from the site of Shui Tang Ba near Zhaotong in northeastern Yunnan Province, China that further extend the range of this successful disperser. Shui Tang Ba is a lignite mine which has yielded mammals, birds, amphibians, and fish denoting a freshwater saline environment. Several mammalian species identical or similar to those known from Lufeng suggest that the site is of very late Miocene age. The Mesopithecus fossils from Shui Tang Ba comprise a nearly complete mandible, a proximal femur, a calcaneus, and an isolated lower molar. All but the isolated molar may represent a single individual. The mandible is that of a female; the dentition lacks only the incisors, and the teeth are very lightly worn. The calcaneus exhibits the great breadth at the sustentaculum tali characteristic of *Mesopithecus* and features denoting potential for eversion and inversion. The proximal femur is remarkable because the morphology of the articular surface of the head, the thickness and perpendicular orientation of the neck, and the large size and lack of superior projection of the greater trochanter are consistent with arboreal leaping. Mesopithecus from Shui Tang Ba was dentally typical for the genus but was an arboreal leaper. This study was funded by NSF BCS grant 1035897, and by grants from the College of Liberal Arts of The Pennsylvania State University and Bryn Mawr College.

Community, landscape, and climate reconstruction of contemporary sites using multi-biotic and abiotic proxies.

BONNIE F. JACOBS1, ELLEN D. CURRANO2, AARON D. PAN2, NEIL J. TABOR2 and DANIEL R. DANEHY1.

1Roy M. Huffington Department of Earth Sciences, Southern Methodist University, 2Department of Geology, Miami University, 3Fort Worth Museum of Science and History, Ft. Worth, TX.

The 28 – 27 Ma Chilga strata, northwestern Ethiopia, provide multiple proxies for paleoecological and paleoclimate reconstructions pertinent to environments of primate evolution, from an otherwise poorly represented time and place. This study samples two stratigraphically equivalent paleobotanical sites located 1.5 km apart, Guang and Bull's Bellow. These sites differ in faunally and florally, but permit tests of within-proxy methodologies. From their composition, we hypothesized Bull's Bellow represents an earlier stage of community succession than Guang, and this should be associated with differences in species richness, evenness, lateral heterogeneity, and insect damage specialization. At least four sublocalities were collected along a single stratum at each site. Total of 844 and 434 leaves were collected from Bull's Bellow and Guang, respectively. Mean annual precipitation and temperature (MAP, MAT) were estimated from leaf morphology, the overlapping distributions of nearest living relatives (ODA), oxygen isotope from paleosol phyllosilicates (for MAT) and paleosol geochemistry (for MAP). MAP estimates derived from leaf morphology are somewhat greater than modern (1200 mm/ year): 1200 – 1400 mm/year. All proxy estimates are statistically indistinguishable from each other and document greater evenness of rainfall than modern. MAT estimates from leaf morphology range from 24° to 37°C (modern MAT of 21°C), with estimates for Bull's Bellow consistently lower than those for Guang. Values are consistent among proxies, but have large margins of error. Ecological analyses found greater potential richness, greater insect damage specialization, and less evenness at Guang, all consistent with a species-rich, heterogeneous mature forest, undersampled for its diversity. This project was supported by NSF grant EAR-0617306.

Variation in foraging behavior and color vision status in wild female black-and-white ruffed lemurs (Varcicio variegata).

RACHEL L. JACOBS1,2,3, ANDREA L. BADEN1,2,3, RADONIAINA NASOLO RABEMAHARAVONIRINA4 and BRENDA J. BRADLEY. 1Interdepartmental Doctoral Program in Anthropological Sciences, Stony
The evolution of food sharing in primates.

ADRIAN V. JAEGGI1,2,3 and CAREL P. VAN SCHAIK1. 1Anthropological Institute and Museum, University of Zurich, 2Research Priority Program in Ethics, University of Zurich, 3Department of Anthropology, University of California Santa Barbara.

Food sharing refers to the un-resisted transfer of food from one individual to another, thus reflecting high social tolerance. Since sharing is altruistic by definition, hypotheses about its evolution must include other intrinsic muscles and will help to refine the interpretation of fossil primate manipulative capabilities. This study was supported by a NSF IGERT grant on Musculoskeletal and Neural Adaptations in Form and Function (NSF grant # 9987619).

Thumb muscle moment arms in select catarrhines: what can we infer about soft tissue biomechanics from bones and fossils?

MARC C. JACOFSKY. The Center for Orthopedic Research and Education (CORE) Institute.

Several studies have focused on muscle insertion sites in the primate hand in an effort to infer manipulative capabilities of fossil hominins. However, a direct association between muscle morphology, biomechanics, and insertion markings remains elusive. The hypothesis that the length of a muscle marking is indicative of a muscle’s relative moment arm between species is tested on the intrinsic thumb muscles of primate cadaver specimens (1 Pan, 2 Pongo, 2 Papio, 3 Homo). The moment arm values were compared to attachment marking lengths from larger samples of prepared bones.

The length of the first dorsal interosseous muscle’s origin and associated skeletal marking are longer in Homo than in other genera (Macaca, Pongo). The moment arm data indicate that the longer muscle origin in Homo creates a larger moment arm for thumb adduction. The proximal, middle, and distal fibers have a mechanical advantage of 8.2, 9.1, and 7.9 respectively in Homo. Pan and Papio have only proximal fibers with a mechanical advantage of 0. Pongo demonstrates an intermediate mechanical advantage (2.2) but the muscle functions as an abductor when the thumb is flexed and only adducts when the thumb is extended. Since the distal progression of the muscle is evident from skeletal samples, it is possible to infer the relative mechanical advantage of this muscle from the length of the origin and insertion sites in the primate hand.

The detrimental effects of the destruction and disturbance of tropical forests due to human activities on wildlife, including wild primates, are well documented. However, there is a paucity of quantifiable physiological evidence to suggest that coping with the stress of habitat disturbance is reflected in an animal’s physiology. A common response to stress is the elevation of cortisol, a hormone that mobilizes energy stores in response to stressful situations but also has negative effects on growth, reproduction, and overall health, especially if elevations are chronic. Here we test the hypothesis that Kibale National Park’s grey cheeked mangabeys living in a disturbed forest habitat (Mainaro) exhibit higher levels of non-invasively collected urinary cortisol than those living in a relatively undisturbed area (Ngogo). Behavioral data indicate that Mainaro mangabeys spent time in smaller groups, traveled more, and were in polyspecific associations more often than Ngogo mangabeys. Urine samples were collected opportunistically and assayed for cortisol in the Yale Reproductive Ecology Laboratory using an enzyme immunoassay (EIA). We hypothesized that cortisol would be higher in mangabeys in the disturbed forest compared to mangabeys in the undisturbed forest. Our hypothesis was supported (Mann-Whitney U = 802.0, p < 0.0001). We conclude that non-invasive assessments of hormone biomarkers of stress are a useful method of measuring the physiological and behavioral effects of habitat perturbation-induced stress.

This study was supported by the Yale Institute for Biospheric Studies (YIBS), the Yale Center for Human and Primate Reproductive Ecology, and the Yale STARS program for undergraduate research.

Trauma – life and death in the medieval city of Toruń, Poland.

GABRIELA J. JAKUBOWSKA1 and TOMASZ KOZŁOWSKI2. 1Department of Anthropology, The Ohio State Univer-

American Journal of Physical Anthropology

AAPA ABSTRACTS

175
American Journal of Physical Anthropology

AAPA ABSTRACTS

American (N=22; Age=35.2±8.6), Hispanic-American (N=25; Age=37.5±9.4) and European-American (N=122; Age=37.2±9.4) women. The women all worked in clerical, technical or professional positions at large medical centers in NYC. Each wore an ambulatory BP monitor during the course of one mid-week workday. Ambulatory BP variation at rest (11AM-3PM), home (approx. 6PM-10PM) and during sleep (approx. 10PM-6AM) as well as average BP levels and change across these microenvironments were compared among the ethnic groups using ANOVA techniques. The results show that the variability of diastolic BP at work was significantly lower among Asian- and European-American women than among African- and Hispanic-American women (all at p<0.05). In addition, Asian-American women had significantly smaller work-sleep systolic changes than either European- (p<0.026) or Hispanic-American (p<0.009) women. African-American women also had smaller work-sleep changes than the European-American and Hispanic-American (p<0.014) women, but the Asian-American women’s changes tended to be smallest. These findings suggest that both daytime variability and waking-sleep changes may differ by ethnicity and support earlier studies showing that African-American and Asian populations have an attenuated waking-sleep BP change relative to European-Americans.

Funded by NIH grant 5T32HL007141.

Genomic data confirm Tarsius as the sister taxon of Anthropoidea.

NATALIE M. JAMESON1, ZHUO-CHENG HOU1, KIRSTIN N. STERNER2, AMY WECKLE2, MORRIS GOODMAN2,3, MICHAEL E. STEIPE1 and DEREK E. WILDMAN1,2. 1Center for Molecular Medicine and Genetics, 2Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI. 3Department of Anthropology, Hunter College of the City University of New York, New York, NY.

The relationship of tarsiers to other primates has been a controversial topic for more than a century. Groupings of tarsiers with either strepsirrhines or anthropoids in a prosimian clade or with anthropoids in a haplorrhine clade have been weakly supported despite numerous morphological and molecular studies. Using the publicly available whole-genome assembly of the Philippine tarsier, Tarsius syrichta, we have been able to infer the phylogenetic relationship of Tarsius within Primates. In addition, we present estimates of divergence times within the primates. Phylogenetic reconstructions using a 1.26 million base pair multiple sequence alignment derived from 1078 orthologous genes in 17 mammalian species provide overwhelming statistical support for the presence of a haplorrhine clade. Using maximum likelihood local molecular clock methods, we estimate a Cretaceous time of origin for Primates (72.6 Ma) and for Haplorrhini (68.6 Ma) and crown groups. Examination of rates of nucleotide substitution in the three major extant primate clades show that anthropoids have a slower substitution rate than either strepsirrhines or tarsiers. Thus, from the perspective of nucleotide substitution, the Anthropoidea can be considered the most primitive clade. Our results provide the phylogenetic framework on which morphological, reproductive, and genomic features can be reconstructed in Primates. Particularly the identification of Tarsius as the closest relative to Anthropoidea will allow for future study of anthropoid specific traits. It is the crown clade of the evolution of primate genomic and phenotypic features need to be understood in the broader context of mammalian phylogeny.

This study was funded by NSF grants BCS-0751508 and BCS-0827546.

Did Oreopithecus bambolii have an African ancestor? New evidence from its nasal bones.

RUTGER J.W. JANSMA. Department of Anthropology, New Mexico State University, Las Cruces.

Oreopithecus bambolii is frequently posited as an enigmatic ape because of the combination of a hominoid-like postcranium with a highly unusual dentition. Harrison and Rook (1997) propose that Oreopithecus is the sister-group to Dryopithecus based on a robust zygomatic with rugose superior portion, and supposed postcranial similarities that both presumably share with apes. Other authors support a closer relationship between Oreopithecus and the Miocene middle Miocene nyanzapithecines (Mabopithecus, Nyanzapithecus, Rangwapithecus and Turkana pithecus) based on uniquely shared beak-like premolars and relatively long and narrow molars with inflated cusps that restrict the size of the occlusal basins. Oreopithecus further shares diagnostic synapomorphies with Mabopithecus, such as a hypocone-trigon crest of the maxillary and premolars and relatively long and narrow molars with inflated cusps that restrict the size of the occlusal basins. Oreopithecus further shares diagnostic synapomorphies with Mabopithecus, such as a hypocone-trigon crest of the maxillary and premolars and relatively long and narrow molars with inflated cusps that restrict the size of the occlusal basins. In Oreopithecus bambolii, the nasal bones are derived from its previously unidentified nasal bones yields important information for assessing its systematic relationships.

Examination of a high-quality cast of the nearly complete skeleton IGF 11778 indicates that the nasal bones of Oreopithecus are short, strongly expanded superiorly and inferiorly and possess a triangular superior margin. Quantitative and qualitative morphological comparisons considering the range of variability within primates reveal that this combination of features is only shared with Turkana pithecus and possibly rep-
Sexing human blood and bones with metal stable isotopes.

KLERVIA JAOUI1, VINCENT BALTER1, ALINE LAMBOUX1, PHILIPPE TELOUK1, ESTELLE HENRICHERD1, and FRANCIS ALBAREDE1. 1Laboratoire des Sciences de la Terre, Ecole Normale Supérieure, Lyon, 2LAMPEA, MMSH, Aix-en-Provence.

Reliable sexing of human ancient remains depends on the presence of the coxal bone or well preserved DNA. Iron stable isotope ratios (56Fe/54Fe) have been recently measured in human organs, and an unexpected result was the discovery of a 65Fe-depletion in blood of males compared to that of females. Bones are good candidates to record the iron isotope signature of blood because they are permanently irrigated by blood. To test this hypothesis, we have measured the iron, but also the copper (65Cu/63Cu) and zinc (66Zn/65Zn) isotope composition from a suitable corpus of well-preserved phalanges (n=43) belonging to individuals buried at the necropolis of Saint-Laurent de Grenoble, Isère, France. The sex was previously estimated from coxal bone morphology. The metals were purified by liquid chromatography on iron exchange resin, and iron, copper and zinc isotope compositions measured by high resolution multiple-collector inductively coupled plasma mass spectrometry. The results show that bones record the iron isotope signature of blood, males being 65Fe-depleted relative to females (p<0.02). Moreover, bones of males are 65Cu-enriched compared to that of females (p<0.03). No difference is found in the 66Zn/65Zn composition of bone between males and females. Using metal isotope data measured in human blood, we demonstrate by mass balance calculations how metabolic processes can be responsible for the isotopic pattern observed in males and females. These results are a first step towards to the development of a new method to determine the sex of human fossil based on isotopic analysis of metals in bones.

Association between locomotor tendencies, high energetic costs of pregnancy, and inevitable problems created by physiological trade-offs and antagonistic pleiotropy.

GRAZYNA JASIENSKA. Department of Epigenetics and Population Studies, Jagiellonian University, Krakow, Poland.

Studies in human reproductive ecology point to the crucial role of energy availability in physiology and metabolism of reproductive processes of human females. Availability of metabolic energy during all stages of life of the woman, including her fetal and childhood development, and adulthood, determines levels of reproductive steroids hormones and subsequently chances of conceiving. High energetic costs of pregnancy and lactation explain why women with high

APPA ABSTRACTS

Exploring how positional behavior and habitat use covary with bone fracture frequencies among nonhuman primates may contribute to understanding the impact risk avoidance and morphological adaptation patterns have on human and primate evolution. The purpose of this research is to assess how common locomotor behaviors and broad habitat use tendencies are associated with skeletal fracture frequencies. It is hypothesized that more arboreal primates will have fracture frequencies exceeding those of more terrestrial primates and that primates whose locomotor repertoire includes more specialized behaviors will exhibit higher frequencies than those of more generalized arboreal and terrestrial quadrupeds. I conducted macroscopic and radiographic examinations of long bones from 1607 nonhuman primate species encompassing 20 species housed at The Ohio State University, the Cleveland Museum of Natural History, the American Museum of Natural History, the National Museum of Natural History, and the Caribbean Primate Research Center. Species were placed in categories based on degree of arboreality and dominant locomotor mode. The results of a multiple correspondence analysis suggest that there is a correlation among locomotor groups, long bones, and fracture frequencies (χ^2 = 201,046). Contrary to expectations, terrestrial primates tend to be associated more with increased fracture frequencies than arboreal primates, despite the highest frequencies coming from predominantly arboreal species. Although not statistically significant (χ^2 = 4.6577), generalized arboreal quadrupeds exhibit the highest fracture frequencies when comparing locomotor modes, followed by leapers, terrestrial quadrupeds, and brachiators. These data suggest that although associations exist between locomotor tendencies and fracture frequencies, patterns are not straightforward. This study was partially funded by the OSU Alumni Grant for Graduate Research and Scholarship (AGGRS) to HJ and the National Institutes of Health (NIH) grant number P40 RR03640 to the CPCR.

Variation in morphology and torque patterns of metatarsals in Pan.

TEA JASHASHVILI1,2,3, RENAUD LEBRUN4 and KRISTIAN J. CARLSON1,5. 1Institute for Human Evolution, University of the Witwatersrand, South Africa; 2Anthropological Institute of Zurich, Switzerland, 3Department of Geology and Paleontology, Georgian National Museum, Tbilisi, Georgia, 4Institut des Sciences de l’Evolution de Montpellier – UMR 5554, Montpellier, France, 5Department of Anthropology, Indiana University, Bloomington, IN.

The habitat of common chimpanzees ranges from moist and dry forests to forest galleries, and extends into savanna woodlands. Bonobos, on the other hand, are restricted to tropical forest mosaic landscapes and swamp forests. Comparative studies on locomotor behavior within Pan indicate that bonobos use more arboreal locomotion than common chimpanzees. Differences in habitat utilization and locomotor behavior within Pan likely impact functional morphology of the foot, especially metatarsals, creating a good model for exploring anatomical functional adaptations. Shape of tarso-metatarsal articulations, and metatarsal torsion have a major role in the degree of arching in the midfoot transverse arch. We evaluate proposed functional linkages by applying geometric morphometric methods to quantify inter- and intra-specific variation in shape and size of distal and proximal articular surfaces of anatomically associated Pan metatarsals ($P. troglodytes$ troglodytes n=16, P. t. schweinfurthii n=12, and P. paniscus n=15). We also measure variation in metatarsal torsion angle of the metatarsal rays, calculated between vectors in sagittal planes of proximal and distal articulations. In a 3D shape analysis, noticeable distinction in the configuration of the transverse arch between species exists. $P. paniscus$ has a relatively high transverse arch compared to $P. troglodytes$. Considerable variation in metatarsal torsion also exists within species. For example, $P. paniscus$ has a relatively high degree of lateral torsion of metatarsals II – V compared to $P. troglodytes$. Subspecies differences in transverse arch and metatarsal orientation corroborate anatomical adaptations presumably related to different degrees of grasping in the locomotor repertoire of genus Pan. This study was funded by the Claude Leon Foundation and Institute for Human Evolution, University of the Witwatersrand.

Reproductive ecology and female health: crucial role of energy availability, and inevitable problems created by physiological trade-offs and antagonistic pleiotropy.

GRAZYNA JASIENSKA. Department of Epigenetics and Population Studies, Jagiellonian University, Krakow, Poland.

Studies in human reproductive ecology point to the crucial role of energy availability in physiology and metabolism of reproductive processes of human females. Availability of metabolic energy during all stages of life of the woman, including her fetal and childhood development, and adulthood, determines levels of reproductive steroids hormones and subsequently chances of conceiving. High energetic costs of pregnancy and lactation explain why women with high
parity often have poor health in older age and, consequently, reduced lifespan. Modern clinical medicine usually ignores findings from the area of human reproductive ecology, but evolutionary medicine suggests that this knowledge is useful in both medical practice and public health preventive programs for women. Most important aspects include treatment of infertility, prevention of reproductive cancers and of diseases, such as diabetes, cardiovascular diseases, and Alzheimer’s, the risks of which often increase in women who paid high costs of reproduction. They also emphasize that programs of effective disease prevention are difficult to design due to the existence of physiological trade-offs and pleiotropic effects of genes, including APOE, PPAR-gamma, IL-10, ERS1, which have both important roles in fertility and health in women. For example, high lifetime levels of reproductive steroid hormones have both beneficial and detrimental effects: they increase chance of pregnancy but also the risk of breast cancer. Supported by the Center for Human and Primate Reproductive Ecology (CHAPRE).

Alometry of sexual dimorphism in sub-cortical structures of the human brain.

PETRA E. JELINEK1, STEVEN R. LEIGH1 and KIRK I. ERICKSON2.
1Department of Anthropology, University of Illinois, Urbana-Champaign, 2Department of Psychology, University of Pittsburgh.

Sub-cortical structures play vital roles in relaying information to and from higher cortical regions to other regions of the brain. They are also considered to be an evolutionarily more conserved part of the brain. However, recent research suggests that this region may not be as static as previously assumed. Questions concerning scaling of the sub-cortex may help in understanding how sub-cortical regions vary in response to differences in overall brain size, sex, and age in the adult human brain. This research tests a series of hypotheses concerning relationships between size and shape (static adult scaling relations) in brains of adult modern humans using in vivo measurements from magnetic resonance imaging (MRI) scans. Subjects include 192 healthy individuals, consisting of two age categories: ages 18 to 35, and ages 50 to 80. MRI’s were segmented in an automated fashion using FSL (FMRIB Software Library). The measurements of interest include total brain volume, nucleus accumbens, amygdala, caudate nucleus, hippocampus, pallidum, putamen, and thalamus. The statistical analysis included reduced major axis regression with each structure regressed against total volume, followed by regression against the geometric mean.

American Journal of Physical Anthropology

Assessing the local geological variability on strontium isotopes from skeletal remains from 4th – 5th century A.D. Aila, Jordan.

Cammie J. Jennings and Megan A. Perry. Department of Anthropology, East Carolina University.

Certain isotopes in human skeletal tissues can be strong indicators for the presence of immigrants at an archaeological site. This research focuses on identifying immigrants into ancient Aila using the strontium isotope ratio ⁸⁷Sr/⁸⁶Sr from the dental enamel of Byzantine period burials (n = 28). Aila, located at the tip of the Gulf of Aqaba in the Red Sea, served as an important maritime and overland trading center for much of its history. Accordingly, the site contains numerous examples of imported artifacts and architectural styles from the Levantine and Red Sea regions during this period. Did individuals seeking economic gain from the prosperous seaport, such as traders, travelers, or residents of the surrounding desert regions, inhabit the city? Or are the varied stylistic influences the result of diffusion via a transitory population? The ⁸⁷Sr/⁸⁶Sr results present a surprisingly wide array of strontium isotope values from permanent dental enamel, extending much above the range provided by local faunal and adult human bone values. It is statistically improbable that immigrants from different regions would present a perfectly normal distribution of isotope values reflecting their childhood locales. However, children at Aila could have consumed a very different diet than the adults at varied levels, resulting in much higher-than-expected ratio and a wide but normal distribution. Results from additional sampling of 15 geological formations and 3 groundwells in the Aqaba region suggest that childhood diet at Aqaba contained an unknown supplement that originated in the Precambrian formations surrounding the city, and that these are locally-born individuals.

Structural differences of orthologous brain-expressed genes between Gorilla and human revealed by high-throughput RNA sequencing.

Hui Jia1, Leonard Lipovich1, Lawrence 1. Grossman2, Monica Uddin2, Patrick Hopp3, Che T. Sherwood1, Christopher Kuzawa1, Derek E. Wildman1 and Morris Goodman1. 1Center for Molecular Medicine and Genetics, Wayne State University. 2Center for Social Epidemiology and Population Health, University of Michigan. 3Department of Neuroscience, Mount Sinai School of Medicine, 4Anthropology Department, The George Washington University. 5Department of Anthropology, Northwestern University.

Evolutionary changes during human ancestry have resulted in adaptive brain plasticity which persists over extended de-
velopmental periods and, in its extent, differentiates humans from other apes. Elucidation of the molecular basis underlying these changes can help address the fundamental question of what makes human behavior unique, and requires comparative analysis of genes expressed in hominid brains. Transcriptome projects, which have lagged far behind genome projects, analyze all ribonucleic acid (RNA) molecules transcribed from the genome in a given tissue or organ, and are necessary to fully document the structure and hence the information content of expressed genes. Differences in gene structure, rather than gene sequence, between related species are increasingly recognized as contributing to the genomic basis of interspecies distinctions, thanks to their impact on the length and sequence of orthologous protein-coding translated regions, and non-coding RNAs.

To test the hypothesis that structural differences of orthologous genes can be detected in a comparison of the well-characterized baboon transcriptome to the heretofore-uncharacterized *Gorilla* transcriptome, we sequenced the *Gorilla* plasmid temporal transcriptome using high-throughput Illumina Solexa technology. Our analysis is the first to document actual structures (genomic positions of promoters, exons, introns, and splice sites) of orthologous genes, a subset enriched (p = 0.0239) in known genes functional in axon guidance. These newly identified interspecies gene structure differences of axon guidance factor genes may impact neuronal network formation and hence developmental syntactic plasticity. This study was funded by the National Science Foundation, grant numbers BCS-0725068, (2) National Center for Research Resources, grant P51RR013896, (3) National Heart, Lung and Blood Institute, grant P01HL025972, and (4) National Center for Research Resources, grant R01RR08781.

Identification of quantitative trait loci for cranial capacity in a population of baboons (Papio hamadryas ssp.).

JESSICA L. JOGANIC\(^1,2\), JEFF ROGBABOON (Papio hamadryas ssp.).

dserved for 358 genes, a subset enriched (p = 0.0239) in known genes functional in axon guidance. These newly identified interspecies gene structure differences of axon guidance factor genes may impact neuronal network formation and hence developmental syntactic plasticity. This study was funded by the National Science Foundation, grant numbers BCS-0725068, (2) National Center for Research Resources, grant P51RR013896, (3) National Heart, Lung and Blood Institute, grant P01HL025972, and (4) National Center for Research Resources, grant R01RR08781.

Feeding ecology of olive baboons in the Kibale forest: preliminary results on diet and food selection.

CALEY A. JOHNSON\(^1,2\), LARISSA SWEDDLE\(^1,2\) and JESSICA M. ROTHMAN\(^1,2,4\). Department of Anthropology, The Graduate Center; City University of New York, 2 New York Consortium in Evolutionary Primatology (NYCEP), 3 Department of Anthropology, Queens College of the City University of New York, 4 Department of Anthropology, Hunter College of the City University of New York.

Baboons (Papio) are one of the most studied primate genera. Most of what we know about baboons, however, derives from savanna habitats while little is known about baboon ecology in forests. We present preliminary data on the feeding ecology of a newly habituated group of olive baboons, *Papio anubis*, in Kibale National Park, Uganda. Data were collected over 32 species and 10 different plant families comprising fruits (46%), stems (33%), tubers (7%), leaves (7%), and other items like mushrooms, insects and seeds (7%). Food items analyzed represent 71% of species consumed during feeding events. Foods and discards were similar in protein, energy and non-structural carbohydrates. Fat content was extremely low in all food parts (<5%). Eaten foods were eaten in lower in hemi-cellulose while cellulose was similar between discarded and eaten parts. Surprisingly, eaten foods had higher lignin than corresponding discards, but not when all eaten and discarded parts were compared. Composing the forest, 41% of the consumed food were condensed tannins. While 10 of 12 discarded foods had condensed tannins, only 5 of 9 eaten parts did, suggesting that tannins may play a role in food selection. The study of baboon ecology in forests is important as it elucidates feeding plasticity among baboon populations.

This study was funded by NSF DGE 0335415 (NYCEP IGERT).

Contextualizing human skeletal collections in Hrdlička's Gulf States catalog through archival research.

KENT M. JOHNSON and CHRISTOPHER M. STOJANOWSKI. School of Human Evolution and Social Change, Arizona State University.

Aleš Hrdlička published craniometric data for thousands of individuals in a series of well-known catalogs. The Gulf States catalog (1940), for example, includes 714 individuals from 42 locations in Florida and provides an important source of data on the biological variation for this state. However, provenience information is meagerly reported - a factor which limits the utility of these data in comparative analyses and in some cases misrepresents the archaeological context. Here we present results of archival research in the Smithsonian Institution Archives for seven of the largest Florida skeletal collections published in Hrdlička's Gulf States catalog. We accessed unpublished field notes, personal correspondence, and accession information to identify provenience data that better delimit sample contexts. Here we focus on two of these collections: Canaveral and Perico Island. Of 91 individuals from Canaveral, 59 can be allocated to specific mounds within the area. As such, “Canaveral” is a meaningless provenance. Of the 102 individuals from Perico Island, 101 can be allocated to more specific provenience locations in this multi-component site. In both cases, using Hrdlička's provenience label masks important contextual information which...
impacts the results of biodistance analyses using these samples. This poster demonstrates the importance of accessing archival records and the continued need for a contextualized consideration of erasable skeletal samples in biological anthropology. Because the majority of these individuals are still curated at the National Museum of Natural History, presenting these data from archival records increases their utility for future research.

Postures adopted during vertical clinging and grasping in Propithecus verreauxi and Varecia variegata.

LAURA E. JOHNSON and DANIEL SCHMITT. Department of Evolutionary Anthropology, Duke University.

Most primates regularly use vertical clinging and grasping postures on arboreal supports. Unlike other vertebrates, primates (with the exception of Callitrichidae clinging without claws or adhesive pads. Thus the ability to effectively maintain a clinging posture may rely on other anatomical features such as long limbs or digits and the ability to generate sufficient force normal to the substrate. Several primates habitually use vertical clinging postures in association with leaping. Although static clinging and leaping are separate behaviors, primates with specializations for VCL may cling differently, and possibly more efficiently, than arboreal quadrupeds. To explore this hypothesis, two strepsirrhine species of similar body size but different locomotor specializations (Propithecus verreauxi, a specialized leaper and Varecia variegata, an arboreal quadruped) were filmed with multiple cameras while clinging to vertical, cylindrical substrates of 2" 4" and 8" in diameter at the Duke Lemur Center Joint positions were digitized from video using dltdv5 in MATLAB. P. verreauxi adopted a narrow range of postures, with flexed hindlimbs (ex. on the 2" substrate, knee angle average 11°, range 5° - 16°), keeping the body close to the substrate. In contrast, V. variegata shows greater variability in postures but on average uses relatively more extended hindlimbs (ex. 2" substrate, knee angle average 56°, range 17° - 102°) moving the hindquarters up and away from the substrate. These results suggest a VCL primate has anatomical specializations that facilitate efficient clinging, as evidenced by their consistent use of flexed hindlimbs, keeping the body close to the substrate. This study was funded by NSF BCS-0452217.

Modelling of longitudinal data.

WILLIAM JOHNSON. Centre for Global Health and Human Development, School of Sports, Exercise and Health Sciences, Loughborough University, United Kingdom.

Fitting a mathematical model to longitudinal data is a powerful analytical tool in any discipline that requires the analysis of repeated measurement data. In the study of human growth, repeat measurements are clustered within individuals, thus violating a principal assumption of independence of observations in conventional regression analysis. Multilevel models (MLM) that introduce random variation between clusters allow researchers to consider the often hierarchically nested nature data.

MLMs were applied to longitudinal growth data on urban (n=402) and rural (n=422) Indian infants enrolled in two different cohort studies to produce weight-for-age and length-for-age curves. Different previously proposed growth models (Count and Berkley-Reed), and different age transformations for models that are not defined at age zero (age+1 and age+9/8), were tested using the MLM approach. Covariates, including breast feeding status at three months and maternal education, were fitted and entered as random slopes.

A multilevel version of the Berkley-Reed model best described infant growth in these cohorts, although an appropriate age transformation could not be found. Breastfeeding status had no significant effect on growth, but the weight growth of urban infants was significantly different for each maternal education group, with infants of illiterate or primary school education mothers generally weighing 0.25 kg less than those born to mothers with secondary/college education. With a MLM it is possible to identify independent inter-group effects while simultaneously adjusting for individual growth characteristics. This technique can be applied to any data that demonstrates clustering of observations, as is often found in longitudinal study designs with physiological outcomes.

Documenting dental inventories, development, and wear in Osteoware.

ERICA B. JONES. Department of Anthropology, University of California Santa Cruz.

The goal of this presentation is to present the progress on a mass spectrometry-based method for the identification of region of origin in modern Mexican populations. Region of origin is determined through analysis of strontium, carbon, and oxygen isotopes in human tooth enamel. In addition to database progress new information on five unknown forensic cases compared to the database will be presented. Isotope ratios in teeth and bones have been analyzed by archaeologist to investigate patterns of residential mobility and migration in prehistoric peoples. In this study, a similar methodology is applied to forensic material to determine the region of origin for Mexican individuals that died while crossing the border into the United States. The aim of this project is to develop a region of origin map derived from analysis of donated teeth from persons born in various Mexican states and regions. The map will be used for cross-comparison with deceased border-crossers of unknown origin.

Using geolocation at the US Mexico border: isotopic fingerprinting in modern Mexican populations: using strontium, carbon, and oxygen to determine region of origin for deceased undocumented border crossers.

CHELSEY JUAREZ. Department of Anthropology, University of California Santa Cruz.

The dental data is fully integrated with other modules in Osteoware, allowing an even more complete understanding of the demography of the sites under study. Cross-referencing skeletal age indicators with dental age, it is particularly useful in determining the minimum number of individuals by age categories and for potential sorting of mingled remains. The presentation will discuss protocols and provide case studies of data entry for dental inventories, development, and occlusal wear using Osteoware.

Osteoware is supported by grants from the National Center for Preservation and Technology and Training (NCPPT), National Park Service, and the Smithsonian Web 2.0 Fund.

American Journal of Physical Anthropology
The teeth used for this project came from clinics in Mexico and California that donated the extracted teeth of their Mexican born patients. This investigation utilized the permanent molar teeth of 164 individuals. These teeth samples retained the accompanying information on the individuals region of origin within Mexico, their age, and sex. Each tooth in the study was analyzed using MC-ICPMS, PISONS optima, and the Elemental analyzer. The results of this isotopic analysis reveal the formation of five clearly distinct separate and identifiable isotopic populations that correspond to five specific geographical regions. Training set blind sample comparison of unknown samples against the database shows reclassification in 88% of cases and correct classification (within 2 sigma) in over 95% of cases. These results are also compared against the database and results of their classification matrix are discussed.

"Who are your People?" Ascribed identities and the social uses of genomics.

ERIC JUENGST. Department of Social Medicine, School of Medicine, University of North Carolina, Chapel Hill.

Four of the most enduring ways in which social identities are ascribed to people are through attributions of their Future potential (e.g., saved v. damned, free v. slave, etc.), Ancestral lineage (name, family, clan), Community membership (religion, class, origin place, etc.), and Ethnic affiliation (race, people, culture etc.). In our society, these four identifiers, the "FACE" facts, are usually embraced when they confer social advantage and repudiated when they do not. They have always been powerful factors in the establishment of social hierarchies and the preservation of social power. They are also the four features of human identity that genomic profiling promises to allow us to clarify, by revealing our molecular predispositions, family connections, genealogical migrations, and population mixtures. The FACE facts that genomics generates may create some ascriptive classifications that disrupt established social hierarchies in constructive ways. But experience is already suggesting that where genomic profiling reinforces these identity markers, it is also likely to reinforce their existing social uses. This is a risk that finer grained molecular studies can only exacerbate, unless their results are carefully contextualized within the larger debates over the justice of the social classifications they might serve.

Y-chromosome variation of a Ch'orti' Maya population in eastern Guatemala.

ANNE E. JUSTICE, STEPHEN CRAWFORD. Department of Anthropology, University of Kansas, Lawrence, KS.

The Ch'orti' language descends from the Cholan branch of Classic Maya which split into Ch'olti' and Ch'orti' in Eastern Guatemala, where descendants of Ch'orti' speakers have resided for over 1500 years. The Ch'orti' Maya in eastern Guatemala represent the only likely descendants of the Central Maya region remaining in Guatemala. The Ch'orti' region is of particular interest to biological anthropologists for several reasons. While it is clear that the Maya were the ruling class in the Central area, there is also evidence that the Lenca, Xinca, or other non-Maya groups may have made up the peasant class here. Sex chromosomes allowed for a higher degree of non-native admixture than found among other Maya. While there are linguistic, ethnographic, and archaeological data there is a lack of biological data on the Ch'orti'. The team here hypothesizes that the unique history of this region has given it a higher level of paternal genetic variation than found in surrounding areas. DNA was extracted from 21 males residing in Jocotán, Chiquimula, Guatemala. Y SNPs were characterized using HyBeacons® PCR probes or sequencing, and STRs were characterized using AFLP. Haplogroup Q represents 76% (62% haplotype Q1a3a, and 14% Q1) of the sample. These results were compiled with data from surrounding Native American populations for analysis. While there is evidence of non-native admixture within the Ch'orti', the paternal lineages in this region are still predominantly native, and there are different patterns of non-native gene flow compared to surrounding populations.

This research was funded by a General Research Fund grant from the University of Kansas and the Tinker Foundation Summer Field Research Grant.

Stratigraphy, taphonomy, and age of a Homo erectus calvaria from Sambungmacan.

YOUSUKE KUROKAWA1,2,3, KAIZU MIYAJI1,2, TAKASHI KURINAIMI4,2, TAKASHI SANO3, NORIKO HASEBE4, FACHROEL AZIZ2, ETTY INDIARI2, ERIC SETYABUDI2, HIROYUKI OTSUKA2 and HISAO BABA1. 1Department of Anthropology, National Museum of Nature and Science, Tokyo, 2Centre for Geological Survey, Geological Agency, 3Department of Geology, National Museum of Nature and Science, Tokyo, 4Institute of Nature and environmental technology, Kanazawa University, 5Laborary of Paleozoology and Paleoanthropology, Gadjah Mada University, 6Seiryo, Gakushuin.

Java, Indonesia, is a unique place to yield a large number of Homo erectus fossils, hence has a key role in human evolutionary studies in Asia. However, some uncertainty about the chronology of these fossil specimens has hampered detailed documentation of morphological evolution and variation in Javanese Homo erectus. The fossil specimens from Sambungmacan, Central Java, are no exception to this situation. Some researchers view these fossils as contemporaneous with those of the late Pleistocene Ngandong High Terrace, whereas others expect that Sambungmacan Homo erectus were chronologically intermediate between the Sangiran/Trinil and Ngandong groups of Homo erectus.

In this study, we attempt to reconstruct the basic sedimentary history of the Pleistocene and Holocene in the Sambungmacan area, from which a large number of fossil specimens have been excavated. We used a relative uranium/lead dating method to date Sambungmacan calvaria, from where two calvariae of Homo erectus (Sambungmacan 3 [Sm 3] and 4 [Sm 4]) were scooped up from the riverbed of the Solo River. We also tracked the original strata or units for Sm 4 by examining the stratigraphic level for Sm 4 by examining the stratigraphic level for Sm 4 from Sambungmacan Cemeng area, from where two calvariae of Homo erectus were deposited in its source layer soon after the individual's death.

"Matters of care and concern": lessons for anthropological genetics from osteology's repatriation and NAGPRA experience.

ANN M. KAKALIORAS. Department of Anthropology, Whittier College, Whitter, California.

Before and since the passage of NAGPRA (the Native American Graves Protection and Repatriation Act), osteologists, skeletal biologists and bioarchaeologists have struggled with repatriation's cultural and practical implications for their research. In this paper, I first present my own and others' data suggesting that human skeletal research has declined in North America in the twenty years since repatriation became legal reality. I interpret and analyze these data as functions of both actual repatriation requests, as well as disciplinary reluctance to engage with the processes set forth by the law. NAGPRA generally, the repatriation of Native American ancestral human remains, associated funerary objects, and other items with ongoing cultural meaning for living Native people. The law also mandates consultation between museums, academic institutions and federally-recognized Native tribes and nations. It is not, however, an ethical guide for the treatment of human remains, or for the fostering of respectful relationships between individual scientists, federal agencies, and Native descendants.

Although other guidelines (e.g., 45 CFR 46, the Belmont Report) secure the pro-
This study was funded by the Leakey Foundation, the Field Museum, Washington University (St. Louis), and Yale University.

Across-species variability in primate coat color supports Gloger's rule.

JASON M. KAMILAR and BREND A. J. BRADLEY. Department of Anthropology, Yale University.

Gloger (1833) observed that bird populations living in warm and wet habitats were darker compared to those found in dry, cool areas. However, this hypothesis has seldom been tested, particularly for mammals. Here, we test Gloger's rule using a dataset consisting of more than 100 primate species representing all major primate clades. We used museum skins, digital photography, and color correction software to quantify the brightness of the dorsal and ventral surface of each species. We utilized the mean actual evapotranspiration (AET) within the geographic range of each species as a proxy for habitat conditions. AET values are high in warm, wet environments. We included additional variables that may influence pelage coloration: body mass, positional behavior, and time since the specimen was collected. To examine the possible relationship between pelage brightness and AET, we used a method developed by Freckleton and Jetz (2009) that simultaneously accounts for the potential confounding effects of phylogenetic and spatial autocorrelation in the data. We found that decreasing levels of AET were significantly related to decreasing pelage darkness on the dorsal surface, while controlling for other effects. Thus, we found general support for Gloger's rule in primates. The mechanism driving Gloger's rule is not easy to discern, but may include a thermoregulatory benefit by increased water evaporation from dark hair, increased resistance to keratin degrading microorganisms in hair with large amounts of eumelanin, and/or increased background matching for light colored species living in cool, dry habitats.

This study was funded by the Leakey Foundation, the Field Museum, Washington University (St. Louis), and Yale University.

American Journal of Physical Anthropology

Suicide – pattern and distribution of specific trauma on the skull.

FABIAN KANZ, ALEXANDER VLČEK and DANIELE RISSER. Department of Forensic Medicine, Medical University of Vienna, Austria.

Differentiating between skull lesions as a result of interpersonal or intrapersonal conflict (self-harm) are of crucial importance in forensic anthropology and paleopathology. Identification of a suicide specific pattern and/or distribution of lesions on the skull was subject of this study.

The historic specimen collection at the Department for Forensic Medicine in Vienna, built up over the last two centuries, hosts cranial skeletal remains from 261 individuals, 44 of them committed suicide.

From these 44 individuals, 37 (84.1%) experienced gunshot trauma, 6 (13.6%) sharp force and 1 individual blunt force trauma. 23 (52.3%) of gunshot entrance lesions were on the right side of the skull, predominantly in the region of the temple, 4 (10.8%) were in the same area but on the left side. Another 3 (8.1%) were found on the forehead, 5 (13.5%) on the palate and 2 (5.4%) on the occiput. One blunt force trauma, a massive fracture, was caused by a jump from the 5th floor. Half of the sharp force induced traumata were caused by pointed objects (nails and awl) and the other half by axes. These rare cases of self hacking left in all cases multiple (>20) testing lesions around the final death blow.

No specific suicide pattern for gunshots was evident, but there were no shots to the face or to the apex of the head. Sharp force trauma, predominantly associated with psychological problems, were always multiple, therefore might be easily misinterpreted as the results of interpersonal conflict involving mutilation.

eSkeletons: a digital library of primate anatomy.

JOHN KAPPELMAN and PETER KEANE. The University of Texas, Austin.

Anatomy is taught at many educational levels but a scarcity of specimens means that large numbers of students do not have access to the materials required for the traditional approach to the subject. The web offers a unique solution to this dilemma, and we present here our latest approach to this problem.

The core of www.eSkeletons.com includes all of the separate elements of the skeleton digitized in 2-D and 3-D. Humans are a central focus of the site, and a new application is directed to an on-line course in human osteology. Many nonhuman primate species are also included, and because several of these taxa are rare or endangered, the site also helps to inform users as to the plight of these animals. The user can navigate through the various regions of the skeleton, select a region, and then view the elements. All six directions are provided, along with a 3-D animation, and the user has the option to activate labels for muscle origins and insertions along with joint surfaces. Because comparative anatomy is so important, the user can select an element from different taxa for visual comparisons of size and shape. We have also constructed a digital calipers for on-screen measurements, and one of our special comparative tools permits the user to superimpose one element over the other. The database is organized for ease of editing and updating and designed so that other taxa can be easily added to the digital library.

Thanks to several generations of UT undergraduate and graduate students who have worked on this project, and support from NSF and UT Austin.

The biological implications of the origins of agriculture in Eastern Europe.

JORDAN KARSTEN1 and GWYN MADDDEN2. 1Department of Anthropology, State University of New York at Albany 2Department of Anthropology, Grand Valley State University.

The Trypillian culture complex of western Ukraine is hypothesized to be one of the earliest agricultural communities in Eastern Europe dating to as early as the 6th millennium B.C. (Kadrow et al. 2003). The hypothesis has been supported by archaeological evidence including stone tools believed to be sickles, as well as the presence of Venus figurines representing the existence of a fertility cult. Notably, no grinding stones or artifacts associated with the processing of agricultural products have been discovered in large areas of the Trypillian homelands leading some archaeologists (Tkachuk, 2010) to question the extent to which the Trypillian people relied upon farming. Excavations carried out at Verteba Cave, located in the Ternopil Region of Ukraine, during the summers of 2009 and 2010 have unearthed some of the only burials to be definitively associated with Trypillian artifacts. Analysis of 14 individuals, ranging in age from 6 months to 50 years of age, was undertaken to determine if the interred individuals exhibited skeletal markers typical of the transition to an agrarian lifestyle. The population exhibited numerous dental caries and a dental abscess. Additionally, the existence of enamel hypoplasias suggest nutritional stress during development, which is a hallmark of early agricultural societies. Therefore, bioarchaeological analyses of the finds at Verteba Cave support the hypothesis that the Trypillian population was practicing subsistence agriculture.
Geometric morphometric analysis of maxillary central incisor crown form.

AKIKO KATO1, MAKIKO KOUCHI2, MASAAKI MOCHIMARU2 and NORIKAZU OHNO1. 1Department of Oral Anatomy, School of Dentistry, Aichi-Gakuen University, 2Digital Human Research Center, National Institute of Advanced Industrial Science and Technology.

Studies of tooth morphology have been essential in human biology and phylogeny. Dental traits related to genetic diversity have been studied over a long period and grossly evaluated based on the standard Arizona State University (ASU) reference plaque. However, grading by subjectively-based observation has possibility of inter- and intra-observer measurement errors. We aimed to analyze crown models three-dimensionally to assess shoveling shape. Micro-CT scanned data of 38 maxillary central incisors housed in Aichi-Gakuen University and Brown and Herbranson Imaging were used to create crown models of outer enamel surface (OES) and dentino-enamel junction (DEJ) form. All data were evaluated according to the shoveling grade on the ASU Dental Anthropology System into weakly (grade 0-2) shovel-shaped and strongly (grade 3-7) shovel-shaped group. Homologous models consisting of the same number of data points of the same topology were created and the distance matrices between tooth models of OES and DEJ were analyzed by using multidimensional scaling analysis (MDS). Student's t-test was used to compare the MDS scores between weakly and strongly shovel-shaped groups. The result of t-test in OES model confirmed significant differences between two groups (p<0.001), and a negative correlation coefficient of -0.53 was obtained between shoveling grade and MDS score. On the other hand, the result in DEJ model was not statistically significant (p=0.07) between two groups. Our results indicate that geometric morphometric analysis of micro-CT scanned tooth crowns represents a powerful solution for objective shape assessment of human teeth. This study was funded by The Hori Information Science Promotion Foundation.

LAURIE KAUFFMAN. Department of Biological Science, DePaul University.

Sustainable tourism is meant as a means of economically supporting an area while protecting the environment. Two aspects contribute to truly sustainable primate-based tourism. First, the primate population cannot be negatively affected. Second, tourists must have a good experience so that they recommend the location to others. Prior research demonstrates that tourists want a memorable experience: for wildlife-based tours this includes close contact with the animals (including eye contact) and observation of natural behaviors. I studied primate response to tourist presence in the Central Suriname Nature Reserve (CSNR) through a theoretical lens of predator/prey interactions. Primate response to tourists differed by species. Brown capuchins, squirrel monkeys and howler monkeys did not flee or alarm call in the presence of tourists while bearded sakis, wedge-cap capuchins, tamarins and spider monkeys did. Further, primates who did not respond to tourists were seen feeding. In addition, there were no statistically significant effects of tour group size, speed or nosiness on primate anti-predator responses. Results indicate that under certain circumstances tourism may have negligible impact on some species. To remain sustainable, tourism in the CSNR should focus on species who do not demonstrate anti-predator behaviors in the presence of tourists—also contributing to the economic sustainability of tourism. Tourists are likely to have a better experience when they have more time to observe primates performing behaviors such as feeding. More research is needed in order to better predict primate response to tourists and to understand what tourists in the CSNR want to see.

Collagen fiber orientation heterogeneity (CFO-Het): does this new characteristic reflect habitual load history in the chimpanzee femur and does it corroborate CFO based on image gray levels?

KENNEDY E. KEENAN and JOHN G. SKEDROS. Department of Orthopedics, University of Utah School of Medicine, Salt Lake City, Utah.

Gray levels (GLs) in circularly polarized light (CPL) images reflect predominant CFO: darker GLs represent longitudinal orientation, brighter GLs represent oblique-to-transverse orientation. CFO-Het (variability of CFO) is a new characteristic that might correlate more strongly with habitual load history than CFO or secondary osteon morphotype score (osteonMTS) (Skedros et al., 2009 BONE). CFO-Het = the full-width at half-maximum (FWHM) of an image GL profile (larger FWHM = greater CFO-Het). Eight skeletally mature chimpanzee femora (50% shaft; proximal shaft = 70% and 80%) were embedded in methacrylate, ultramilled, and imaged in CPL. FWHM was measured using image GL profiles of the CPL images where we measured CFO and osteonMTS in our previous studies. CFO-Het data were analyzed for section location and quadrant (anterior, posterior, medial, lateral) differences. We hypothesized CFO-Het to be greatest in regions with predomi- nantly shear (torsion and/or neutral axis regions). Results showed that CFO-Het correlated with CFO-Het osteonMTS (r=0.88). Unexpectedly, CFO-Het is highest in the medial ‘compression’ cortex (p < 0.05) of the proximal shaft (habitual bending) but, as expected, was not significantly different quadrant-wise in the 50% shaft (comparatively more diffuse torsion/shear). However, the 50% shaft had unexpectedly lower CFO-Het than the proximal cortex (p = 0.026). Our results generally corroborate CFO-based load history data, but does so unexpectedly and less consistently than the CFO and osteonMTS data that we previ- ously reported for these bones. But CFO-Het found materials. Here we present: mechanisms not shown by CFO data in bones where osteonMTS data cannot be obtained (e.g. none/few secondary osteons).

Odontometric analysis of the reanalyzed and expanded Cerco pithecoides sample from the Haagsgat fossil assemblage, Cradle of Humankind, South Africa.

ANTHONY D.T. KEGLEY1,2, JASON HEMINGWAY2 and JUSTIN W. ADAMS1,2. 1Department of Biomedical Sciences, Grand Valley State University, Allendale, MI, 2School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.

Previous paleontological work (1987-1993) on fossiliferous ex situ sediment blocks from the Haagsgat cave site, 19km northeast of the Blauwbank Valley sites, has yielded a diverse faunal assemblage including fewer than two extinct species of cercopithecid assigned to Papio anusticeps and Cercopithecoides. Previous research on the Cercopithecoides sample had identified 25 craniidonal specimens, including a nearly complete adult female cranium (HGD 1167) and the most complete juvenile cranium (HGD 1166) recovered for Cercopithecoides in South Africa. After resuming research at Haagsgat in 2010, we have reassessed all previously recorded fossil materials. Here we present the updated Haagsgat Cercopithecoides assemblage, with basic descriptions and a comparative odontometric analysis with craniodonal material assigned to Cercopithecoides wiliamsi from several South African fossil assemblages. Our results indicate that 20 of the 25 specimens originally assigned to Cercopithecoides can be supported, while four (HGD 1176, HGD 1185, HGD 1187 and HGD 1221) are P. angusticeps (expanding the previously documented sample of P. angusticeps to 87 specimens), and one (HGD 1187) is Bovidae. After reviewing all primate...
and non-primate material, including a number of uncataloged elements, we have identified an additional eight specimens (one partial maxilla, one isolated upper molar and six partial mandibles) attributable to Coropithecoides, bringing the total sample from the 1988 ex situ sample to 28. Unfortunately, the more complete crania (HGD 1166 and HGD 1167) could not be located by the repository institution for the collection (Council of Geological Sciences). Thus, data included for both specimens derive from polyurethane casts.

Strontium stable isotope analyses of human bone reveal no Wari state emissaries in the Las Trancas Valley of the Nasca region of Peru (750-1000 A.D.).

CORINA M. KELLNER1, ANDREW SOMERVILLE2 and MARGARET J. SCHOENINGER2. 1Department of Anthropology, 2Department of Anthropology, Northern Arizona University.

The ability to determine body mass from juvenile skeletal remains has important implications in the fields of biological archaeology, paleoanthropology, and forensics. Femoral head diameter is frequently used to estimate body mass in adult skeletal remains. However, long-standing assumptions regarding the accuracy of the femoral head for estimating body mass lack contemporary and large-scale verification in subadults. Ruff (2007), and now more recently Robbins et al. (2010), have attempted to address this issue but with small sample sizes (n=20) from the Denver Growth Study and from Franklin County, Ohio respectively. Predictive equations for body mass were generated with cross-sectional clinical data of modern juvenile femora. A questionnaire will provide information about the individual’s age, body weight, and activity level. Radiographic measurements of the femoral head and distal metaphysis were taken to determine the most accurate equations for each age group. Preliminary results seem to support Ruff’s (2007) findings. The distal metaphysis appears to better estimate body mass for individuals into their early teens, but in the mid to late teens the femoral head loses its accuracy and the femoral head becomes more appropriate. These equations will provide the means in which to extrapolate body mass estimates for unidentified subadults remains in modern forensic cases. This will also help to shed light on changes in body mass associated with prehistoric diet and activity transitions.

One of the key characteristics of ancient DNA, low copy number, may be a product of its extraction.

BRIAN M. KEMP1,2, JODI LYNN BARTA1,2, CARA MONROE1,2,3, JUSTIN TEISBERG2, SARAH RUNNELLS5 AND KELLI PLANIGAN4. 1School of Biological Sciences, Washington State University, 2Department of Anthropology, Washington State University, 3Institute of Anthropology, University of California-Santa Barbara, 4School of Molecular Biosciences, Washington State University.

From the outset, it was observed that the genetic material extracted from ancient remains is typically in a chemically degraded state and in low copy number. During the past 20 years of ancient DNA (aDNA) research, these observations have rarely been challenged. With the goal of maximizing success in working with aDNA samples, a number of studies have compared DNA yields using various extraction techniques. Such studies often found one extraction method superior to others tested, under particular conditions (e.g. age and state of preservation of the remains, associated impurities in the samples). However, previous studies began with no knowledge of DNA quantity in the samples prior to extraction. While researchers may have identified the best extraction method within a candidate pool of methodologies, they had no means to determine how poorly these methods performed relative to complete recovery of DNA material. In this study, we created an aDNA standard (a concoction of DNA thought to resemble aDNA with regard to strand length) that we can control precisely in copy number. Our experiments show that the typical extraction steps widely used in aDNA studies all perform very poorly in retaining short segments of DNA. This allows us to critically create acceptable “aDNA” copy numbers during the extraction of standards that far exceed most copy number expectations for an ancient sample. Therefore, it is possible that ancient aDNA is far more preserved genetic material than previously thought, and low copy number is the result of extraction techniques.

Applying Geographical Information Systems (GIS) to analyze functional surfaces: a study using the distal humerus.

MICHAEL KENYHERZ. Department of Applied Forensic Sciences, Mercyhurst College, Erie, PA.

Sex estimation is an important component in bio-archaeology. The distal humerus is a durable bone and Rogers (1999, 2006, 2009) has suggested that the olecranon fossa shape shows differences in males and females. GIS has previously been used in non-traditional ways to examine teeth (Bartling and Schleyer 2000), though its utility in bone has been restricted to distribution patterns at archaeological sites. This study used a GIS to examine the functional surfaces of bone.

Coordinate data for 140 (70 male, 70 female) left distal humeri were collected with a Microscribe digitizer from the Hamann-Todd Osteological Collection at the Cleveland Museum of Natural History. Coordinate data were imported into ArcMap 9.3 (ESRI 2008) , which was used to define the olecranon fossa and calculate maximum and average slope, maximum curvature, and volume. The outline of the olecranon fossa, as determined through GIS, was then used for Elliptical Fourier Analysis through Shape 1.3 (Iwata and Uki 2002), Fordisc 3 (Jantz and Ousley 2005) was used to perform discriminant function analysis on the new (or GIS-derived) variables. Using stepwise selection, the correct classification of males and females was 82.5% cross-validated. The results show the utility of the method for instances when linear measures may not be practical, such as with highly degraded material. This method
for analyzing functional surfaces provides another means for quantitative research, as well as a means to quantify qualitative data, especially regarding shape.

Development of a GIS-based habitat suitability model for two lemur species in Betampona Nature Reserve, Madagascar.

LANA KERRER, Washington University in St. Louis.

The use of Geographic Information Systems (GIS) technology has been a valuable tool in the prediction of species occurrences for both ecological and conservation purposes. Researchers have been able to combine information from satellite images, GPS data and field studies to determine the probability of species occurrences based on a number of ecological and environmental variables. The purpose of this study was to create a GIS model of habitat suitability for 2 sympatric lemur species in a 2228 ha forest located in north-eastern Madagascar. Behavioral and ecological data was collected on 7 radio-collared groups of lemurs for 9 months in 2007-2008. This data was then combined with remotely sensed Landsat TM and SRTM images to create a GIS model of habitat suitability for both ecological and conservation purposes. Researchers have been able to combine information from satellite images, GPS data and field studies to determine the probability of species occurrences based on a number of ecological and environmental variables. The purpose of this study was to create a GIS model of habitat suitability for 2 sympatric lemur species in a 2228 ha forest located in north-eastern Madagascar. Behavioral and ecological data was collected on 7 radio-collared groups of lemurs for 9 months in 2007-2008. This data was then combined with remotely sensed Landsat TM and SRTM images to create a GIS model of habitat suitability for these 2 lemur species in this forest. This habitat suitability model was used to create maps of the forest in which each lemur species is most likely to occur. Conclusions are that the microhabitat and vegetative structure of the forest need to be taken into consideration to refine this model further. The model described in this paper provides valuable information as to the importance of each of the ecological variables measured in the prediction of the occurrence of each of the lemur species studied. This study was funded by a Fulbright grant.

Righting the wrongs of the past: estimating the original provenience of classified mummies with isotope analyses.

C. L. KIEFFER1,2, CATHERINE MITCHELL1, KEIKO KITAGAWA1, CARMEN MOSLEY1,2, PATRICK NARANO1, SHERRY NELSON1, VIOREL ATUDORE1 and HEATHER EDGAR1,1 University of New Mexico Anthropology Department, 2University of New Mexico, Maxwell Museum of Anthropology, 3University of New Mexico, Tübingen, Institut für Ur- und Frühgeschichte und Archäologie des Mittelalters, 4University of New Mexico, Department of Earth and Planetary Sciences.

In 2007, the Federal Bureau of Investigations (FBI) confiscated nine mummies from White City's Million Dollar Museum near Carlsbad, New Mexico which was unlawfully displaying Native American remains. The sample consists of seven adults, including one female and three possible males, one male infant, and one male fetus. The FBI curated the mummies with the Maxwell Museum of Anthropology for study and, if possible, eventual NAGPRA compliance. The Million Dollar Museum's records did not specify original provenience of the mummies. Radioisopic analyses and radiocarbon dating were conducted to determine the origins of the mummies. We measured the δ13C and δ18O values from tissue and bone collagen, δ13C and δ18O values from bone apatite. Due to inadequate quantities and degradation a subset of analyses were run for each individual. Results produced averages of: 13.59 for δ13C; –9.96 for δ18O of tissue (n=7); 8.77% for δ13C; –8.11% for δ15N, and –81.4 for δ18O of hair (n=4); 10.85% for δ13C and –8.30% for δ18O of bone not treated for humic acid (n=7); 10.38% for δ13C and –7.90% for δ18O of bone treated with 5N HCl (n=7) and –4.38% for δ18O of apatite (n=4). Results are suggestive of individuals from the Four Corners Region existing between 250 and 2100 ± 35 years BP with one outlier potentially from the Plains dating to 1850 ± 30 years BP.

Dietary differences between immigrants and locals in Imperial Rome.

KRISTINA KILLGROVE1, JANET MONTGOMERY2 and ROBERT TYKOT3. 1Department of Anthropology, UNC Chapel Hill, 2Division of Archaeology, Geological & Environmental Sciences, University of Bradford, 3Department of Anthropology, University of South Florida.

Although the general diet of people in Imperial Rome consisted primarily of grain, olives, and wine, historical sources indicate that dietary practices varied based on age, sex, and social class. Recent paleodietary work in the Roman countryside and at Italian ports has shown that different food webs were utilized in spite of the proximity of these sites to one another and to the sea. To date, no other study has examined the extent to which the diet of immigrants (both free and slave) affects dietary reconstructions of the population of Rome.

In order to investigate the dietary resources used in Rome during the Imperial period, we subjected the teeth and bones of 35 individuals from the Casal Bertone and Castellaccio Europanco cemeteries to carbon and nitrogen isotope analysis, as well as strontium and oxygen isotope analysis. Although there were no statistically significant differences between the perimortem diets of locals and immigrants, 15% of the immigrants to Rome had significantly different childhood diets. These individuals' much higher carbon isotope ratios suggest consumption of a diet with comparatively more C4 plants. Further, those individuals whose childhood diets were statistically different from the local diet apparently consumed a local diet after immigrating to Rome, as their perimortem carbon isotope values fall within the local dietary range. We conclude that there is a wide variation in the diets consumed by people in Imperial Rome and that part of this variation is likely related to the presence of immigrants in the population. This research was supported by grants from the NSF (BCS-0622452) and the Wenner-Gren Foundation.

A preliminary report on the health status of the skeletal remains from the Kentucky Horse Park Site.

PETER E. KILLORAN1 and GRETCHEN R. DABBS2. 1University of Wisconsin-Whitewater; 2Southern Illinois University-Carbondale.

Thirty-three graves, containing 34 individuals were excavated from the Kentucky Horse Park Cemetery (15PA15), which dates from the 1800's to 1850's. The sample consists of eight juveniles, and 26 adults (13 Females; 10 Males; 3 Unknown). Macrosopic examinations of the mummies were used to assess ancestry. This poster presents data on stature, estimated weight, and pathological lesions, and compares the Kentucky Horse Park data to that collected from individuals buried in similar local cemeteries (Terrill and Off, Frankfort), and a comparable sample from the early period of the Freedman Cemetery in Dallas, Texas. While there are no apparent statistical differences in quantity or type of pathological lesions between African and European populations at the Horse Park, there are differences in average stature and weights for these populations, which may represent differences in occupational stresses and nutrition. Like the Frankfort Cemetery, Kentucky Horse Park Cemetery has more variability in stature and weight in the African population relative to the European population, and differences based on sex. The Kentucky Horse Park appears to be better off than their urban counter parts, with less stress during the childhood period (fewer infectious pathological lesions and fewer hypoplasias). This poster serves to inform us about the heterogeneity of lifestyles and experiences of people in this early period in the development of this country.

Variability in Middle Woodland mortuary practices at the Pete Klunk (11C4) and Gibson (11C5) sites.

JASON L. KING. Center for American Archeology, Kampsville, IL.

The Pete Klunk (11C4) and Gibson (11C5) sites comprise a core body of data for understanding Middle Woodland (50 BC - AD 400) period peoples. Bioarchaeological analyses of the two sites have informed on multiple aspects of prehistoric life, including health and disease, biological and genetic relationships, diet, mortuary practices and ritual life, among others. Despite their
importance, the temporal place of the cemeteries within the Middle Woodland period has remained under-explored, with chronology anchored on low resolution, culturally sensitive indicators of time. Absence of temporal control precludes a nuanced understanding of cultural and biological change and hinders new research based on these data.

Recent analyses have implicated relatedness and mortality practices in the creation of ancestorhood and ancestor ideology in the Lower Illinois Valley Woodland period; however, analyses of mortuary practices and biological distance revealed differing patterns at the Pete Klunk and Gibson site. In this paper, I present eight new radiocarbon dates from the Pete Klunk site. These data are analyzed with recent essays from the Gibson site in order to identify intra- and inter-site sequences of mortuary behavior, relatedness and ideology.

Death and the (narrow) maiden: pelvic dimensions, mortality, and obstetrics versus thermoregulation.

KATHRYN A. KING1, BENJAMIN M. AUERBACH2, ADAM D. SYLVESTER3, MEADOW L. CAMPBELL4, and RYAN M. CAMPBELL4. 1Department of Sociology, The University of Tennessee, 2Department of Anthropology, Max Planck Institute for Evolutionary Anthropology, 3Department of Anthropology, Southern Illinois University – Carbondale.

New World indigenous populations collectively exhibit wider body breadths than populations from similar climates in Europe and Africa, despite having as much variation in other dimensions associated with thermoregulation (e.g., intrauterine, intra-seasonal) and in body proportions, pelvic dimensions, postcranial dimensions and mortality. This study examines the relationship between obstetrics and mortality in a geographically and climatically diverse sample of indigenous pre-contact North American groups.

American Journal of Physical Anthropology
a lower range of frequencies than comparably-sized species with smaller cochleas. These results provide further evidence that cochlear labyrinth morphology may be used to estimate the hearing abilities of extinct species.

Selection vs. drift in Neandertals.

MARC KISSEL and JOHN HAWKS. University of Wisconsin-Madison.

Scholars working under the neutral model of evolution have used both genetic data and fossil evidence to argue that genetic drift is the primary force responsible for variation between human populations, especially in regards to skeletal differences between Neandertals and modern humans. These analyses, though, often require implicit assumptions about population sizes and variance within groups, ones that have not been tested against the paleoanthropological record. It is thus necessary to have a better understanding of how they affect the models under study. Furthermore, drift has been utilized to demonstrate the strength of drift may have a high likelihood of Type II errors. We test the hypothesis that cranial differences between these ancient human populations are the product of drift by developing univariate equations to understand the morphological differences between the two groups. Then, we simulate the amount of differentiation that ought to occur if drift is the primary evolutionary force causing change and, using resampling, compare this to the observed diversity seen in fossil populations. By this method we avoid problems inherent in multivariate tests that require knowing the variance within each subpopulation, a difficult statistic to assess for small population sizes. We show that (1) many of the equation utilized in earlier studies have a high likelihood of Type II errors and (2) that drift may not be as strong as studies have been previously argued. We conclude that natural selection should not be rejected as a significant factor in producing skeletal difference between Neandertals and modern humans.

Possible late introgression from archaic hominins into the mitochondrial gene pool of modern human lice.

ANDREW KITCHEN1, DAVID REED2, MELISSA TOUPS3 and AIDA MIRO4. 1University of Wisconsin-Madison, 2Florida Museum of Natural History, University of Florida, 3Department of Biology, Indiana University, 4Department of Anthropology, University of Florida.

Human head and body lice (Pediculus humanus) are host-specific parasites that have coevolved with their human hosts for millions of years. As such, human lice may be used as faithful markers for events in the history of their human hosts. However, unlike their hosts, human lice have an extremely old mitochondrial DNA (mtDNA) coalescence time (ca. 2 million years). Such an old coalescence time may be explainable by either large ancestral louse population sizes or by migration between spatially structured populations of lice. To investigate these scenarios, we examined the deep coalescing mtDNA lineages to determine whether they were the result of large louse effective population size or relics of ancient population structure in their human hosts using an approximate Bayesian coalescent (ABC) simulation technique.

Our coalescent simulations suggest the most probable explanation of such old coalescent dates is that peripheral populations of lice were isolated for hundreds of thousands of years before undergoing secondary contact with lice on modern humans. We propose that these peripheral lice populations may have arose on late-surviving archaic hominin lineages before host-switching onto modern humans sometime during the late Pleistocene. Though there is no direct evidence that archaic hominins co-occurred with modern humans outside of Europe, these findings suggest the possibility co-occurrence of and contact between modern and archaic hominins in Asia.

Intra- and interspecific call recognition: responses of both female baboons and sympatric ungulates to playback of chacma baboon alarm and contest calls.

DAWN M. KITCHEN1, DOROTHY L. CHENEY2, ROBERT M. SEYFARTH3 and THORE J. BERGMAN2,5. 1Department of Anthropology, The Ohio State University, 2Department of Biology, University of Pennsylvania, 3Department of Psychology, University of Michigan, 4Department of Ecology and Evolutionary Biology, University of Michigan.

Many nonhuman primate vocal repertoires contain calls that sound similar but are produced in very different contexts. Playback experiments can determine if subtle differences among vocalizations affect listener behavior - both within and between species. Using trials that simulated chacma baboons encountering predators and trials mimicking male-male baboon competition, we tested whether four sympatric ungulate species could distinguish these contexts. Despite both sequences being equally starting and varying only in call type, subject (n = 20) responses were stronger following alarm sequence (p < 0.001). Furthermore, impala, the most frequent associates of baboons, were best able to differentiate sequences, lending support to social learning hypotheses. Ours is the first heterospecific call recognition study comparing responses among multiple community members varying in experience with the calling species. However, which vocalizations ungulates are attending to remains unclear. For example, both sequences contained equal numbers of male wahoos, loud double-barks produced in both contexts. Although they should elicit very different responses in listeners, contest wahoos and alarm wahoos grade together acoustically. Despite the strong similarities between call sequences, female baboon subjects (n = 12) in our second playback experiment had stronger responses to alarm than contest wahoos (look latency: p < 0.05; look duration: p < 0.001). Although human observers can use sophisticated computer software to quantify acoustic differences in graded vocalizations, only experimental trials such as these, which use experimental and heterospecific listeners attend to these differences. We will illustrate both experiments using video clips.

This research was funded by The Ohio State University and the University of Pennsylvania.

Population-based effects on limb-proportion and implications for stature estimation.

AMANDA KITTOE. Department of Geography and Anthropology, Louisiana State University.

Length of long bones is positively correlated with stature in humans. This study assesses accuracy of Trotter and Gleser’s regression formulae to estimate human stature. Trotter and Gleser found that different ancestral populations require different formulae. This study uses a sample of 126 individuals from the Hamman-Todd Collection to test five different formulae, which vary by bone, for each of the following groups: black females, white females, black males, and white males. Lengths of the femur, tibia, fibula, humerus, ulna and radius and maximum heights of thoracic and lumbar vertebrae were measured to represent limb and torso lengths. The t-test was used to compare the limb-stature and torso-stature proportions between males and females and whites and blacks. The t-test was also used to compare Trotter and Gleser’s estimated statures to known statures. Results show that men have significantly longer arms and forearms relative to stature than females. Whites have significantly longer torso relative to stature than blacks, whereas blacks have significantly longer forerarms (ulna) and lower limbs (femur and fibula) relative to stature than whites. Significant differences between estimated and known statures were only found among blacks. These results highlight Allen’s rule and are consistent with previous studies which found that blacks and whites have different limb-stature proportions, and thus result in different regression equations for stature estimation.
Evolution of the hominin hand: old and new evidence from the Plio-Pleistocene.

TRACY L. KIVELL, JOB M. KIBI, STEVEN E. CHURCHILL, and LEE R. BERGER. Department of Human Evolution, Max Planck Institute of Evolutionary Anthropology, Leipzig, Germany, Institute of Human Evolution, University of the Witwatersrand, Johannesburg, South Africa, Department of Evolutionary Anthropology, Duke University, Durham, USA.

Over the course of hominin evolution, the hand was freed from the constraints of locomotion and used primarily for manipulation. However, the details of this complex transition are not well understood. Though there are numerous Pliocene hominin hand fossils, it is rare that they have a clear taxonomic affiliation and rarer still that the bones come from a single hand or individual. Thus, the evolutionary pathways of morphological change within the hominins remain unclear and are an area of ongoing research.

In order to evaluate the developmental effect of lifelong exposure to hypoxia on aerobic capacity, we conducted VO2max tests on two groups, before and after a 2-month training period at sea-level. We used a variation of the migration study approach: Group 1 consisted of sea-level born and raised volunteers (N=32, 18-35 years) and Group 2 consisted of high altitude born and raised volunteers (N=32, 18-35 years), but who migrated to sea-level as adults. Both groups identified themselves as having Quechua ancestry. Group 2 did not have a significantly higher VO2max at high altitude (2.43/min ± 0.52) compared to Group 1 (2.29/min ± 0.51, p=0.412), and they did not differ in arterial saturation (SaO2) at VO2max (Group 1 = 81.84% ± 0.72%, Group 2 = 87.70%, p=0.35), after controlling for the effects of sex, age, body weight, fat free mass and the initial differences (pre-training) in cardiovascular fitness between groups.

Responding to chronic stress: longitudinal perspectives on metabolism.

KELSEY KJOSNESS and CARA WALLSCHIEFFLER. Department of Biology, Seattle Pacific University.

It has recently been suggested that a "stress response" may increase survivability of our species. When individuals are undergoing dramatic shifts in resources, a stress response may increase survival by activating two separate physiological pathways that continuously replenish energy stores: activation of the sympathetic-adrenal system (SAS) when mobilization of energy is required for physical responses, and activation of the hypothalamic-pituitary-adrenal (HPA) axis to decrease energy requirements in times of psychosocial stress when energy balance is positive and physical demand decreased. While some studies attribute laboratory-induced, acute mental stressors that activate SAS with increased metabolic cost, no studies have evaluated the influence of chronic, HPA-inducing stressors (when energy balance is positive) on energy expenditure. The present study tests our hypothesis that resting metabolic rate (RMR) decreases with prolonged exposure to psychological stress. RMR, blood pressure, saliva samples, a 10-item Perceived Stress Scale questionnaire, and a questionnaire of adherence to protocol and weekly academic work were collected on 17 female students for the duration of a 10-week academic term. Saliva samples were assayed for salivary cortisol (indicative of HPA activity). A significant increase in RMR was observed with increased salivary cortisol concentration (p=0.025), indicating that HPA activation may lead to an increase in metabolic rate. Thus, the hypothesis of the hypothesized decrease. We suspect that the observed increase in cost could be resulting from increased maintenance requirements caused by physiological responses to chronic stress, including higher blood pressure, heart rate and wear on organ systems.

This study was funded by the Murdock Charitable Trust, reference number 2006194:JVA:11/16/2006.

Population-specific natural selection at genetic regions associated with HIV-1 viral load set-point control.

YANN C. KLIMENTIDIS, BRAHIM AISSANI, MARK D. SHRIVER, DAVID B. ALLISON, and SADED SHRESTHA. Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Department of Epidemiology, University of Alabama at Birmingham, Department of Anthropology, Pennsylvania State University.

HIV susceptibility and pathogenicity exhibit both inter-individual and inter-group variability. The etiology of inter-group variability is still poorly understood, and could be partly linked to genetic differences between groups. These genetic differences may be traceable to different regimes of natural selection in the 60,000 years since human radiation out of Africa. Here, we examine population differences in viral-load set-point control in HIV-1 -control, as determined by viral-load set-point control in Cauca-

sian and African-American populations. We use the genome-wide SNP dataset on the Human Genetic Diversity Panel of 53 world-wide populations to compare measures of FST and extended haplotype homozygosity (EHH) at these candidate regions to the rest of the genome. We find that the Europe-Middle East pair-wise FST in the associated regions is elevated compared to the rest of the genome, while the sub-Saharan Africa-Middle East pair-wise FST is very low, suggesting that genetic differentiation (diversifying/positive selection) occurred outside of sub-Saharan Africa, while balancing or purifying selection occurred in sub-Saharan Africa. We also find greater EHH, indicative of recent positive selection at these associated regions, among all population subgroups except for sub-Saharan Africans and Native Americans. These findings
corroborate findings from other studies suggesting recent evolutionary change at immunity-related regions among Europeans, and shed light on the potential genetic and evolutionary origin of populations differences in HIV-1 control. This study was funded by NIH Grant Number T32HL07457 from the National Heart, Lung, and Blood Institute.

ZACHARY S. KLUKKERT1,2 and ALFRED L. ROSENBERGER1,2, 1Department of Anthropology, the Graduate Center, City University of New York, 2New York Consortium in Evolutionary Primatology, 3Department of Anthropology and Archeology, Brooklyn College, City University of New York.

Living saki-ukarais (pitheciinae), Pithecia, Chiroptes and Cacajao, have an unusual incisor-canine complex adapted to harvesting hard-husked fruits. To better document their morphology as a basis for systematic and functional analyses, we quantified the orientation of the incisors (procumbence) and canines (lateral splay) in a variety of platyrhines. While upper incisor procumbence clearly distinguishes pithecinids, the orientation of the lowers is comparable to the pattern exhibited by other platyrhines. All demonstrate a uniform inclination in spite of the diverse challenges associated with ingestive behaviors and food choices that are reflected in crown morphology. This implies that the arrangement of the incisor battery exhibits a mechanically optimal plan within the masticatory system. The steep inclination of pithecin upper incisors is an effect of the exaggerated crown height of the occluding lowers. The lateral splay of the lower canines, associated with a large diastema and a squared symphysial region, separates the saki-ukarai from the other taxa examined, but the uppers do not. Early middle Miocene Patagonian fossils suggest an ancestral pithecin upper pattern involving elevated lower incisor crown heights, proboscis in association with stout, modestly tall and non-everted lower canines set in a narrow, gap-free symphysis. The fully modern condition is evident in younger forms, such as Cebus pithecia from La Venta, Colombia. Reconstructing the diets of the earlier pithecinids continues to be difficult, as some exhibit a unique mosaic, with highly distinctive postcanine teeth. The best modern dietary analogues for the early pithecinids may be Callitrichus and Aotus.

This work was supported by the National Science Foundation, IGERT grant DGE 0333415.

AAPA ABSTRACTS

Morphometric analyses of hominoid facial synapomorphies with implications for the taxonomic status of Afropithecus.

RYAN KNIIGGE and KIERAN MCNULTY. Department of Anthropology, University of Minnesota.

Traditionally, Early Miocene non-cero-pithecid catarrhines were identified as hominoids based largely on plesiomorphic craniodental evidence. More recent studies have defined apes almost exclusively from postcranial features, and on this basis a number of researchers now regard the Early Miocene “dental apes” as basal catarrhines. Nevertheless, four features in the hominoid cranium are thought by some researchers to represent hominoid synapomorphies: inferior position of the upper extent of the premaxillary suture; a non-projecting interorbital bridge; a vertically expanded naso-alveolar clivus; and a wide anterior palate. We report a quantitative assessment of all four features based on a sample of 500 extant anthropoids in order to determine their reliability for distinguishing hominoids within this group. Clivus height and palate width were assessed using standard linear distances. We quantified the superior-most position of the premaxillary suture as its relative position when projected onto a line connecting nasion-rhinion. The shape of the nasal bridge was captured using semi-landmarks, from right to left dactory, superimposed by a generalized Procrustes analysis. Both univariate and multivariate analyses demonstrate significant variation in these four features within each superfamily, but palate width and naso-alveolar height are the more reliable indicators of hominoid status. Based on results from the extant taxa, we determined the affinities of the enigmatic catarrhine Afropithecus.

Despite its primitive postcranium, the cranial morphology of Afropithecus falls comfortably within the hominoid range for each feature, supporting its taxonomic status as an ape.

Cross-sectional geometry of prehistoric Late/Final Jomon period foragers in comparative context.

SHARON E. KNOBBE1, DANIEL H. TEMPLE2 and DANIEL J. WESCOTT3. 1Museum of Anthropology, University of Michigan, 2Department of Anthropology, University of North Carolina Wilmington, 3Department of Biological Sciences, Florida International University.

Humeral diaphyseal shape differs between Jomon and Alaskan males, with Jomon males having more circular and less greater compressive/tensile strength and bending rigidity compared to open-ocean and river rowing groups. These trends reflect variation in directionality, frequency, and intensity of mechanical loading, likely stemming from differences in resource procurement activities.

The assessment of genetic drift across species through the analysis of ancestral and derived frequency spectra.

ANTHONY J. KOEHL, MEGHAN E. HEALY and JEFFREY C. LONG. University of New Mexico.

Genetic drift is a random process whereby allele frequencies change from one generation to the next. This process is associated with the loss or fixation of rare alleles. In comparing the ancestral and derived frequency spectra we can determine genetic and evolutionary change from founder effects during the peopling of the world. The derived allele frequencies are more circular and have greater compressive/tensile strength and bending rigidity compared to open-ocean and river rowing groups. These trends reflect variation in directionality, frequency, and intensity of mechanical loading, likely stemming from differences in resource procurement activities.

American Journal of Physical Anthropology
(AIMS). Our principal conclusions are as follows: first, common alleles are typically older than the migration out of Africa. Second, a few modestly frequent AIMS characterize African populations. These are ancestral alleles that were lost in the out of Africa migration. Third, we find very few AIMS highly diagnostic of non-African populations. Calculations from coalescent methods indicate that few are likely to exist, even throughout the entire genome.

Morphological integration in Primate limb morphology.

LUCI ANN P. KOHN. Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois.

Morphological integration tests for associations between structures that are developmentally or functionally related. It is expected that traits that are integrated will be more highly correlated with each other than traits that are unrelated. Most studies of morphological integration have concentrated on the integration of cranial structures. This study examines the genetic and phenotypic integration of the postcranial skeleton in two Primate taxa. The study tests patterns of integration between adjacent elements within each limb, as well as integration between homologous components between the forelimb and hindlimb.

Thirty-four dimensions, representing the scapula, upper limb elements, pelvis and lower limb elements, were measured on 365 cotton-top tamarins (Saguinus oedipus) and 275 rhesus macaques (Macaca mulatta), all of known genealogies. Maximum-likelihood methods were used to estimate trait heritabilities, as well as phenotypic and genetic correlations. The hypotheses that there is significant morphological integration between adjacent elements within a limb, as well as serial components between fore- and hindlimb were tested using Mantel tests.

The phenotypic and genetic morphological integration patterns were generally similar. There is significant integration between adjacent elements within the macaque upper limb and the lower limb in cotton-top tamarins. Significant serial homology was present in both cotton-top tamarins and macaques. Patterns of phenotypic and genetic variation reflect the influence of the major genes which influence limb development. Differences in locomotion between these two taxa do not modify the effects of genetic influences on limb development.

Skeletal collections from the Caribbean Primate Research Center and University of Tennessee are gratefully acknowledged.

American Journal of Physical Anthropology

AAPA ABSTRACTS

A child hemi-mandible associated with an Epi-Paleolithic Natufian pit dwelling from Dederiyeh cave, Syria.

OSAMU KONDO¹, YOUSSEF KANJOU², HITOSHI FUKASE³, HAJJME ISHIDA⁴, YOSHIHIRO NISHIKI², and TAKERU AKAZAWA².

¹Department of Biological Sciences, The University of Tokyo, Japan, ²Alteplas National Museum, Syria, ³Department of Human Biology and Anatomy, University of the Ryukyus, Japan, ⁴University Museum, The University of Tokyo, Tokyo, Japan, ⁵Kouch University of Technology, Japan.

Although paleo-biology of Natufian hunter-gatherers is an intriguing issue in the course of modern human evolution, human skeletal remains have been uncovered mostly from the south Levant. A new juvenile mandible, which was found on the floor of a Natufian pit dwelling inside Bsharri Cave in Syria, should be worth describing even though it is immature. It is a hemi-mandible with the right ramus to the body portions preserved well. Only two teeth surviving in the alveoli are moderately worn first and second deciduous molars, while mixed (permanent/deciduous) dentition is lost. Using sequential CT images, we visualized the morphology of the hidden permanent dental crowns of lateral incisors (Ⅳ,Ⅴ), right canine, first and second premolars, and second molar. The developmental status indicates the age at death to be in juvenile (6 to 9 years old) compared to the modern standards.

In addition to observation of the permanent dental crowns, we compared the symphysis cortical bone distribution with those of growth series of modern Japanese and of Prehistoric Jomon, hunter-gatherer-fishers in Japan. The cortical bone thickness of the Natufian juvenile exceeds that of the comparative ages and almost reaches the adult value of the modern Japanese, while the Natufian value is comparative to the juvenile data of the Jomon. This is congruous with a hypothetical shift from the “robust” to “gracile” mandibular morphology within the modern human evolution, which is manifested early in ontogeny.

Variation in modern human frontal sinus morphology.

JAMES KONDRAIT. Paleo-Tech Concepts, Crystal Lake, IL.

Statistically significant differences in frontal sinuses are recorded among modern human populations. Correlation between frontal sinus morphology and climate is rarely formally tested. The present study investigates the relationship between frontal sinus morphology and climatic variables.

The sample consists of 84 crania from four modern (Iraq, Egypt, Papua New Guinea, and the Philippines), and two archaeological samples (pre-contact Peru and Sumerian Kish). Skulls were radiographed in the A-P plane, and frontal sinuses were digitized. Traditional craniometrics were recorded as part of a larger study. Climate data (temperature, maximum and minimum temperature) were drawn from the NOAA's, NCDC Global Daily Sunnery Database.

Multivariate statistical testing clustered the samples in two groups based on Mean Sinus Area (Iraq and Egypt with relatively large, and Papua New Guinea and the Philippines with relatively small sinuses). While variation in frontal sinuses cannot be associated with allometric scaling or cranial size, a high correlation was found for climate data, particularly relative degree of seasonal variation (r=0.96). Correlation with average temperature and precipitation tested low.

The results of this study indicate that recorded variability in frontal sinuses morphology could be associated with environmental variables, particularly relative degree of seasonal variation. Regions experiencing greater seasonal shift in temperature are associated with samples found to possess statistically significant greater mean frontal sinus size.

Into the fire: examining the manifestation of pot polish.

DERINNA KOPP ¹, ² and DEBORAH GRAHAM ¹, ². ¹Antiquities Section, Utah Division of State History, ²Department of Anthropology, University of Utah.

The presence of pot polish in an assemblage of fragmented human remains is considered key to establishing the identification of cannibalism, yet often such assemblages exhibit a rather low percentage of fragments with pot polish. This poster will present the results of a novel study exploring why pot polish is present at such low percentages by replicating prehistoric processing methods as authentically as possible using a replica ceramic vessel, stone blades and tools, and a wood fueled fire. While several studies of pot polish manifestation have previously conducted this study climate data, particularly temperature and precipitation, were used to determine the likely taphonomic conditions that are likely to have created the pot polish seen in archaeological assemblages, specifically the use of wood fueled fire and a replica ceramic vessel to boil the bone fragments.

Data on the presence of pot polish on bone fragments from four separate timed trials of boiling defleshed and fragmented sheep forelimbs will be compared and correlated with the length of time, temperature and relative humidity to assess the conditions required to produce pot polish. This study was funded by the State of Utah, Antiquities Section and Univer-
APA ABSTRACTS

191

The bony labyrinth of Cioclovina, an early modern European from Romania.

ELENA F. KRANIOTI1, DAN GRIGORESCU2, TUDOR CIPRUT3, FREDERICK E. GRINE5, and KATERINA HARVATI1, 2Department of Archaeology, School of History, Classics and Archaeology, University of Edinburg, 3Department of Paleontology, University of Bucharest, Romania, 4Central De Sanatat Pro-Life SRL, Bucharest, Romania 5Department of Anthropology, Stony Brook University, Center for Human Evolution and Paleoecology, Eberhard Karls University of Tuebingen.

The bony labyrinth is thought to preserve a strong phylogenetic signal and to be minimally affected by epigenetic processes. In particular, it has been shown to differentiate Neanderthals from modern humans, and is commonly listed among the derived features of Neanderthals. Early modern humans have also been proposed to show an inner ear structure different from that of recent people, and similarities have been found between Upper Paleolithic Europeans and their African contemporaries.

Here we examine the inner ear structures of the Cioclovina calvaria, one of the earliest reliably dated modern human specimens from Europe. This specimen has been proposed to show Neanderthal affinities, although that interpretation has been challenged. Cioclovina was scanned using a Siemens sensation 64 medical CT scanner. Both labyrinths were virtually reconstructed after manual segmentation of the 3D CT scan data using Amira 5.2 and Aviso 6.2 software. Two comparative samples of 20 recent Europeans and 20 Africans were included in the analysis, as well as 18 Neanderthals, 2 pre-Neanderthals and 8 early modern humans. Eleven measurements were taken and analyzed with univariate statistics. Seven measurements were further used as variables in principal components and discriminant analyses using SAS. Results show that Cioclovina falls within the range of normal modern human variation. In the PCA, it falls in the wide zone of overlap between all modern humans and...
Neanderthals and is closest to other Upper Paleolithic Europeans. It is classified as a modern human with a posterior probability of 0.84.

The study was funded by the Marie Curie Actions grant MRTN-CT-2005-019564 'EVAN', the Wenner Gren Foundation and the Institute for Aegean Prehistory.

Nutritional deficiencies and growth in a prehistoric subadult sample of the Jemez Pueblo, New Mexico.

KATINA KRASNEC. Department of Anthropology, University of New Mexico.

Although the demography, mortality, and pathology of many Puebloan populations have been examined using skeletal data, little is known of the pre-contact individuals from Jemez Pueblo collected in the early 20th century. Examination of the pre-contact subadult skeletal sample from the pueblo provides an impression of their health and nutritional status. To this end, age, cranial, and postcranial data were collected in the early 20th century.

Examination of the pre-contact subadult skeletal sample from the pueblo provides an impression of their health and nutritional status. To this end, age, cranial, and postcranial data were collected in the early 20th century.

An estimate of the growth rates of Jemez versus modern children can be obtained by plotting humeral and femoral length versus age. Growth rates of the Jemez subadults are depressed relative to modern populations. The overall femoral diaphyseal length at 15-18 years of age at Jemez was nearly 30 mm shorter than in modern populations, indicating a markedly reduced stature. The low frequencies of PH and CO may be indicators of better health in the Jemez subadults, or a particularly striking example of the osteological paradox. However, the diminished stature may indicate that the correct interpretation is that the Jemez people suffered pronounced nutritional or health stresses.

What makes us human: insights from sequencing extinct hominin genomes.

JOHANNES KRAUSE, Max-Planck Institute for Evolutionary Anthropology, Department Evolutionary Genetics, Leipzig, Germany, Zentrum für Naturwissenschaftliche Archäologie, Universität Tübingen, Germany, Institute of Human Genetics, University of Tübingen, Germany.

A genetic comparison between modern humans and their extinct relatives could both address the relationship between us and them and offer the possibility to identify genetic changes that happened specifically on the human lineage. Furthermore, it may allow identifying ancient human evolutionary history of genes and positions in the modern human genome that experienced recent positive selection after divergence of modern humans and their extinct relatives. Using a combination of high-throughput DNA sequencing technologies and multiple improvements in ancient DNA retrieval, library construction and targeted library enrichments, the Leipzig laboratory has recently, in collaboration with several groups, completed a first version of the Neandertal genome as well as a genome sequence of an extinct hominin discovered in the Altai mountains in southern Siberia named Denisovan. The analysis of both the Neandertal and Denisovan genome revealed evidence of gene flow between certain modern human populations and both extinct hominins. From the analysis of the Neandertal data, it was furthermore able to draw conclusion about diversity within and among the extinct hominins and by scanning the human genome for regions of positive selection using the Neandertal and Denisovan genome, we identified several strong candidate genes involved in diet, cognitive traits, and skeletal morphology that were potentially selected on the modern human lineage.

Morbidity and mortality in a preindustrial New World city: the paleodemography and paleopathology of Postclassic Cholula.

MEGGAN BULLOCK KREGER1. Department of Anthropology, Pennsylvania State University.

Demographic studies have suggested that preindustrial Old World cities had high rates of morbidity and mortality due to the unhealthy urban environment. Prehispanic New World cities differed significantly from those of the Old World, not just in terms of their epidemiological environments, but also in terms of their social, political, and economic organization. A paleodemographic and paleopathological investigation of 309 Postclassic skeletons from the New World urban center of Cholula was carried out in order to assess morbidity and mortality and to determine how population dynamics in this Mesoamerican city compared to those observed in preindustrial Old World cities. Several new methodological approaches, including transition analysis, a parametric model of mortality, and a multistate model of health were incorporated into the analyses. The age-at-death distribution, constructed using transition analysis, indicates that young adult mortality was low and that most of the individuals who lived into adulthood survived past the age of 50. The presence of a number of pathological lesions, including porotic hyperostosis and cribra orbitalia, enamel hypoplasias of the incisor and first and second molars, and proliferative lesions of the femur and tibia, increased the risk of death; however, enamel hypoplasias on the canines and proliferative lesions on the fibula had no effect on mortality in this population. Results indicate that the cultural and epidemiological environments of Cholula contributed to the formation of urban demographic patterns in this New World city that differed somewhat from those found in the Old World. This project was funded by grants from the Foundation for the Advancement of Mesoamerican Studies, Inc., the Wenner-Gren Foundation, and the Research and Graduate Studies Office of the Pennsylvania State University, and by a Hill Fellowship and a Sanders Award from the Department of Anthropology of the Pennsylvania State University.

Not all Neandertals used their front teeth as tools: evidence from dental microwear texture analysis.

KRISTIN L. KRUEGER. Department of Anthropology, University of Arkansas.

The extreme gross wear of Neandertal anterior teeth has been a topic of debate for decades. Several ideas have been proposed, including the excessive mastication of grit-laden foods and the use of the front teeth as a tool or third hand. However, other important factors have been challenging to incorporate into interpretive models. The present study seeks to better understand Neandertal anterior tooth wear by integrating climate, site location, and the three factors known to affect anterior dental microwear signatures: diet, abrasive load, and non-dietary anterior tooth use.

High-resolution casts of more than 65 Neandertal teeth from over 30 sites were examined and scanned for anterior dental microwear textures using a white-light confocal profiler. Using a 100x objective lens, four adjacent scans were generated, measuring a total area of 204 x 276 μm. These scans were uploaded and analyzed using Toothfrax and SFrax software packages. The resulting Neandertal data were then compared to several modern human comparative samples.

Results indicate that Neandertals have high textural fill volume, low anisotropy, and extremely high scale of maximum complexity values. The closest analogs among modern human groups were arctic peoples, specifically the Aleut and Tigara samples. This suggests that Neandertals were engaging in high magnitude or repetitive loading of the anterior teeth, probably associated with non-dietary anterior tooth use behaviors. That said, there is significant variation among sites in microwear texture attributes, suggesting differences in Neandertal anterior tooth use across space.
This study was funded by the National Science Foundation DDIG (BCS 0925818).

Coordinated patrolling behavior by unrelated breeding males in the golden snub-nosed monkey (Rhinopithecus roxellana).

ALICIA KRZTON. Department of Anthropology, Texas A&M University.

The existence and maintenance of modular societies in primates, in which multiple one-male units associate to form much larger bands, is of theoretical interest from an evolutionary perspective. The null hypothesis for the relationship between non-kin OMU leaders is hostility under typical sexual selection assumptions. However, modular societies in African colobines, including the golden snub-nosed monkey (Rhinopithecus roxellana). This study presents a preliminary report of previously unreported patrolling behavior in a non-kin-organized group of more than one breeding male. The Dalongtan group of golden snub-nosed monkeys at Shennongjia National Nature Reserve in Hubei province, China was observed during July 2010. This group consists of four associated one-male units and an all-male unit. During this period, the patrolling behavior was observed 8 times for an average frequency of 67 bouts/day. The behavior was stereotypical and always involved at least two individuals. Males would leave their families behind, follow each other either on the ground or in the trees, and not vocalize during the entire bout. The group of males would ascend into the same or neighboring trees and watch an area silently. This is in sharp contrast to fights between males, which always involve loud screams either from the combatants themselves or other nearby individuals. The target of these patrols may be the group’s all-male unit. Male reproductive advantages gained through cooperatively defending breeding females may be a mechanism which promotes the cohesion of modular societies in Rhinopithecus roxellana.

This study was funded by the NSF EAPSI program, Conservation International’s Primate Action Fund, the L.T. Jordan Foundation, and the Texas A&M Department of Anthropology.

Basics in paleodemography: age-at-death distribution of the early Medieval skeletal sample of Lauchheim by the Complex method and tooth cementum annulation.

MELANIE KUENZIE and URSULA WITTWER-BACKOFEN. Medical Faculty Anthropology, University of Freiburg, Germany.

In paleodemography, age-at-death distributions of past populations help to reconstruct population-specific mortality, fertility and migration patterns. Our study investigates the age-at-death distribution of 1337 individuals of the Early Medieval (450 AD and 680 AD) skeletal sample of Lauchheim. The presentation pursues previous investigations by evaluation of the individual age-at-death estimates. Lauchheim is a unique site as it is well documented, almost completely excavated and can be merged to the closely situated settlement.

To receive a realistic age-at-death distribution, we apply two aging methods, Tooth Cementum Annulation (TCA) and the Complex Method (CM) for adults. First, interobserver error of TCA did not reveal significant counting differences between the well trained observers. Second, the age spans of both methods are comparable: significantly higher age spans for CM are narrow due down by TCA for over 80% of individuals. Third, age-at-death distributions for CM and TCA are compared. Due to grading efforts we do not see sex-specific differences. Besides an early adult female mortality, TCA counts reveal a mortality peak that is 10 years earlier (41-45 years) compared to males (51-55 years). In both TCA counts, females grow older than males. In both sexes grow equally old. Finally, TCA and CM age results are combined to receive a realistic age-at-death distribution of the entire skeletal population. Despite higher costs and higher time investment, we suggest applying the TCA method for selected paleodemographic approaches to receive new insights into the life history of past populations by more precise population-specific mortality patterns.

A cut above the rest: trepanation among the post-imperial Chanka of ancient Peru.

DANIELLE S. KURIN. Department of Anthropology, Vanderbilt University.

Ancient cranial surgery, called trepanation, was often practiced by groups in the pre-Columbian Andes to alleviate inter-cranial pressure caused by traumatic injury. This paper reports on the bioarchaeological evidence for pre-, peri- and post-mortem trepanations on ancient Andean skeletons affiliated with the Chanka society (AD 1000-1400) of highland Andahuaylas, Peru. Human crania (n = 213) excavated from commingled burial cairns at four pre- and post-imperial sites in the region were examined to see how different trepanning techniques may have impacted survivability among distant sub-population groups over time. A systematic characterization of this ancient surgical practice tests associations between: 1) the timing and location of the trepanation, 2) the manner of incision, and 3) associated patterns of healed and unhealed cranial fractures. This study also examines the distribution of trepanation along age, gender, and ethnic lines.

13.6% (n = 29) of examined skulls sampled show evidence of at least one trepanation. Significant differences in trepanation use, technique, and survivability are apparent on the skulls of men and women, those with and without cranial modification, and individuals from both the pre- and post-imperial eras. Additionally, evidence of post-mortem trepanations on at least five crania indicate likely attempts by practitioners to improve the procedure. The data shows that trepanation was transformed, both through time, and among different Chanka sub-population groups. Results suggest distinct (though not intractable), culturally-informed, understandings of how to heal an unwell body in the ancient past.

This research was supported by a Fulbright-Hays DDRA Fellowship, award # P022A090074.

Allometry of head and body size in Holocene foragers of the South African Cape.

HELEN K. KURKI1, SUSAN PFIEFFER2,3 and DEANO D. STYNDR3. 1Department of Anthropology, University of Victoria, Canada, 2Department of Anthropology, University of Toronto, Canada, 3Department of Archaeology, University of Cape Town, South Africa.

Opportunities to assess morphological allometry in small-bodied human populations are rare. The foragers of the Later Stone Age of the South African Cape are characterized small-bodied. During the period of ca. 3500-2000 years BP (uncalibrated 14C dates), many skeletons show reduced stature, body mass and cranial size, which has been tied to possible resource stresses. This study examines the relationship between cranial size (centroid size) and body size (femoral length, femoral head diameter, bi-iliac breadth) in this population during the late Holocene, including the time of most variability (total N = 65). RMA regression of body size on cranial size indicates negative allometry between head and body size. Residuals (from OLS regression of body size variables on centroid size) are regressions on radiocarbon date to examine changes in the relationship between body size and cranial size. The results indicate that femoral length, and to a lesser degree femoral head diameter, decline more abruptly than cranial size. More ancient skeletons are shorter and lower in body mass for a given cranial size compared to more recent skeletons. Cranial size is more conserved when growth falters. The size of the femoral head is larger in ancient specimens. They are most variable in the third and fourth millennia BP, suggesting a greater disassociation
Critical periods, intergenerational signaling and human health.

CHRISTOPHER W. KUZAWA. Department of Anthropology, Northwestern University, Evanston, II.

The importance of fetal or infancy developmental plasticity as an influence on adult biology and health is now widely recognized. It has been hypothesized that the fetus or infant may use maternal hormonal, metabolic or behavioral cues of local ecology to establish appropriate biological settings. A sensitivity to maternal phenotype, which developed in response to both current and past environments, could convey an integrated signal of matrilineal historical experience and thus serve as a reliable index of typical local conditions. This concept of phenotypic inertia implies a co-evolution of maternal cues and fetal infant responses in service of phenotypic information transfer, which should leave signatures in the architecture of developmental biology. Specifically, it is hypothesized that the timing of critical periods in the development of a subset of biological systems is not random or simply due to unavoidable constraints, but have been shaped by natural selection to overlap with periods of direct transfer of relevant maternal cues. This model could help explain the gradual, intergenerational pace of change for many environmentally-responsive phenotypes, and the poor efficacy of short-term interventions aimed at changing phenotypes with intergenerational components. Policy and public health implications will be discussed.

Reconstructing health at Apollonia, Albania: impacts of Corinthian colonization.

BRITNEY KYLE1, CLARK SPENCER LARSEN2 and LYNN A. SCHEPZART2. 1Department of Anthropology, The Ohio State University, 2Department of Anthropology, Florida State University.

We test the hypothesis that health at the Greek colony of Apollonia, Albania (established 588 BCE) declined with colonization and the consequent urbanization of the settlement. Stress indicators (cibra orbitalia, porotic hyperostosis, and dental pathologies) were analyzed for three localities: Apollonia (n=226), the mother-city Corinth (n=85), and Lofkend (n=143), an inland site near Apollonia predating colonization. Schepartz determined that pre-colonial Apollonia shows greater prevalence of pathology than neighboring Lofkend, revealing a potentially more stressful coastal environment at Apollonia. Statistical treatment (chi-square) reveals trends of increased prevalence of antemortem tooth loss (6% to 14%; n=83, 1127 sockets assessed; p<0.001). Although not significant, there are also increased prevalence of cribra orbitalia (from 28% to 39%; n=73; p=0.33), porotic hyperostosis (15% to 20%; n=133; p=0.48), and linear enamel hypoplasia (85% to 89%; n=91, 273 teeth assessed; p=0.36). Whereas stress indicators increased at Apollonia, health at Corinth improved following the establishment of its colonies. After colonization, prevalence decreased for cribra orbitalia (from 43% to 26%; n=46; p=0.35), porotic hyperostosis (30% to 8%; n=34; p=0.1), and dental caries (23% to 12%; n=54, 626 teeth assessed; p=0.001) at Corinth. Human response to urbanization differed at Apollonia and Corinth. While health declined at Apollonia following colonization, it improved at Corinth after the establishment of colonial relationships.

This research was supported by a Fulbright U.S. Student Grant, a Sigma Xi Bright U.S. Student Grant, a Sigma Xi Grant-in-Aid of Research, and the International Centre for Albanian Archaeology.

Crown and cusp base areas in early Australopithecus.

R.S. LACRUZ2, F.V. RAMIREZ ROZZI2, B.A. WOOD3 and T.G. BROMAGE4. 2Center for Craniofacial Molecular Biology, USC School of Dentistry, Los Angeles, 3UPR 2147 CNRS, Paris, 4Center for the Advanced Study of Hominid Paleobiology, Department of Anthropology, George Washington University, 3Departments of Biomaterials and Biomimetics and Basic Science and Hominid Paleobiology, Department of Anthropology, University of California, Los Angeles, 2UPR 2147 CNRS, Paris.

In a preliminary study, we documented that COS concavity is significantly correlated with alveolar prognathism when comparing African-American and European-American samples. Here, we test the hypothesis that this relationship remains significant when extending the range of mandibular size and shape variation to include Pleistocene Homo samples. A maximum of 56 3-D coordinate landmarks were recorded along the occlusal surface of the dentition, facial skeleton, and mandible in 289 African-American and European-American individuals from the Cleveland Museum of Natural History and casts of n=7-22 fossil Homo specimens from several repositories. The data was analyzed using principal components analysis of Procrustes scaled shape variables and thin plate spline analysis. Results show that fossil hominins generally confirm, and extend, the correlation between a less concave
How have taphonomic studies contributed to our understanding of early hominin foraging behavior?

YIN-MAN LAM. Department of Anthropology, University of Victoria.

Since the 1980's, extensive taphonomic research has been undertaken with the goal of explaining the significance of the faunal assemblages from prominent early hominin sites in East Africa such as Olduvai Gorge. This research has included experimental, actualistic, and ethnoarchaeological studies that focused on skeletal elements and bone surface modification. A review of the cumulative result of these studies finds them inconclusive, with different research groups arriving at contradictory conclusions despite having examined similar lines of evidence. One problem may be that researchers have often taken observations made under very specific or controlled circumstances and used them with the intent of identifying general patterns of behavior among early hominins. Another problem has been the reluctance to recognize that, rather than general patterns, it may be atypical conditions, such as drought, that are most likely represented in the fossil record. Survival in such extreme conditions would have required behavioral flexibility among hominins, and this flexibility would have benefitted early Homo in adapting to the changing Pleistocene climate. Data summarized here show that modern African carnivores display a range of behavioral variability that is typically underestimated by paleoanthropologists. By examining such variability in successful carnivore lineages, we may begin to speculate on the different ways that early hominins may have adapted to fluctuating environmental conditions while defining a new ecological niche for themselves.

This study was funded by the National Science Foundation (DBI 0305074, DEB 0531988, BCS 0820298).

Left, right, neither: trabecular bone and the question of laterality in Pan.

RICHARD LAZENBY1, MATTHEW M SKINNER2, JEAN-JACQUES HUBLIN2 and CHRISTOPHE BOESCH3. 1Anthropology Program, University of Northern British Columbia, 2Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 3Department of Primatology, Max Planck Institute for Evolutionary Anthropology.

Previous research has demonstrated significant asymmetry in human metacarpal cortical and trabecular bone consistent with a population-level functional bias favouring the right hand. Among non-human primates, particularly apes, ecological data (captive and/or free-living) suggest either a modest population-level asymmetry or conversely, the presence of an individual - but not population - hand preference. Research on chimpanzee skeletal samples has suggested a significant asymmetry in whole bone dimensions of, e.g., the humerus, implying a population-level preference in limb use. In this study we examine structural asymmetry in trabecular bone from the head and base of paired first, second and fifth metacarpals in a sample of N ~ 13 of free-living chimpanzees from West and Central Africa (Tai Forest and Cameroon). Ethological data for hand preference is known for four of the West African animals. Measures of bone volume fraction, connectivity, 'plate-ness', trabecular thickness, number and anisotropy, derived from micro-CT imaging of 4.5 mm volumes of interest centrally positioned within each bone, have been collected. We found no significant differences in these measures for any measure (McNemar's test for paired samples; combined sexes). As well, no pattern is apparent for directional asymmetry and hand preference in those animals of known hand use. Accepting the efficacy of trabecular bone to record functional signals, our results challenge the arguments of population and/or individual-level hand preference in chimpanzees. The functional signature that exists in long bones of the upper limb (e.g., humerus) why does this not translate into the hand?

This study was funded by the Natural Science and Engineering Research Council of Canada (Grant 183660-03), the Max Planck Society, and the EVAN Marie Curie Research Training Network (MRTN-CT-019564).

The Bronze Age diet in Auvergne (France): a stable isotope approach.

GWENÆLLE LE BRAS-GOUDÉ1, RENAUD LISFRANC2,3, GILLES LOISON4,5, VIANNENY FOREST4,5 and ESTELLE HERRSCHER1. 1UMR CNRS 6636 LAMPEA, MSHM, Aix-en-Provence, France, 2INRAP Centre archéologique Méditerranéen, Marseille, France, 3UMR 6578, Faculté de Médecine La Timone, Marseille, France, 4INRAP, Montpellier, France, 5Centre de Recherche sur la Préhistoire et la Protohistoire de l’aire méditerranéenne, Toulouse, France.

This study aims to contribute to dietary reconstructions of Bronze Age populations in the Centre of France and to discuss socio-economical practices, as well as management of food resources. During the Bronze Age, economy is characterized by metal exploitation and transformation, leading to new social relationships and hierarchy. Food resources are mainly coming from herding and agriculture. However, based on contextual information (e.g. visible in funerary practices), it has been argued that food consumption might vary according to social and/or biological aspects. Further, cultivation of C4-plants (like Millet) is attested in France during the Bronze Age, but no precise information is available in Canada. In order to obtain individual and specific dietary data, we performed stable isotope analyses (C and N) on extracted collagen of 60 human and 22 animal remains from three contemporary French sites close each other and dated to the Early Bronze Age (ca. 2300–1600 BC cal.): Chantemerle (Puy de Dôme), Oreet/Le Tourteix (Puy de Dôme), and Dallet/Machal (Puy de Dôme). Stable isotope data are integrated with biological (e.g. sex, age, pathology) and archaeological information (e.g. burial practices).

Unlike δ13C data, human δ15N results indicate a wide range of values. Animal
values show more or less the same pattern, with some species, like *Bos sp.*, distinct from the other ones. Both human and animal values do not support the hypothesis of any C4-plant as a significant protein intake. Moreover, first statistical data indicate that human δ15N variation appears to be independent of biological factors. This work is funded by The Nestlé France Foundation and INRAP.

Gelada bachelors take the easy way out.

ALIZA LE ROUX and THORE J. BERGMAN. Department of Psychology, University of Michigan, Ann Arbor.

Primate males without access to females employ a variety of strategies to gain access to females, ranging from simple monitoring opportunities for mating to acquiring third-party information about male-female relationships in order to find easy targets for takeover attempts. We investigated the types of information bachelors used to become successful bachelors fighting other bachelors. The presence of a declared bachelor is likely to prompt the hypothesis of any C4-plant as a distinct from the other ones. Both tern, with some species, like *Bos sp.*, the more folivorous *Pithecia* is specialized seed predators. *Pithecia* are specialized seed predators.

Utilizing multiple sexual diagnosis methods to obtain better answers to gender-based questions at Barbuise-La Saulsotte, France.

RACHAEL LEAHY, PASCAL MURAIL and STEPHANE ROTTIER. Université Bordeaux 1, UMR PACEA, Laboratoire d’Anthropologie des Populations du Passe, Bordeaux, France.

Answering gender-based questions is an integral part of studying funerary popu-

American Journal of Physical Anthropology
region. We successfully produced sequences for all fourteen canid samples and identified nine haplotypes, which were compared with ~1,000 published sequences for dogs and wolves from the literature. Among the nine haplotypes, seven are novel, while one is shared with domestic dogs and another with domestic dogs and wolves. Results from the phylogenetic network illustrate that most of our canid samples are derived haplotypes located at the tips of the branches. A recent study suggested a single origin of domestication for dogs from numerous wolves and our study provides important clues to the domestication process and phylogeny of modern dogs as well as wolves.

Patterns of sexual dimorphism in Gigantopithecus blacki dentition.

SANG-HEE LEE1, JESSICA W. CADE1, and YINYUN ZHANG2. 1Department of Anthropology, University of California at Riverside, 2Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, People’s Republic of China.

Sexual dimorphism is an important component of morphological variation, and has been associated with other variables related to socio-ecology, adaptation, phylogeny, and behavior. For example, highly dimorphic species such as gorilla tend to show intensive male-male competition and polygynous mating system. Among all extant and extinct primate species, Gigantopithecus blacki is arguably the most dimorphic, if not the most dimorphic, in size. However, the high level of size sexual dimorphism in G. blacki has not been tested with statistical rigor, because the measurement used, the ratio of male and female means, does not have sampling distribution. In this study, we have compared the burial remains of two temporally distinct populations from Nubia: a Mesolithic population (~11 ka) from Wadi Halfa and a Coptic Christian population (~750 AD) from Kulibnarti. We hypothesize that the stark differences in mandibular morphology between these two distinct populations are indicative of drastically different dietary habits and that the higher prevalence of TMJ disease in the Mesolithic population suggests utilization of more mechanically challenging dietary resources.

In order to test this hypothesis, we have estimated the bite-force capabilities of each specimen by analyzing key components of mandibular morphology including the dimensions of the ramus, the robusticity of the mandibular symphysis, gonial eversion, and the rugosity of the attachment sites for the major muscles of mastication. We conclude that the Mesolithic population was capable of generating higher bite forces, which, in combination with the preponderance of TMJ disease evidenced in the Mesolithic sample, implies a more mechanically challenging diet. Our results support the conclusions of Carlsson and Van Gerven (1977) who also found evidence of dietary differences between the same populations.

Digital UV/IR photography for tattoo evaluation in mummified remains.

LISA LEONE and WILLIAM R. OLIVER. Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina.

The presence and location of tattoos can be an important component in the identification of remains in the extended postmortem period if remnants of skin persist. However, when there is significant mummification, elucidation of tattoos can be technically difficult due to skin discoloration and dehydration. Many methods have been proposed to increase the visibility of tattoos in the extended postmortem interval including rehydration and exposing subdermal tissue, both have some (but limited) applicability. While some early attempts to use ultraviolet and infrared illumination for the visualization of tattoos have been published, they were of limited use because of the technical issues involving film-based photography. Recently, digital cameras sensitive to the ultraviolet and infrared spectra have been produced for the forensic market. These have the advantage of quick visualization of results and minimal marginal cost to allow optimization of image acquisition. The authors present a case in which ultraviolet and infrared photography allowed visualization of a small tattoo in mummified remains, which was imperceptible in the visual spectrum. At autopsy, the body was largely skeletonized with mummification of the back and upper extremities. Anthropological and dental evaluation was consistent with the missing person. The decedent was known to have a small tattoo of a heart on the back of her left hand, though the exact location was uncertain. Under both UV and IR photography, a small heart-shaped tattoo was noted between the metacarpals of the thumb and index finger.

Residential mobility in the rural Greek past: a strontium isotope investigation.

BRIAN LESLIE1, SANDRA GARVIE-LOK1 and ROBERT A. CREASER2. 1Department of Anthropology, University of Alberta, 2Department of Earth and Atmospheric Science, University of Alberta.

Archaeological excavations conducted at the ancient city of Stymphalos and the nearby Cistercian monastery of Zaraka in the Valley of Stymphalos, located in the Greek Peloponnese, yielded a number of human graves. Neither group of burials were contemporaneous with the structures in which they were interred and they are believed to represent small farming populations occupying the valley during the Late Roman/Early Byzantine and Late Medieval periods. A dietary reconstruction using stable carbon and nitrogen isotope analysis conducted by Carlie Pennycook found that most individuals had similar δ13C and δ15N values, a few had values suggesting a significantly different diet. It was hypothesized that the dietary differences observed were the result of residential mobility. The goal of this study is to determine whether some members of the Stymphalos and Zaraka burial groups were in fact migrants into the valley. This study employs Sr isotope analysis to investigate individual residential mobility. The Sr values reported here provide preliminary evidence for such mobility. A number of samples from both Stymphalos and Zaraka, including those with the most unusual δ13C values, show Sr values departing from those expected for the valley. These preliminary results suggest that dietary differences observed within these populations relate to residential mobility due to...
Marriage practices, labor-related seasonal movement, or mass population movement during times of turmoil. The radiogenic isotope facility at the University of Alberta is supported, in part, by a NSERC Major Resources Support Grant.

Measuring sexual dimorphism in the hominoid proximal ulna using a discriminant function analysis.

CARI M. LEWIS. Department of An- thropology, Indiana University, Bloom- ington IN.

Sexual dimorphism studies focusing on primates have largely been performed on the skull and dental skeleton; less is known about the primate postcranial skeleton in terms of skeletal differences between the sexes. While research suggests that the pattern of dimorphism in the distal humerus is indicative of the pattern of dimorphism in the entire elbow joint, no studies comparing dimorphism between the distal humerus and proximal ulna have been performed in hominoids. In this study, a new, validated method of measuring sexual dimorphism in the proximal ulna of humans will be performed to compare the sexual size dimorphism of the proximal ulna in the hominoid species Pan troglodytes and Gorilla gorilla using a discriminant function analysis. Specimens used in the study were collected from the Cleveland Museum of Natural History. Overall, 36 chimpanzees and 50 gorilla left proximal ulnas were measured. Using the discriminant function analysis, female chimpanzees (N=23) were correctly classified 73.9% of the time, whereas males (N=13) were correct classified 76.9% of the time, giving an overall classification success of 75.8%. Both female (N=24) and male (N=26) gorillas were correctly classified 100% of the time. A low percentage of classification in chimpanzees may be related to small sample sizes and lower sexual size dimorphism overall. Future research hopes to address these issues. The high success of classification in gorillas suggests that the utilization of discriminant function analyses could be highly efficient in categorizing other skeletal elements into sex.

Using automated high density quasi-landmarks to test for associations between normal facial feature variation, genetic ancestry and candidate gene variation in Cape Verdaeans.

DENISE K. LIBERTON, PETER CLAES, BRIAN MCEVOY, SANDRA BELESA, GREG BARSH, HUA TANG, DEVIN ABSHER and MARK D. SHRIVER. Department of Anthropology, Pennsylvania State University, 3Melbourne Dental School, University of Melbourne, 4Queensland Institute of Medical Research, Brisbane, Australia,

A new method of summarizing facial feature variation from 3D photos was compared to traditional, low-density manually placed landmark methods in a sample of 248 individuals, ages 18-40, from the Cape Verde islands, which have a history of extensive European and African admixture. For all individu- als, DNA was collected and proportional European and African genetic ancestry was estimated using AIMs. 3D photogs of faces were acquired using the 3DMDface imaging system. Traditional landmark coordinate data from 22 standard anthropometric landmarks was collected as well as Principal Component scores from an analysis of 10,000 high-density quasi-landmarks, which are collected over the full facial surface and provide a better representa- tion of normal morphological variation in the entire face. ANOVA was used to test for associations between measures of facial variation and genetic ancestry estimates, conditioning sex, age, height, weight and body mass index. These results for Cape Verde were compared to two other West African/European admixed population samples, namely African Americans and Brazilians. The Cape Verde individuals share some of the facial trait/genetic ancestry correlations with the other two populations but also exhibit some distinct differences in facial morphology, particularly near the nose. In addition, we examined craniofacial selection- nominated candidate genes that are known to be involved in Menhelian craniofacial dysmorphism and to show high allele frequency differences between West African and European populations for admixture linkage to variation in facial traits. ANOVA results reveal distinct patterns of facial varia- tion associated with different candidate genes.

This study was funded by the National Institute for Justice, Grant 2008-DN-BX-K125; National Science Foundation, DDIG 0851815, Wenner-Gren Foundation Dissertation Fieldwork Grant #7967.

Resettlement contributes to conservation and development in Korup National Park, Cameroon.

JOSHUA M. LINDER, LAWRENCE BAYA and MARIN BARDEN. Department of Sociology and Anthropology, James Madison University, Harrisonburg, VA. Department of Wildlife Ecology and Management, Albert-Ludwigs Universitat Freiburg, Freiburg, Germany, Department of Biology, James Madison University, Harrisonburg, VA.

Critics of the “people-free parks” approach to biodiversity conservation argue that schemes to resettle park res- idents have caused widespread human suffering and are altogether unsuccessful. They contend that human presence inside protected areas is compatible with conservation goals. A resettlement scheme in Cameroon’s Korup National Park (KNP) has been criticized for being unnecessary and a detriment to local livelihoods. We surveyed forests, households, hunters, and bushmeat markets and conducted interviews to re- evaluate the effectiveness, from a bio- logical and economic perspective, of the 2003 resettlement of Ekundukundu vil- lage. We found that hunting by people living inside and on the periphery of KNP is threatened by largest and verte- brate species, especially primates. Comparing pre- and post-resettlement eco- nomic activities, we found that the number of animals harvested by Ekundukundu hunters, the time villagers invested in hunting, and the amount of income derived from hunting has declined. These changes are associated with an increase in the diversity of al- ternative income generating activities, which have compensated most households for the loss of income from hunting. Although some Ekundukundu villagers and hunters from other vil- lages still hunt in the former village area, hunting intensity remains rela- tively low and primate diversity is high there. Resettlement has reduced hunt- ing by Ekundukundu villagers, encour- aged threatened species to use the former village area, and improved the eco- nomic development for many resettled households. Resettlement in KNP appears to have supported both conserv- ation and development agendas. We discuss how to improve the implementa- tion and monitoring of future resettle- ment programs in KNP.

This study was funded by the Wildlife Conservation Society Research Fellow- ship Program, Center for Tropical Forest Science of the Smithsonian Tropical Research Institute, Center for Tropical Forest Science of the Smithsonian Tropical Research Institute, and Evolution and Primate Programs in KNP.

Environment explains subsistence tool use in Pan troglodytes.

STACY LINDSHEILD, ERIC OTAR- OLA CASTILLO, JILL PRUETZ and BRENT DANIELSON. Ecology and Evolutionary Biology Program, Department of Anthropology, Department of Ecology, Evolution, and Organ- ismal Biology, Iowa State University, Ames, IA.

Cultural, genetic, and environmental factors influence tool use. However, we lack a precise understanding of the mechanisms underlying said factors.
resulting in tool use behavior. We hypothesize that tool use is an evolved response to the intensity of resource competition. To test our hypothesis, we analyze variation in classes of subsistence tools among Pan troglodytes populations. Because our interest is the ultimate causal mechanisms underlying tool use, we define broad tool categories based on the resource extracted instead of specific technique or tool material. Rainfall and temperature seasonality are proxies for competition intensity. Geographic distance among sites is a proxy for cultural and genetic components, and the transmission of tool traits via diffusion and migration are negatively related to distance. Multivariate strategies of tool use are compared across sites, and their relationships to said variables are assessed using mantel tests and ordination techniques. Our results indicate that environmental variables best explain variation in tool use (r² = 0.5652, p = 0.0396). Genetic and cultural explanations were rejected when no significant relationship for geographic distance was detected (r² = 0.3283, p = 0.354) but tool use and longitude approached significance (r² = 0.5659, p = 0.0702). Vector fitting analyses reveal that rainfall seasonality is strongly correlated with tool use. The results support a trade-off between investing in costly behavior, and extracting difficult-to-obtain yet nutritious resources. Seasonality, which is associated with bottlenecks in resource availability, may be a selective force for the evolution of tool use in chimpanzees. This process may explain the emergence of tool use in many species, including humans.

Human-specific brain energy utilization features are reflected in gene expression during childhood: an RNA-world perspective.

LEONARD LIPOVICH1, ADI L. TARCA1, HUI JIA1, LAWRENCE I. GROSSMAN2, MONICA UDDIN2, PATRICK HOF3, CHERI D. CHERWOOD2,3, CHRISTOPHER KUZAWA4, DEREK E. WILDMAN1 and MORRIS GOODMAN1. 1Center for Molecular Medicine and Genetics, Wayne State University, 2Center for Social Epidemiology and Population Health, University of Michigan, 3Department of Neurosurgery, Mount Sinai School of Medicine, 4Department of Anthropology, Northwestern University.

Brain size in humans deviates from allometric trends in other mammals, and is enlarged threefold compared to other apes. In addition, human brain tissue has an exceptionally high metabolic rate. While most investigations of human brain evolution and metabolism have focused on adult brain, the metabolic demands are far greater in childhood, when relative brain size is also greater. Maximum glucose uptake in the human brain occurs later than in rhesus macaque, with a well-defined peak at 35% of mature age. The molecular basis of this human-specific brain energetics transition, however, remains incompletely understood. Recently, a large new class of mammalian genes, encoding non-messenger, long non-protein-coding ribonucleic acid (lncRNA) molecules of unknown function, has been discovered. Numerous lncRNAs have primate-specific sequences and/or evidence of rapid, lineage-specific evolution. To test the hypothesis that lncRNA expression, and by implication function, is correlated with human-specific brain energetics, we have quantitated the levels of nearly 6,000 lncRNAs in surgically resected human brain samples (n = 36, ages 0-18) originating mostly from the temporal lobe. To our knowledge, this is the first ever in vivo study of lncRNA gene expression during the childhood human brain development timecourse. Our age-dependent differential expression analysis pinpointed nine lncRNAs that are precociously expressed in the human glucose uptake curve, including lncRNAs encoded by novel genes with anthropoid-specific exons and with primate-specific repeat sequences contributing splice sites. Future functional analysis of these RNAs’ relevance to brain energy metabolism in the context of human brain size and energy demands is warranted. This study was funded by the National Science Foundation, grant numbers BCS 0827546, BCS 0827531, and BCS 0550209.

Murder in the Agora: violent death and illicit burial in ancient Athens.

MARIA LISTON. University of Waterloo, Ontario.

Since 1931, American excavations in the ancient Agora of Athens, Greece have excavated hundreds of wells containing human remains. The dates range from the Neolithic to Byzantine periods, indicating that the practice of burial in abandoned wells persisted for millennia. Many skeletons are perinatal infants; two adults were deposited as formal burials, complete with associated pottery, and others are clearly associated with the Herulian sack of Athens in AD 267. At least five individuals, however, exhibit potentially fatal perimortem trauma, and appear to have been deposited in the wells without any formal grave goods or evidence of war-related conflict or other crisis. The nature of the trauma inflicted on the skeletons and their informal burial suggest that these individuals were violently killed and deposited in the wells, perhaps to hide the bodies. All five exhibit clear perimortem trauma to the skull. Four sustained multiple cranial fractures, and the fifth was beheaded with multiple blade cuts. Two also exhibit perimortem fractures on the post cranial skeleton. Three of the victims, designated AA 10 (Classical), and AA 78 - AA 79 (Byzantine), were deposited during historic periods when it would have been illegal to bury a corpse within the city. The other two subjects of inferred AA 1 (Neolithic) and AA 296 (Mycenaean) died before formal laws regarding burial are known to have existed in Athens. However, their deposition in abandoned wells indicates a casual and possibly furtive, deposition and suggests that they too were victims of murderous intent.

Prevalence and patterns of disease in the late-Roman cemetery population of Frilford, Oxfordshire.

BRONWYNN LLOYD. Department of Archaeology, Durham University.

The occupation of the Roman army (AD 43 – 410) had a crucial impact on the British landscape and its inhabitants. Skeletal evidence from cemeteries associated with Roman settlements provides valuable information on the demographic and social impact of the occupation. The Roman town of Frilford, Oxfordshire has been subject to excavations since the 19th century, though previous conclusions about the Frilford population have been based on limited skeletal evidence, assessment of grave goods, and outdated migration theories. Crania (N = 136) from the associated cemetery were used to conduct a macroscopic osteological analysis of the demography and health of the population to further explore the impact of ‘Romanization’ on the Frilford individuals. Thirteen females, 50 possibly females, six males, 41 possibly males and 26 individuals of unknown sex were recorded in the sample, though issues with preservation may reflect biases in sex estimation. Pathologies observed in the sample included a high prevalence of dental disease, cribra orbitalia, remodelled periosteal new bone growth, and healed trauma. The results suggest a combined military and civilian population exposed to periodic concentrations of people, seasonal malnutrition and occupational accidents. However, more work is required to ascertain confirmed evidence of some proposed diagnoses and the distribution of sex and age in relation to these pathologies with confidence. This study was funded by The Rosemary Cramp Fund, awarded 2010.

Traces of a homicide in the Coptic monastery of Deir el-Bachit in Thebes-West, Egypt.

SANDRA LÖSCH1 and ALBERT ZINK2. 1Department of Physical Anthropology, University of Bern, Switzerland, 2EURAC-Institute for Mummies and the Iceman, Bozen, Italy.

In the necropolis of Thebes-West a cop­tic monastery, dating between the 5th and 8th century AD, is currently excavated by the German Archaeological
Institute. Deir el-Bachit was inhabited by monks, who were buried at the adjacent cemetery. During the excavation, a skeleton was found in an arch, which was originally used as a storage room. According to the fabric found attached to the skeleton the individual could be dated to the 16th to 18th century. The anthropological investigation revealed that the skeleton was a female, who died at the age of 19 to 23. Additionally, several bones of an unborn fetus, approximately 6th lunar month, were recovered close to the female skeleton. The skull of the young woman showed a severe trauma on the right parietal bone close to the sagittal suture. The injury was most probably caused by a blunt force and showed no evidence of healing. The dating of the fabric pattern and the sex of the skeleton clearly show that it is documented as a c1 belong to the monasterial community. Moreover, the lethal skull trauma and the unusual burial place strongly suggests that the pregnant woman was the victim of a homicide.

Documentation of pathological conditions in Osteoware.

MARILYN R. LONDON. Repatriation Osteology Laboratory, National Museum of Natural History, Smithsonian Institution, Washington, DC.

Osteoware makes detailed documentation of pathological conditions possible. A flexible structure includes a drop-down menu to select individual bones, bone types, or skeletal regions, and a screen to choose side, bone aspect (e.g., anterior), and section (e.g., proximal 1/3 of diaphysis) using radio buttons and check boxes. When a condition such as arthritis crosses a joint, a drop-down menu is used to choose all affected bones. The location of the condition is established, one or more data entry pages within the Pathology Module can be selected to document the type of condition. These pages include: Abnormal Bone Loss, Bone Formation, Trauma, Porosis and Vascular Impressions, Arthritis, Bone-Specific Abnormality (including size and shape), and two pages specific to conditions affecting the vertebral column. More than one page may be used to document a c1 belong. Within the pages, specific information about the conditions is selected, including descriptions of the bone surface, severity, and extent of surface affected. If the condition does not correspond to any of the available data entry pages, the "Other pathology not in system" box is checked.

An unlimited text field is available for descriptions of the condition, which should refer to any information selected within the data entry page(s), and specific information as needed to further document the condition, such as measurements. While diagnosis is not the object of this description, patterns of lesions should be mentioned. The database can be queried and linked to other data tables within Osteoware for meta-analysis within and across populations. Osteoware is supported by grants from the National Center for Preservation Technology and Training (NCPTT) National Park Service, and the Smithsonian Web 2.0 grant.

A new technique for linear enamel hypoplasia quantification.

ANDREW M. LOPINTO. Department of Anthropology, University of Arkansas.

Linear enamel hypoplasias (LEH) are an important component to the study of childhood stress in ancient skeletal populations. These enamel defects can reflect any form of extreme stress from high disease load to inadequate nutrition during development. Though the exact causes that lead to acute stress which form individual defects are difficult to determine, the impact and duration of these stresses can be examined. This project outlines and tests a minimally invasive means of studying the surface structure of dental enamel in order to attempt to quantify fill volume of LEH. A sample of teeth (n = 35) from the ancient Egyptian site of Akhetaten (modern day Tel el-Amarna) that exhibit visible linear enamel hypoplasia was utilized in this study. The teeth were first cleaned of any surface debris and etched using Pulpdent Etch-Rite dental etching gel (38% phosphoric acid solution), and were then molded using President’s Jet Regular Body Dental Impression Material (Coltene-Whaledent). These high-resolution molds were then cast, and the casts scanned using a Roland Dr. Picza Touch Probe Scanner. The resulting point clouds were then analyzed with ArcView GIS software. Results show this method to be a simple, effective way to quantify severity of total events resulting in LEH, as opposed to more invasive methods like thin sectioning.

Human bioarchaeology at Shahri-i Sokhta (3rd millennium BC), Iran: Palaeopathology, dental histology and isotopic analyses of ancient human hair.

KIRSI O. LORENTZ. Science and Technology in Archaeology Research Center, The Cyprus Institute.

The extent (20-25 ha of cemeteries, up to 40,000 graves), the exceptional preservation (human hair, nails and soft tissue), and the artefactual evidence for the several contextually distinct groups at Shahri-i Sokhta (‘craftsmen’ and ‘herders’) provides a unique record with which to study the development and health status of urban civilization during the Bronze Age. Given the intensive craft work evidenced at Shahri-i Sokhta, and its urban extent, the following problems can be posited: Was dentition used as a tool or a ‘third hand’? What is the rate of AMTL? Are growth disruptions/stress episodes visible in the dentition? What can we say of diet? The hypotheses are that human dentition was used as a tool, AMTL rates are relatively high, multiple stress episodes present on dentitions, and human hair and bone are well enough preserved to allow C and N analysis.

The following methods and materials were used (including pilot studies): C and N stable isotope analysis of human hair (N=6 individuals), C and N stable isotope analysis of human bone (N=20 individuals), dental histology (N=3 individuals), statistical analysis of AMTL (N=974 tooth positions) and dental wear (N=877) Understanding socio-economic transformations through time is one of the major foci of current bioarchaeological research, both at regional and global scales. The differential dietary regimes indicated by the stable isotope studies of hair, and the differential use of dentition as a tool indicate clear potential for exploring social differentiation at Shahri-i Sokhta, through integration of contextual, anthropological and isotopic data. This study received funding from ICAR.

Dietary variability of ring tailed lemurs (Lemur catta) and Verreaux’s sifaka (Propithecus verreauxi) based on δ15C and δ15N values from feces.

JAMES E. LOUDON1, MICHELLE L. SAUTHER2, FRANK P. CUOZZO2, KATHRYN J. COOPERMAN3, and MATT SPONHEIMER1. 1Department of Anthropology, University of Colorado-Boulder, 2Department of Anthropology, University of North Dakota, 3College of Law, Syracuse University.

We present stable carbon (δ13C) and nitrogen (δ15N) isotopic data from sympatric ring tailed lemur (Lemur catta) and Verreaux’s sifaka (Propithecus verreauxi) inhabiting the Beza Mahafaly Special Reserve (BMSR). We collected fecal matter and behavioral data on 14 collared ring-tailed lemur (Lemur catta) and Verreaux’s sifaka (Propithecus verreauxi) throughout an eight-month period that included a distinct wet and dry season. For each primate, we collected data on one group that lived in a protected parcel of riverine forest and one group that inhabited forests that were anthropogenically-disturbed. In total, we analyzed 224 fecal samples (122 lemur and 122 sifaka). Lemur feces had higher δ13C (P < 0.001) and δ15N (P < 0.0001) values than sifaka. Intraspecific lemur comparisons revealed significant monthly differences in δ13C values (P < 0.01). Lemurs also had enriched δ13C values during the wet season (P < 0.05) and the lemur group living in
the protected parcel had depleted δ13C values (P < 0.01). Sifaka comparisons revealed monthly differences in δ13C (P < 0.0001) and δ15N (P < 0.001) values. For sifaka, δ13N values were also enriched in the wet season (P < 0.0001) while δ15N values were depleted (P < 0.01). The sifaka group living in the protected parcel was enriched in δ15N (P < 0.0001). Our feeding observations (120.3 lemurs and 137.1 sifaka hours) revealed that each primate relied on different foods throughout the year, based primarily on availability. This research supports the implementation of stable isotope analysis of carbon and nitrogen at an effective method to track changes in diet temporally and spatially at BMSR.

This study was supported by the National Science Foundation (Grant #0525109), the University of Colorado-Boulder’s Innovative Seed Grant Program, and the University of Colorado-Boulder’s Undergraduate Research Opportunities Program.

Quantifying urinary C-peptides in wild geladas (Theropithecus gelada).

AMY LU1, COLLEEN MCCANN2, MARCELA BENITEZ2, and JACINTA C. BREEHNER1,3. 1Department of Psychology, University of Michigan, 2Wildlife Conservation Society, Bronx Zoo, 3Department of Anthropology, University of Michigan.

Accurate measurements of energetic condition are a critical variable for understanding the ecological factors that limit primate growth and reproduction. However, reliable energetic estimates have been notoriously difficult to obtain, requiring laborious measurements of feeding rates and energy expenditure. C-peptides offer a promising alternative. As a polypeptide secreted on an equimolar basis with insulin, providing a non-invasive method to assess energetic condition, C-peptides are measurable in urine, providing a non-invasive method to assess energetic condition in wild populations. Here, we validate the measurement of C-peptides using captive and wild urinary samples from geladas (Theropithecus gelada). Our objectives for this study were to show both analytical and biological validation. We collected samples from captive individuals (n=24 samples from 12 individuals) at the Bronx Zoo (New York) and from wild individuals (n=60 samples from 20 individuals) in the Simien Mountains National Park (Ethiopia). For the analytical validation, we demonstrated parallelism and accuracy (r²>0.99) using a commercially available radioimmunoassay. For the biological validation, we found (1) that C-peptides were higher in the captive vs. wild population, and (2) within the wild population, C-peptides were higher during the wet season vs. dry season. Therefore, our results indicate that urinary C-peptides can be reliably measured in geladas, offering a useful tool for assessing how energetic condition mediates the relationships between ecology, social status, growth, and reproduction.

This study was funded by the University of Michigan.

Testing the efficacy of sex determination in the human pelvis using geometric morphometrics and semilandmarks.

STEPHEN J. LYCETT, LIA BETTI1 and NOREEN Von CRAMON-TAUBADEL. Department of Anthropology, University of Kent.

While it is widely recognised that the pelvis is the most reliable skeletal element for sex determination, many of the most diagnostic features (e.g. ventral arc, subpubic concavity, medial aspect of ischiopubic ramus) are located on the anterior portion of the pelvis, which does not always preserve in forensic and archaeological contexts. Geometric morphometrics (GM) offers powerful statistical tools for shape analysis, enabling a flexible approach that accommodates the analysis of specific localised regions. Here, we use GM techniques to determine if semilandmarks taken on curves of the pelvis (iliac crest + iliac spine, interior curve of pelvis inlet, obturator foramen) discriminate individuals of known sex (20 Males, 20 Females) as accurately as 20 landmarks covering the entire innominate. Results were compared with an analysis of femoral head shape as a baseline. To assess efficacy of sex determination, Principal Component (PC) scores were subjected to Discriminant Function Analysis (DFA), where PC scores explained 90% of total variance.

Results show that most accurate determination of sex was for the whole innominate (Males = 100%, Females = 94.1%), suggesting that this section should be exercised where the whole pelvis is not preserved. However, it is notable that individual curves gave results of 76-82% accuracy in the case of the iliac crest and interior curve, even with the relatively small sample sizes employed here. These results compared with only 41-47% accuracy for femoral head morphology. Hence, GM methods may provide a viable approach to sex determination in the case of partially preserved innominate.

Taking advantage of spatial data: the utilization of density estimates to manage mass disaster scenes with commingled human remains.

KALAN S. LYNN1, LUIS L. CABO1, MICHAEL W. KENYHERCZ2, ERIN N. CHAPMAN3 and DENNIS C. DIRKMAA1. 1Department of Applied Forensic Sciences, Mercyhurst College, Erie, PA.

Total stations and high-resolution GPS allow rapid recordation of precise spatial coordinates even in scenarios with thousands of scattered fragmented human remains. This spatial information is key to documenting provenience and establishing chain of custody. Currently, the full range of analytical possibilities offered by this type of spatial data have not been fully explored.

The present study illustrates the application of sampling designs and density estimates derived from field ecology and epidemiology to the management of mass disaster scenes and the solution of commingling issues.

Plot and pointless sampling methods were used to estimate evidence densities in two sets of experimental scenarios: Preset surfaces with known areas, quasi-isotropic evidence distributions and known item sizes; and mock scenes with detoned vehicles to generate realistic anisotropic distributions on the two sampling methods. The real densities were approximated in this case by conducting line searches until evidentiary elements were no longer found.

Results suggest that reliable evidence density estimates can be obtained in these cases with minimum resources. This would allow scene management to focus recovery efforts on areas with higher or lower densities, scene control and release. The spatial data also introduces proximity of remains as a variable in commingling analysis.

This study was funded by NIJ grant 2008-NJI-1793-SL#000802.

Morphological integration between the human os coxa and femur.

K.MACCORD1 and J. STOCK2. 1Department of Philosophy, Arizona State University, 2Department of Biological Anthropology, University of Cambridge.

The femur and os coxa form a functionally integrated unit which develop and act in tandem in order to distribute the forces necessary for locomotion. The coverage of these two bones is deduced from their functional dependence, but little has been done to investigate the subtle patterns of morphological integration between the two. Three-dimensional coordinate locations of 67 landmarks (39 on the femur, 28 on the os coxa) were collected for 48 individuals from 14 countries, spanning a latitudinal range from Australia to Greenland. A PLS analysis with a 10,000 distance matrix identified elements that are most highly correlated.

This would allow scene management to focus recovery efforts on areas with higher or lower densities, scene control and release. The spatial data also introduces proximity of remains as a variable in commingling analysis.

This study was funded by N I J grant 2008-NJI-1793-SL#000802.
ogy of the femur and os coxa do not covary significantly (RV coefficient = 0.2932, p = 0.1403). Previous studies have identified a strong relationship between the proximal femur and body shape (approximated by bi-lilac breadth). When we explored variation in specific regions of the femur and os coxa to determine the areas of greatest covariance, the regions most closely approximating pelvic breadth and mediolateral femoral breadth throughout the head, neck, trochanteric, and subtrochanteric regions were found to covary significantly (p = 0.0427, RV coefficient = 0.5). The results of this study indicate that morphological integration within the hip is strongest in measures of breadth, particularly at the proximal end of the shaft, but does not extend down the length of the femoral diaphysis.

Friends or casual acquaintances: identifying meaningful relationships among wild chimpanzees.

ZARIN MACHANDA1, IAN GILBY2, MARTIN MULLER3 and RICHARD WRANGHAM1. 1Department of Human Evolutionary Biology, Harvard University, 2Department of Evolutionary Anthropology, Duke University, 3Department of Anthropology, University of New Mexico.

Given that primates are one of the few mammalian orders where the majority of species live in permanent groups, many studies have focused on understanding the complexities of group living such as the formation of social relationships. Identifying important social relationships in a primate group involves calculating measures of affiliative behavior such as association time, grooming, and coalitionary behavior which can be balanced with measures of aggression. In this paper, we first review and evaluate different measures used for identifying strong social bonds among chimpanzees including the Pepper Index (Pepper et al. 1990) and preferred social partnerships (Gilby & Wrangham 2008). We then examine whether the value of these measures vary based on the age/sex class of the individuals involved. We test several different methods of identifying relationships among free-ranging adult male and female chimpanzees living in the Kanyawara community in Kibale National Park Uganda. Results show that for males, rates of grooming or indices of spatial association are essential for differentiating intra- and intersexual relationships. In contrast, for females, party-level association indices are sufficient for identifying strong social bonds. We conclude that measures used to identify social relationships among wild chimpanzees must take into account the age/sex composition of the dyads involved in order to ensure that true relationships exist.

This study was funded by the National Science Foundation, Grant 0416125.

APA ABSTRACTS

Parallel lumbar and pelvic morphology in atelines and early hominids: clues to the earliest hominid adaptations to upright walking?

ALLISON L. MACHNICKI4, YOHANNES HAILE-SELASSIE1, LINDA SPURLOCK2, SERGIO L. MENDES3, KAREN B. STRIER2, MELANIE A. MCCOLLUM4, and OWEN LOVEJOY1. 1Department of Anthropology, Kent State University, Kent, OH, 2Cleveland Museum of Natural History, Cleveland, OH, 3Depar-tamento de Ciências Biológicas, Universi-dade Federal do Espírito Santo, Brazil, 4Department of Anthropology, University of Wisconsin-Madison, 5Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA.

Human bipedality is unique among primates, and lumbar lordosis is among the most critical functional requirement, because it obviates the need for the bent-hip-knee (BHBK) gait as practiced by African apes. We have eliminated lumbar mobility by trapping the one/two most caudal lumbar vertebrae by dorsally extended ilia (Lovejoy & McCollum, 2010, Phil. Trans. Roy. Soc. B. In press). The earliest known homini-des show an opposite state—emancipation of the most caudal lumbar vertebrae by reduction in iliac height and expansion of sacral alar breadth. Moreover, the Last Common Ancestor of African apes and hominids retained a long lower spine (most likely 6 lumbers) (McCollum et al., 2009, J. Exp. Zoo. (Mol. Dev. Evol.) 312B: 1-13). Such mobility would have permitted more effective bipedality than is seen in extant apes. However, the most caudal lumbar in Old World Monkeys is also partially trapped by dorsally extended ilia. Could iliac height reduction and sacral broadening have been the earliest adaptations to upright walking in hominids?

Atelines (Atelidae, Brachycebus, Lagotrichus, Alouatta) have flexible prehensile tails, which, when used simultaneously with their forelimbs for support, induce extreme lordosis. We anatomically examined (dissection, MRI, X-ray) their pelvises and lumbar columns and also observed lower limb postures “in the wild.” We find striking parallels with hominids in math, suggesting that lowering iliac height is a possible first step in directly evolving bipedality without any reliance on a BHBK gait.

Dimensions of the birth canal and age at death in prehistoric New Mexican women: a test of evolutionary-optimality.

HEATHER L. MACINNES and OSBJORN M. PEARSON. Department of Anthropology, University of New Mexico, Albuquerque.

The human female pelvis is an evolutionary compromise between bipedalism and encephalization. Of the four main pelvic forms -- gynecoid, anthropoid, android, and platypelloid -- gynecoid is considered the best suited for the human birth mechanism due to its large, elliptical inlet. The remaining three types are ranked most to least suitable as anthropoid, android, and platypelloid. Modern medicine reduces the effects of having a less optimal pelvic shape. However, in prehistory it is likely that there would be evidence of evolutionary pressure on pelvic form through a correlation between pelvic dimensions and the age of death in women of childbearing age.

To test this hypothesis, prehistoric New Mexican females (n = 45) aged 16-50+ years (estimated by Lovejoy or Suchey-Brooks protocols) were examined. Pelvic shape was determined by 6 measures of the pelvis not previously used. These measurements were regressed on estimated age at death. Contrary to expectations, none of the regression attained statistical significance at p < 0.05. Multivariate approaches also yielded no significant association with age. Maximum acetabular diameter, a proxy for size, correlated best with age (r = 0.35, p = 0.02). Thus, we conclude that variation in pelvic dimensions in this sample did not present a significant evolutionary pressure but larger women tended to survive to older age.

Documenting age and sex related morphology in Osteoware.

GWYN D. MADDEN. Department of Anthropology, Grand Valley State University.

The age and sex unit of OsteoWare has been designed to increase the efficiency of standardized data collection by employing an easy to use mix of fill in the blank and point and click options. For each tracking number the user is directed through a series of steps to record data for age and sex estimation. The data collected follows in the tradition of “Standards for Data Collection,” by Buikstra and Ubelaker (1994), including postcranial epiphyseal fusion, cranial suture closure, auricular surface changes, and change to the pubic symphyses. Change in rib morphology is an addition to the methods for data collection not previously used in “Standards.” Information used in the assessment of age for juveniles and adults has been combined into one area of data collection ensuring that the same data is collected for all individuals. Based on documentation of these morphological changes related to age, a number of categories are available including age ranges and descriptive options to summarize the data on age for each individual.

Pelvic and cranial morphology used to assess sex in the skeleton follows closely the methods described in “Standards.” An important addition has been made
in the summary options, the AMBIGUOUS category, for cases when there are indicators for each sex, to distinguish between ambiguous and unidentifiable sex in the skeleton. This presentation outlines the unit in Osteoware for documentation of age and sex in skeletonized remains and presents two case studies of catalogued remains from the Smithsonian Institution collections. Osteoware is supported by grants from the National Center for Preservation and Technology and Training (NCPTT), National Park Service, and the Smithsonian Web 2.0 Fund.

Variation in morphofunctional units of the human nose and climatic adaptation.

SCOTT D. MADUX1, ROBERT G. FRANCISCUS1,2 and TODD R. YOKLEY3. 1Department of Anthropology, 2Department of Orthodontics, University of Iowa, Iowa City, IA 3Department of Basic Sciences, Touro University Nevada, Henderson, NV.

For more than a century, anthropologists have recognized an association between nasal shape and climate as evidence of natural selection on human craniofacial form. Clinical research investigating nasal airflow dynamics and temperature/moisture modification has supplemented anthropological research by providing a better understanding of nasal function. However, the anthropological literature, while generally incorporating large and globally diverse samples, has focused almost exclusively on measurements of the external nose. Conversely, clinical research has focused on the functionally important internal nose, but has paid little attention to within or between group variation. In this study, we assess variation across morphofunctional units of the complete nasophranxal tract (external vestibule, nasal valve area, internal nasal fossa, and nasopharynx) by combining a morphometric analysis of extant human crania (n=830) from major geographical (Arctic Circle, Europe, Africa, Asia, and Australia) and climatic zones (polar, temperate, warm-arid, and equatorial) with a correlational analysis of skeletal nasal measurements and physiologically informative nasal passage cross-sectional dimensions. Consistent with theoretical expectations, our analyses demonstrate that the internal nasal fossa (INF) displays the greatest range of shape variation within the overall nasofacial complex. Specifically, crania from extremely cold-dry environments show A-P elongated, S-I tall, and especially M-L narrow INFs, while crania from extremely hot-humid environments are characterized by attenuated, short, and wide INFs. Moreover, INF morphology shows clinal distributions within geographic samples in our study (e.g. Nordic, Central, and Mediterranean Europeans), with the same directionality, if not magnitude, of INF shape contrasts found between broader geographical comparisons.

This research was supported by the Wenner-Gren Foundation (SDM), NSF SBR-9312567 (RFG), and L.S.B. Leakey Foundation (SDM, RGF, TRY).

Case of multiple fractures due to probable beating with extended survival during the 16th and 17th centuries in France.

BERtrand MAFART. Antenne de l’Institut de Paléontologie Humaine, UMR 7194, Européen Méditerranéen de l’Arbois, Aix en Provence, France.

Non-lethal polytrauma has been rarely described in paleopathology because they are most often incompatible with an extended survival. We are introducing here the case of an extended survival with several disabling residual ankylosis and whose origin was probably multiple assaults committed with some blunt objects. The studied case was male with an age estimated at more than 50 years old, interred in the Notre-Dame-du-Bourg necropolis, in Digne (Alpes de Haute Provence – France, 16th-17th centuries). The skull, the mandible and the bones of the two lower limbs were free from traumatic lesions. There were major sequelae of quasi-symmetric fractures of the two elbows and of the wrists, of a phalanx, of the pelvis, of ribs and of vertebrae. The lesions only affected the trunk and the two upper limbs, notably excluding the skull, the most affected part in general during fights. There probably was a will to hurt, but not to fiercely kill this man who was not able to avoid being hit. So, we have to consider that the victim was immobilized, even bound in a position where his arms, his hunds and his chest were exposed from the attacker(s) who gave him a thrashing. So, a beating could be the cause of this polytrauma.

Despite the seriousness of the lesions, his extended survival, further to major sequelae, shows the good quality of the cares given and of the human support for this great disable man in a little rural city during the 16th and 17th centuries in Southeast France.

The endosteal lamellar pocket as an indicator of childhood and adolescent modeling drift direction and magnitude during long bone growth.

COREY MAGGIANO1, ISABEL MAGGIANO1, VERA TIESSLER2 and SAM STOUT1. 1Department for Anthropology, Ohio State University, 2Facultad de Ciencias Antropológicas, Universidad Autónoma de Yucatán.

Bone modeling drift accounts for the adult long bone’s diameter, morphology, and position, providing useful information for skeletal biological and bioarchaeological understanding of bone morphology. Previous studies have suggested that the Endosteal Lamellar Pocket (ELP), a hemi-circumferential deposit of dense primary lamellar bone as a meta-feature indicating modeling drift, was the same way the secondary osteon indicates remodeling. Though it was hypothesized that the adult ELP originated from previous phases of rapid growth during adolescence, the exact nature and timing of primary endosteal bone drift in sub-adults was unknown.

In order to gain a more complete view of long bone modeling drift, 64 juveniles from the archaeological site of Xcambó were analyzed using polarized light microscopy. The ELP was present in each of 3 age groups tested: 5-9, 10-14, 15-19.

In comparison to its adult counterpart, the juvenile ELP was much larger as a percent of total bone cortex, which was not uncommon for ELP lamellae to account for nearly the entire cortex of one side of a transection. This occurrence is contrary to the general notion that diometric growth and long bone shape is achieved simply by periosteal expansion and endosteal resorption. In addition, it was found that near this site of dramatic bone modeling drift, even the nutrient foramen was forced to drift as well, rather than solely being buried by periosteal apposition. These preliminary results suggest the ELP can be used successfully as an indicator of drift and that shape change during long bone growth may be much more complex that previously imagined.

Analyzing microscopic variation along the femoral and humeral diaphysis: A histological examination of the ELP as an indicator of long bone modeling drift.

ISABEL MAGGIANO1, COREY MAGGIANO1, VERA TIESSLER2 and SAM STOUT1. 1Department for Anthropology, Ohio State University, 2Facultad de Ciencias Antropológicas, Universidad Autónoma de Yucatán.

Bone modeling drift accounts for the adult long bone’s diameter, morphology, and position, providing useful information for skeletal biological and bioarchaeological understanding of bone morphology. Previous studies have suggested the Endosteal Lamellar Pocket (ELP) as a meta-feature for modeling drift investigations. Until now the ELP has only been reported in long bone midshafts from archaeological population samples. However, since the meta-feature results from normal patterns of bone growth and adaptation, it should be common in any skeletal collection. To test this hypothesis and establish a baseline of data collected from known age and sex individuals 16 individuals from the Xoclań historic cemetery collection were examined microscopically, assessing ELP morphology and prevalence at 3 sites along the humeral and...
femoral diaphyses. The ELP was present in nearly every sample analyzed, and was present in the majority of the total cross-sections viewed. Its prevalence and size were greatest in the distal tibial metaphysis. This pattern was not as clear in the humerus where often proximal and distal transactions demonstrated larger ELPs than their mid-diaphyseal counterparts and overall variation in ELP position and size was greater. Results corroborate previous descriptions of ELP morphology and suggest that the distal aspect of the femur accounts for more of this element's growth duration and rate of the proximal. More quantitative analysis is necessary to provide a complete assessment of ELP histological and biomechanical variation among individuals, skeletal elements, and populations.

This work was supported by Deutsche Forschungsgemeinschaft (DFG).

Enamel development and thickness in Fulbe pastoralists and Nso agriculturists, Cameroon.

PATRICK MAHONEY1, GUNDULA MULDNER2, AGBOR MICHAEL ASHU3 and DAVID ZEITLYN1.1 School of Anthropology and Conservation, University of Kent, UK. 2Department of Archaeology, University of Reading, UK. 3Nkwen Baptist Health Centre, Bamenda, Cameroon. 4Institute of Social and Cultural Anthropology, University of Oxford, UK.

The degree to which environment impacts upon forming teeth is important to document for studies of incremental enamel development that increasingly identify taxonomic differences among hominoids. Here, we examined enamel development, and thickness, in two human ethnic groups (Fulbe; Nso) with different diets. Traditional Fulbe pastoralist subsistence is aimed at the production of milk leading to a diet rich in nutrients necessary for dental development, and Nso subsistence is more varied (predominantly agricultural). The duration and rate of enamel development that increasingly impacts upon forming teeth is important to document for studies of incremental enamel development.

Grooming claws: what are they and who has them?

STEPHANIE A. MAIOLINO. Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University.

Living strepsirrhines possess a specialized structure on the second pedal digit referred to as a grooming claw, which is often considered to be a diagnostic feature of this group. However, grooming claws are also present on the second and third pedal digits of tarsiers and on the second pedal digits of the platyrrhine Aotus. The origin of these features is unclear. Are they true claws (falcule) or are they secondarily derived from primates (ungulae)? Are all grooming claws homologues or did they arise separately in different primate lineages? Are they present in other primate groups? This study examines the affiliation and distribution of these structures via morphometric analysis and a survey of primate skeletal material. Morphology of the distal phalanx, which supports the grooming claw, was examined and compared to conspecific third pedal distal phalanges which bear ungulae, as well as heterospecific second and third pedal distal phalanges which bear ungulae, tegulae, or falcule. Data analysis consisted of principal coordinates analyses using Euclidean distances of size-adjusted shape variables. Results show that grooming claws are morphometrically distinct, and possess distinguishing characteristics of ungulae while lacking those of falcule. This suggests that grooming claws are not true claws. Additionally, the survey of primate skeletal material demonstrates an unappreciated variation in the second pedal digit of platyrrhine species. Most notably, members of genus Calllicebus possess a grooming claw. The presence of this feature in non-strepsirrhine lineages suggests that its incorporation into its phylogenetic significance in the fossil record should be approached with caution.

Semicircular canal orthogonality, nor radius, best predicts mean speed of locomotor head rotation: a new hypothesis with implications for reconstructing behaviors in extinct species.

MICHAEL MALINZAK1,2, RICHARD F KAY3 and TIMOTHY E HULLAR3. 1Department of Evolutionary Anthropology, Duke University. 2Department of Medicine, Duke University Medical Center. 3Department of Otolaryngology, Washington University School of Medicine.

Semicircular canal radius (SCR) is often used to infer locomotion in extinct primates. Two problems confront these inferences: 1) locomotor ‘agility’ is a rank-score from visual impressions, and 2) ~80% of SCR variance is explained by body mass alone whereas <0.2% of SCR variance is actually explained by agility rank. Consequently, SCR-based agility inferences are reasonably accurate only when body mass is known precisely and for species with very low or high agility ranks. To improve upon the accuracy of canal-based locomotor inferences, we measured angular head velocities in 11 strepsirrhine species exhibiting diverse locomotor behaviors. Cranial CT scans of the same taxa were used to predict vestibular sensitivity to rotations in all directions. Mapping in vivo head rotation onto predicted sensitivity, we found unexpectedly that axes of rapid rotation do not align with axes of high sensitivity, but axes of rapid rotation aligned with axes of mean sensitivity. Evidently, the brain most accurately interprets rotations presented about axes of mean sensitivity, and accurate perception of movement is most important during fast head rotation. We call this the “fast-accurate hypothesis.”

The fast-accurate hypothesis implies that fast animals should benefit from minimizing anisotropy in vestibular sensitivity, which can be achieved by orienting ipsilateral canals at near-orthogonal angles. In PGLS regressions, rotational head speed is more highly correlated with canal orthogonality (R²=0.7565, p<0.001) than with SCR (R²=0.1569, p=0.2). Our equations predict mean rotational head speed from canal measurements alone and outperform existing body-mass-dependent models.

This study was supported by NSF BNS 0824546 to RFK and Duke University.

Evidence of metric asymmetry and oral pathologies in hominin mandibles from the Pleistocene of Kenya.

NASSER MALIT. Department of Anthropology, State University of New York at Potsdam.

This research reports the presence of metric asymmetry on three mandibular remains from the Pleistocene of Kenya. The presence of pathological lesions on the jaws is provided here as an explanation for the asymmetry. The mandibles observed include the KNM-ER 992, KNM-WT 15000 and KNM-BK 67. The first two jaws come from the Turkana Basin, northern Kenya, while the later is from the Baringo Basin, in the Rift Valley of Kenya. This study included both morphometric analysis and descriptions of pathological conditions on the mandibular remains. Dental abrasions on the specimens were also investigated during the study. The
corpus height and thickness measures were taken from both the left and right sides of each mandible. Compared anteriors of the respective corpi indicate the presence of localized asymmetry on the mandible. These jaws also show evidence of dentalo-veolar abscesses on their horizontal rami that coincide with reduced corpus metric dimensions and decreased dental abrasion. Therefore, corpus plasticity that occur on the healthy sides of the jaws, are proposed to be due to differential mechanical loading during chewing prompted by pain avoidance from the infected sides, thus leading to alveolar bone built-up, but with the opposite effect of bone resorption on the affected areas.

The Pleistocene occurrence of dentalo-veolar abscesses indicates that this oral pathology was not unique to post-agricultural human populations, as biologists maintain. These findings show that periodontal disease occurs early in our evolution and that answers as to how our ancestors coevolved with oral flora should be sort.

Human intraspecific brain: body size correlations: towards a causal model for human brain mass variation.

PAUL MANGER1, JAKOB MATSCHKE2, MARKUS GLATZEL2, FRIEDEL WISCHHUSEN2, KLAUS PÜSCHEL3 and MUHAMMAD SPOCER1. 1School of Anatomical Sciences, University of Witwatersrand, Medical School, Johannesburg, South Africa, 2University Medical Center Hamburg-Eppendorf, Institute of Neuropathology, Hamburg, Germany, 3University Medical Center Hamburg-Eppendorf, Institute of Legal Medicine, Hamburg, Germany.

To date no study has sufficiently documented the range of modern human brain mass variation in a single population and how it relates with parameters such as age, body mass and height. In this study we analyse one of the largest known databases of brain and associated body size measures from autopsies obtained over a 20-year period from the Hamburg University Hospital, Federal Republic of Germany. The database consists of a total of 18,335 autopsies records drawn from a European population (12,131 males; 6,204 females) of individuals aged between birth and 100 years. Using a cohort approach we examined the strength of correlational relationships in brain and body size with both traditional regression analysis and structural equations modelling. Results indicate that early on (0-3 years of age) brain mass and body parameters are highly correlated with r values ranging from 0.91 to 0.94 and associated with steep regression slopes. The strength of these correlational relationships rapidly change with age beyond 5 years to eventually reach the commonly reported regression statistics of $r = 0.17$ to 0.40 observed in adults. Structural equations modelling was used to decipher the manner in which height, body mass and age contribute to early brain mass variation. Four ‘causal models’ were successfully fit ($P < 0.05$) on the 0-3 year-old cohort having been rejected by the other cohorts. These results indicate that brain: body size scaling relationships vary with age and highlight the range of variation in brain mass for a single population.

This work was supported by the South African Research Foundation (2068364).

Lead levels in teeth as a measure of life-time lead exposure in children.

CHARUWAN MANMEE1, SUSAN HODGSON2, WENDY DIRKS2, THOMAS SHEPHERD3 and TANJA PLESS-MULLOL1. 1Institute of Health and Society, Newcastle University, 2Oral Biology, School of Dental Sciences, Newcastle University, 3School of Earth and Environment, University of Leeds, UK.

Lead exposure is a major health problem in children including a deficit in IQ, deleterious growth development and behavioural effects even at very low levels of exposure. The usual test of lead exposure is to assess blood lead level (BLL), but this indicates only recent lead exposure. This study aims to develop a method to assess long-term cumulative lead exposure using tooth lead levels. We will ascertain whether milk teeth are suitable biomarkers of exposure. Two deciduous molars each were collected from 15 children aged 6-8 years living in Northeast England. Using histological sections, the distributions of lead in the teeth were examined. Blood lead levels ranged from 0.5-6.8 g/dl, and none of the children had a BLL above the WHO threshold of 10 g/dl. Calcium normalised lead ratios $^{208}\text{Pb}^{44}\text{Ca}$ were measured as lead body burden and these intensities vary across individual teeth. Comparatively low intensities of $^{208}\text{Pb}^{44}\text{Ca}$ were observed in enamel, higher ratios were found around the dentine close to the pulp cavity. Preliminary results indicate that these ratios in postnatal dentine are consistent at the same age, and slightly increase with age after birth. The combination of histological dating of growth areas of milk teeth in combination with LA-ICP-MS analysis is likely to be useful in establishing the history of lead exposure in children.

Primatology meets palaeoanthropology: the Oldowan.

LINDA F. MARCHANT1, R. ADRIANA HERNANDEZ-AGUilar2, WILLIAM C. MCCREW2 and THOMAS G. WYNN3. 1Department of Anthropology, Miami University, 2Department of Biological Anthropology, University of Cambridge, 3Department of Anthropology, University of Colorado-COLORado Springs.

In "An ape's view of the Oldowan" Wynn and McGrew (1989) argued for an ape adaptive grade of technological competency in australopithecines. They scrutinized evidence from Oldowan sites and compared it with behavioral observations of extant apes, but especially the chimpanzee. Recently, Hashlam et al. (2009) proposed a new interdisciplinary field, primates paleoanthropology, to consider the past and present material record of the Order Primates.
Here we revisit the Oldowan from the perspective of primate archaeology. We review recent evidence from the archaeological record and from the study of living primates, especially Pan spp. These include: 1) experimentally-induced fracturing of stone by bonobos and transmission of techniques to offspring; 2) cultural transmission and social conformity of tool-using skills in captive and wild chimpanzees; 3) chaîne opératoire theory applied to chimpanzee nut cracking work-sites; 4) experimental raw material selection; 5) chimpanzee use of large-scale mental mapping of wide-spread fruit resources; 6) chimpanzee foraging is technologically nuanced, e.g. tool use in obtaining prey; 7) chimpanzee nest-sites in multiple orangutan and crustaceans. The dialogue between primatology and archaeology yields new methods and insights to aid our understanding of hominin technological and cultural evolution.

Can fibular robusticity be used to infer mobility patterns in past populations?

D. MARCHI1, V.S. SPARACELLO2 and C.N. SHAW3. 1Department of Evolutionary Anthropology, Duke University; 2Department of Anthropology, University of New Mexico; 3Department of Anthropology, Pennsylvania State University.

Because of their role in weight bearing, the bones normally used to infer mobility patterns in past populations are the femur and tibia. Nevertheless, studies of living hominoids and modern human athletes have demonstrated that the structural properties of the fibula are significantly correlated with mobility patterns. This study assesses variation in fibular cross-sectional properties (CA, I_{max}, I_{min}, and J) within a sample of 155 individuals from the Late Upper Paleolithic (LUP), Neolithic and Iron Age of Italy, Medieval Germany, and contemporary athletes (long distance runners, field hockey players) and controls. The aim of this research is to investigate the correspondence between fibular diaphyseal properties and inferred mobility patterns in past populations. Cross-sectional measurements were taken at the midshaft, and both fibular rigidity and the ratio of tibial to fibular rigidity were analyzed (see Marchi, 2007).

LUP, Neolithic and Iron Age samples display the highest relative fibular rigidity, comparable to that of modern hockey players. The pronounced fibular rigidity associated with hockey players is explained as the skeletal adaptation to habitual multi-directional lower limb loading associated with their sport. The LUP, Neolithic and Iron Age individuals are thought to have been very active and resided in a region of uneven terrain; therefore the requirement for repetitive directional changes throughout the gait cycle where likely frequent. It is suggested that the inclination of the fibula in analyses of skeletal and fossil remains will allow for a more nuanced appreciation of the influence of mobility patterns on biochemical populations.

Coastal South Africa and the co-evolution of the modern human lineage and the coastal adaptation.

CURTIS W. MAREAN. Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ.

Homo sapiens arose in Africa between 200 and 100 ka ago directing our attention to MIS6, when from 185-123 ka the world was in a fluctuating but predominately glacial stage when much of Africa was cooler and drier, and when dated archaeological sites are rare. Pinnacle Point (south coast of South Africa) is one of the few localities in Africa dated to this crucial time. The research team here has shown that by ~162 ka humans had expanded their diet to marine resources, begun using and modifying pigments, produced bladelet stone tool technology, and very early heat treatment of lithics. The Pinnacle Point sites also include a later sequence of MIS5 sites that document an adaptation that increasingly focuses on coastal resources. Published work from Pinnacle Point are a high resolution coastline model and a speleothem sequence of climate and environmental change that shows that as the coastline distance shifted in response to global changes in sea level, the current Cape flora shifted as well. A model is developed that argues that when populations were small people focused their residential sites at the intersection of the coast and the geophyte-rich Cape flora, and this model is tested with archaeological data from Pinnacle Point. Exploiting coastal resources requires mapping to tidal rhythms to intercept productive collecting tidal cycles. This requires cognition capable of making novel associations between lunar phases and tidal rhythms, and was not possible until after a fully modern cognition evolved, explaining the late appearance of the coastal adaptation. This research was funded by the National Science Foundation (USA) (grants # BCS-9912465, BCS-0130713, and BCS-0524807 to Marean) and the Hyde Family Foundation, the Institute for Human Origins, and Arizona State University.

Dentoalveolar remodeling in hominoids.

ANN MARGVELASHVILI1,2, MARCIA S. PONCE DE LEÔN3 and CHRISTOPH P. E. ZOLLIKOFER. Anthropological Institute and Museum, University of Zurich, Switzerland, 3Georgian National Museum, Tbilisi, Georgia.

In-vivo dentoalveolar remodeling and the maintenance of dentognathic homeostasis are of critical importance for the functional and phyletic interpretation of dentognathic features in hominoids and hominins. Here we ask whether patterns and mechanisms of dentoalveolar adaptation differ between extant humans and great apes, reflecting conspicuous differences in dentognathic architecture and biomechanics between these groups. We used CT data of a sample of N=80 adult skulls of humans (Australian aborigines) and great apes (chimpanzees, gorillas, orangutans) to score 4 indicators of dentoalveolar remodeling (continuous erosion, lingual tipping of the anterior dentition, edge-to-edge bite of the anterior dentition, mesial drift of the posterior dentition). Results show that patterns of in-vivo dentoalveolar remodeling are largely similar in all examined taxa. Also, patterns of dentognathic aging are similar among taxa. This indicates that hominoids share a common set of basic compensatory mechanisms maintaining dentognathic homeostasis, irrespective of the architecture of the masticatory system, and irrespective of diet. These findings are important for discriminating patterns of evolutionary change from patterns of inter-intraspecies variation due to aging.

Ancestry and identity.

JONATHAN MARKS. Department of Anthropology, UNC-Charlotte.

We rarely conceptualize evolutionary anthropology in the context of kinship, the oldest research question in social anthropology. In this paper, I discuss recent work in the history of genetics and anthropology, and its bearing on the issue of understanding the meaning of genetics in modern society. Identity (what you are) is universally constructed from a negotiation between ideas of Ancestry (where you came from) and Emergence (what you became). Genetics provides an authoritative scientific voice on ancestry, and to focus upon genetics has commonly involved reducing identity to merely ancestry. Thus, “we are descended from apes” can be transformed into simply “we are apes” by privilege the genetic similarities that tend to reveal that
Mitochondrial haplogroup C4 confirmed in ancient North America.

CHARLA MARSHALL, GEORGIA MILWARD and FREDERIKA KAESTLE. Indiana University.

While mitochondrial haplogroup C has long been recognized as a founding Native American lineage, only in recent years has the phylogeny of this haplogroup been revealed with fine-grained resolution (Tamm et al. 2007, Volodko et al. 2008, Malhi et al. 2010, Pereg et al. 2010). A motif of coding region single nucleotide polymorphisms (SNPs) has been identified for each of the four haplogroup C clades (Volodko et al. 2008), thereby enabling greater specificity in haplogroup determination, which is essential to the study of the peopling of the Americas. In this report, we review the literature on haplogroup C4 and identify its geographic range in order to better understand the dispersal of this founding Native American matriline. We also identify potential instances of haplogroup C4 in datasets from previously published ancient DNA papers. Finally, we present mitochondrial genetic data on two ancient Native Americans belonging to haplogroup C4, confirming the presence of this subhaplogroup in prehistoric North America. These two individuals of distinct matriline were interred at the Angel Site, a Middle Mississippian (ca. A.D. 1050-1400) mound center located on the Ohio River east of Evansville, Indiana. Overall, this study contributes to the understanding of mitochondrial subhaplogroup patterning in the Americas, the timing and origin of founding Native American matrilines, and the role that genetic drift played in shaping the modern mitochondrial gene pool.

An examination of potential mass burials at St. Michael's Cemetery, Pensacola, FL.

NICOLE ROSENBERG MARSHALL and A. JOANNE CURTIN. Department of Anthropology, University of West Florida.

St. Michael’s Cemetery is the oldest extant cemetery in Pensacola Florida, dating to 1812. Since 2000, anthropologists from the University of West Florida (UWF) have been engaged in ongoing research at the cemetery aimed at documenting its use history. A total of 3,198 extant grave markers have been recorded, but historical records suggest that earlier, unmarked graves may also be present. A GRP survey conducted in 2008 identified 3,915 sub-surface anomalies that may represent burials predating the official inception of the cemetery. Several of these anomalies are significantly larger that would be expected for single interments, and possibly represent mass burials from colonial epidemic events. To test this hypothesis, the UWF Forensic Anthropology Field School conducted excavations at two of the large anomalies in the summers of 2009 and 2010. The goals of these excavations were (1) to determine whether the sub-surface anomalies do indeed mark mass graves; and (2) to determine the chronology and ethnicity of any burials encountered using attributes such as body position, burial orientation, body treatment, and associated artifacts. While neither of the first two anomalies excavated actually proved to be a mass grave, several individual unmarked burials were exposed and documented. This presentation describes the results of the first two seasons of excavations at St. Michael’s and discusses future avenues of research on the other large GRP anomalies, and on the human remains discovered to date. This study was funded in part by a UWF SCAC Faculty Grant.

Mesio-distal and bucco-lingual dimensions of maxillary and mandibular canines were measured to calculate FA in a total of 101 gorillas and 87 gibbons. The results support the hypothesis that gorilla males, whose canines take longer to form than those of females, exhibit greater FA than gorilla females. Male and female gibbons, whose canines take a similar length of time to form, exhibit similar FA levels. Female gorilla males generally exhibit greater FA than gibbon males in the maxillary dentition, consistent with the crown formation difference between these two taxa. Finally, individuals with LEH have greater FA than those in which LEH is absent. Although the results lend support to the hypotheses, not all results are statistically significant, owing to small sample sizes for some tests. These results suggest that LEH form over longer periods of time experience greater growth perturbation.

This research was supported by a grant awarded to Sarah A. Martin from The Ohio State University. Anthropology, Graduate School’s Alumni Grants for Graduate Research and Scholarship, and Critical Difference for Women Professional Development Program.

Relationships among crown formation time, fluctuating asymmetry, and linear enamel hypoplasia in gibbons and gorillas.

SARAH A. MARTIN, DEBBIE GUATELLI-STEINBERG and PAUL W. SCIULLI. Department of Anthropology, The Ohio State University.

Fluctuating asymmetry (FA) is a pattern of asymmetry in a group of organisms in which size differences between left and right body structures are normally distributed around a mean of zero. In individuals, FA appears as small differences between right and left body structures that are random with respect to which side is larger. Using gorillas and gibbons, this project tests the hypothesis that the amount of time canine crowns take to form affects the opportunity for FA to develop. Additionally, a sub-sample is used to test the hypothesis that the presence or absence of linear enamel hypoplasia (LEH) is associated with the magnitude of FA.

The Post-Meroitic period (c. A.D. 350-550) in Upper Nubia was an era of political decentralization between the Meroitic empire (c. 350 B.C.-A.D. 350) and the consolidation of Christian kingdoms. In the Fourth Cataract region, this transition coincides with fort construction, the presence of arrowheads in graves, and violent skeletal trauma, which may suggest that non-local individuals migrated into the area. At the Ginefab School site, a large cemetery (n=103) spanning the late Meroitic to Christian periods, variable grave styles may reflect migration of people into this area. Additionally, an increase in dental pathology during the Christian period may represent a dietary shift. To test these hypotheses, we examined paleomobility and paleodiet at the Ginefab School site using radiogenic strontium and stable carbon and oxygen isotope analyses of 11 archaeological humans and 8 modern faunal samples.
mean 87Sr/86Sr = 0.70708 ± 0.00025 (1σ, n=20), mean 10C/13C = −1.5 ± 1.6 (1σ, n=20), and mean 14N/15N = −4.6 ± 1.9 (1σ, n=20). These data suggest that there were no large-scale migrations during this time, existing isotopic data concerning diet, population interactions, and mobility in prehistoric Nubia are limited. This study extends isotopic research into a new regional context, offering new insights into biological interactions and future investigation.

This research is based upon fieldwork directed by Baker under licenses granted to Arizona State University by the U.S. Department of Treasury, Office of Foreign Assets Control (OFAC license No. SU-2122). Field and laboratory support was provided to Baker by the Packard Humanities Institute (Award Nos. 07-1391, 07-1424, & 08-1472 [OFAC license SU-2071]) and the Regents of the University of California, and by the National Science Foundation (BCS-0647055) and by an Undergraduate Research Assistantship awarded to Masoner from the School of Human Evolution and Social Change, Arizona State University. Laboratory support to Knudson was from the Institute for Science Research and Social Science Research and the School of Human Evolution and Social Change at Arizona State University.

Evolutionary change in hominin orbital morphology since the Upper Paleolithic in Western Europe.

MICHAEL P. MASTERS. Department of Anthropology, Montana Tech of the University of Montana.

This study examines morphological change in size, shape, and orientation of the hominin eye orbit through the application of univariate and multivariate statistical procedures. Craniofacial measurements were taken on skulls of individuals representing different regions and time periods in Western Europe, to test the hypothesis of no change in orbital morphology since the Upper Paleolithic. Linear regression, ANOVA, and principal components analysis were used to test the hypothesis, to examine patterns of orbital change among temporal groups, and to investigate how the orbit varies in association with other characteristics of the face and cranium. Results of this analysis indicate that the orbit has undergone a number of anatomical changes during recent human evolution, and particularly in shape of the orbital margins, which have become taller and narrower through time. This trend is associated with increased cranial globularity and decreased facial prognathism, as indicated by a strong negative correlation between the orbital and cranial indices, and a positive correlation between the orbital and facial projection indices. Reduced orbital breadth is also associated with a relative increase in biconvex and interorbital breadth, where despite a marked decrease in the former, the latter remains unchanged. Decreasing orbital depth and anterior projection of both the upper and lower margins show that the orbits have become anteroposteriorly shorter since the Upper Paleolithic. These results indicate that future research should examine the relationship among the orbit, eye, brain, neurocranial, and midfacial anatomy, in the context of functional constraints of the eye and ocular tissue within the orbit. This research was funded by a Grant In Aid of Research from The National Academy of Sciences, Administered by Sigma Xi; a Travel Grant administered by the Anthropology Department at The Ohio State University in Columbus, Ohio.

Examination of the manual skeletal morphology of knuckle-walking and non-knuckle-walking primates using micro computed tomography (μCT).

S. A. Matarazzo. Department of Anthropology, University of Massachusetts Amherst.

Computed tomography analyses of primate long bones have revealed differences in trabecular architecture and subchondral bone density distributions among species using different modes of locomotion. Thus far, studies have focused on the hind limbs of monkeys and the distal radii of monkeys and apes. To better understand the biomechanical effects of knuckle-walking on the manual elements, μCT scans of digit III were taken for knuckle-walking (chimpanzee and gorilla) and non-knuckle-walking quadrupedal primates (chimpanzees and gorillas). Previous studies have revealed differences in the external shapes of the proximal and middle phalanges of knuckle walkers vs the proximal phalanges having higher degrees of curvature than the middle phalanges. This results from the combined use of suspension (effecting increased proximal phalangeal curvature) and knuckle walking (effecting a "flattening" of the middle phalanges). To determine whether a locomotion "signal" exists within phalanges, the internal structure of the proximal and middle phalanges and the subchondral bone distribution within the metacarpal heads were examined using Avizo 5.3 Visualization software. The palmar surfaces of the proximal phalanges of the knuckle walkers and macaques showed thickening, as did the dorsal surfaces of the middle phalanges of knuckle walkers. Increased subchondral bone density occurs on the dorsal aspects of the metacarpal heads in all taxa. These results show a correlation between hand posture during locomotion and bone density, directly reflecting weight support patterns.

Phylogenetic research supported by The National Science Foundation for Anthropological Research, LSB Leakey Foundation.

Leprogenic odontodysplasia: new evidence of a rare and poorly understood malformation from the St. Jorgen’s medieval leprosarium cemetery (Odense, Denmark).

Vitor Matos and Ana Luisa Santos. CIAS – Research Center for Anthropology and Health and Department of Life Sciences, University of Coimbra, Portugal.

Leprogenic odontodysplasia (LO), also known as dens leprous, consists in an anomalous root development of the permanent upper incisors. This malformation was firstly reported by Danielsen in 1970 in Danish non-adult skeletons from medieval leprosarium cemeteries. No clinical cases are known and its etiological and epidemiological significance are poorly understood. The aim of this study is to discuss a case of LO found at the St. Jorgen’s leprosarium cemetery (13th-16th/17th centuries), housed at the ADBOU (Anthropological Database of the Odense University), Southern Denmark University. The macroscopic inspection of 191 individuals, with facial bones preserved, revealed a juvenile, aged 13-19 years old, with an upper right central incisor, detached from the corresponding alveolus, presenting a short root with an annular constriction located about 1.5 mm above the neck. The radicular diameter decreased considerably until the apex. Atrophy of the anterior alveolar maxilla process, extending from the central incisors to the canines occurred. This individual also exhibited other rhinomaxillary (e.g., absorption of the maxillary process, including the anterior nasal spine) and foot changes (such as phalangeal achroosotelysis) compatible with a diagnosis of lepromatous leprosy. This case reinforces the debate about the significance of this rare condition only observed in Danish skeletal series from medieval leprosaria cemeteries. Possible hypothesis to interpret this condition are discussed, including its pathogenetic value and whether it indicates an early onset of leprosy in childhood. The understanding of leprogenic odontodysplasia epidemiology and its relationship with leprosy will benefit from clinical and skeletal studies.

This study was funded by Fundação para a Ciência e Tecnologia, grant reference: SFRH/BD/16155/2004.

Using phylogenies and social networks to detect the modality of disease transmission in wild primate social groups.

Luke J. Matthews and Charles L. Nunn. Department of Human Evo-
lutionary Biology, Harvard University.

A number of studies have used phylogenies of disease-causing organisms to investigate the spread of an infectious disease through a population, but few (if any) studies have used phylogenies to infer the transmission mechanism of an infectious disease. Although the transmission models of human diseases are known, the mechanisms for transmission in wild primate populations are frequently uncertain. This is particularly true for primate populations experiencing deforestation and the introduction of invasive species. Both of these processes may introduce new infectious diseases that spread in novel ways through primate social groups and populations, often with profound effects on the conservation of threatened species.

We simulated disease phylogenies under to investigate whether network regression techniques provide an effective means to distinguish among several hypothesized transmission mechanisms for a spreading pathogen. We focused on a single social group in which disease can spread through sexual, social, and environmental contact. We demonstrate that network regression can distinguish sexually transmitted diseases (STDs) from non-STDs. Moreover, the approach can distinguish among several alternative networks for STDs (e.g. co-drinking at water holes compared to grooming networks). One advantage of network regression is that it requires only basic behavioral data and a disease phylogeny, both of which are obtainable from wild primates. In contrast to many other epidemiological approaches, network regression does not require detailed records of when individuals became infected. The technique is also useful in the context of human behavioral pathologies, which often spread through cultural processes with similarly unknown transmission mechanisms. This research was supported by Harvard University.

ASHLEY MAXWELL, Department of Sociology and Anthropology, North Carolina State University, Raleigh.

Bioarchaeological studies can provide a general idea of sex differences/similarities in subsistence patterns by analyzing sexual dimorphism and labor intensification of a population (Stock and Pfeiffer 2004). Current research suggests that sexual dimorphism has decreased over time due to a shift in subsistence patterns (hunter-gathering to agriculture) that requires both sexes to participate in similar activities. The purpose of this research is to explore sexual dimorphism of the upper limbs in the 14th Century AD Averbuch skeletal collection (female n = 62, male n = 75), Mouse Creek (3MN3, 4MN3) and Toqua (40MR6) a Late Mississippian (900-1450 AD) group from West Tennessee (females n = 24, males n = 12), and Eva (6BN12), Mays Landing (15HY13), and Big Sandy (25HY18), a Archaic (5000-500 BC) sample from East Tennessee (females n = 32, males = 17). Important measurements were taken of the humerus, ulna, and radius, as described in Moore-Jansen et al (1984). Size, defined as the geometric mean, and shape variables, the proportions of the geometric mean or size, were computed according to Mosimann and co-workers (Mosimann and James, 1979; Darroch and Mosimann 1985). A one-way analysis of variance (ANOVA) was performed on the size and newly transformed shape variables. Results indicate a significant difference in size between samples (p < .0001). An index of sexual dimorphism (ISD) was also calculated and supports the hypothesis that sexual dimorphism decreased with a shift to agriculture.

This study provides a better understanding of how the shift from hunter-gathering to agriculture has changed the sexual division of labor in past societies.

Early postnatal infant feeding and weight gain: implications for future metabolic risk.

RICH MAY1, DANIEL KIM2 and DEBBIE MOTE-WATSON3, 1Biology Department, Southern Oregon University, 2Mathematics Department, Southern Oregon University, 3Special Supplemental Nutrition Program for Women, Infants, and Children, Medford, Oregon.

Infant feeding behavior may increase future metabolic risk by accelerating growth or increasing adiposity during the early postnatal period. However, comparisons of weight gain for breast-fed and formula-fed infants have yielded conflicting results. The purpose of the study was to test nutritional and demographic factors as predictors of weight gain and body mass index (BMI) in early infancy. Anthropometric, demographic, and feeding data were collected for a cohort of 319 term infants enrolled in the Jackson County Women, Infants, and Children program in Medford, Oregon. Infants were measured at a single enrollment visit that occurred between birth and 3 months of age. On feeding records completed by the mother and staff nutritionists, infants were classified as: breast-fed only, mixed-fed (breast-fed and formula-fed), or formula-fed only at the time of the visit. In separate regression models, feeding category, sex, ethnicity, and birth weight were tested as predictors of weight gain since birth and as predictors of BMI at the time of the visit. Higher weight gain was predicted for breast-fed only, male, and lower birth weight infants. Higher BMI was predicted for breast-fed only, male, Hispanic, and higher birth weight infants. Breast-fed infants and Hispanic infants also had higher weight-for-age and weight-for-length z-scores. Although formula feeding has been linked to risk of subsequent obesity, the effect on early post-natal growth may be a less important mechanism than effects on later growth or effects on neuroendocrine function and feeding behavior. This study was supported by a grant from the Northwest Health Foundation.

Hips don’t lie: age and mortuary practice based on burned subadult and adult ilia from Bab edh-Dhra’, Jordan.

JESSICA MAYERCIN1, ADELINE LUSTIG2, JAIME ULLINGER1 and SUSAN GUISE SHERIDAN3, 1Department of Anthropology, University of Notre Dame, 2Department of Anthropology, University of Idaho, 3Department of Anthropology, University of Notre Dame.

The color of 244 adult, subadult, and infant ilia from Charnel House A22 at Early Bronze Age (2950-2200 BC) Bab edh-Dhra’, Jordan was documented in order to assess degree of burning among the three age groups. Due to the inclusion of all ages in the tomb, it was hypothesized that there would be no difference in burning patterns among the three groups. This project also tested the hypothesis that the bones were defleshed when burned by examining color differences on various portions of the ilia. Two anatomical landmarks (medial and lateral) were identified on infant, subadult and adult ilia. Each landmark was assigned a color category based on the Munsell color chart. L*a*b values were also generated using a spectrophotometer for comparison. Chi-square tests were employed to assess statistical differences. There was no difference in color among age categories on either landmark (medial: p = 0.97, adult n = 87, subadult n = 42); lateral portion: p = 0.64 (adult n = 71, subadult n = 56). There was no difference between medial and lateral portions on either the adults (p = 0.055) or subadults (p = 0.097). Finally, a comparison of placement within the charnel house by age revealed no difference (p = 0.070). It was concluded that children and adults were treated the same with regard to mortuary practices. It was also determined that neither group was cremated, but that the skeletons burned as a result of a fire in the charnel house that most likely occurred after the tomb was no longer in use.

This project was funded by the National Science Foundation’s Research Experiences for Undergraduates (SES 100518).

Paleopathological analysis of the Early Middle Age in Northern Italy: a first preliminary survey.

ALESSANDRA MAZZUCCHI1, ALESSANDRO CANGI2, MAURIZIO 1Department of Anthropology, University of Padova, 2Institute of Medical Genetics, University of Padua, Italy.

American Journal of Physical Anthropology
MODELING THE ECOLOGICAL NICHE OF THE ANGOLAN BLACK AND WHITE COLOBUS MONKEY, *Colobus angolensis palliatus*.

MONICA MCDONALD, Department of Anthropology, Washington University in St. Louis.

Ecological niche models can aid in understanding the relationship between environmental factors and an animal's geographic distribution. In this study, ArcGIS 9 and Maxent were used to predict the distribution of *Colobus angolensis palliatus*, a subspecies of Angolan Black and White Colobus monkey that resides in fragmented forests throughout East Africa. In particular, this study was undertaken (1) to discover the predicted distribution of *C. a. palliatus* in Kenya and Tanzania under two different taxonomic scenarios, (2) to ascertain the probability of their occurrence in these areas, (3) to see how these results compare to the IUCN habitat map, and (4) to recognize which environmental variables best explain their geographical distribution. Results of this study suggest that while the predicted distribution differs under the two taxonomic scenarios, precipitation and temperature variability measure seem to be important in determining *C. a. palliatus* distribution. These results were similar to the IUCN habitat map; however, compared to the IUCN habitat map, these results both over-predicted and under-predicted their distribution. This study highlights current environmental differences in *C. a. palliatus* habitat in Kenya versus Tanzania. It also underscores probable areas in which to find these monkeys, which is invaluable when undertaking additional behavioral or genetic research. Finally, these results serve as a starting point from which to uncover past *C. a. palliatus* habits.

American Journal of Physical Anthropology
Skeletal pathology in mountain gorillas (Gorilla beringei beringei) from Parc National des Volcans, Rwanda.

SHANNON C. McFARLIN1, AMANDINE B. ERIKSEN2, TIMOTHY G. BROMAGE3, KATHRYN A. FAWCETT4, DAVID HUNT5, STEPHEN P. NAWROCKI6, MICHAEL R. CRANFIELD7, ANTOINE MUDARIKWA1. 1Center for the Advanced Study of Hominid Paleobiology, Department of Anthropology, The George Washington University, 2Archeology and Forensics Laboratory, University of Indianapolis, 3Hard Tissue Research Unit, Department of Biomaterials and Biomimetics, University of Wisconsin, Madison, WI, 4Skeletal Biomechanics Laboratory, University of Texas Health Science Center, 5Department of Anthropology, Portland State University, 6Department of Anthropology, Temple University, Philadelphia, PA, 7Genetech, South San Francisco, California.

The Trivers-Willard hypothesis predicts a sex ratio bias contingent on maternal condition in species characterized by variation in male reproductive success. A male-biased sex ratio among mothers in good condition, and a female-biased sex ratio among mothers in poor condition is expected. Studies in humans have thus far provided mixed answers to the question of whether or not sex ratio is affected by maternal condition. The present study assessed whether or not the infant sex ratio in mountain gorillas can be influenced by the economy. The economy influenced the observed secondary sex ratio in Nepali's Khumbu region. Because acculturated villages provided better access to the cash economy and to health facilities, residence in an acculturated village was used as a proxy for “good” maternal condition. We analyzed demographic data gathered by survey in 1971 and 1982. The sample included 754 children from the 1971 survey and 1598 children from the 1982 survey. Using Poisson regression we analyzed the extent to which the sex ratios in age-stratified groups differed between the acculturated and unacclimated villages. We reasoned that older women were subjected to minimal acculturation effects during their child-bearing years. In both the 1971 and 1982 datasets the younger women in the acculturated villages displayed significantly higher (p<0.014, p<0.016) proportions of male offspring. We found a lack of significant deviation between acculturated and unacclimated post-menopausal women which underscores the importance that the traditional market economy had on women in Nepal's Khumbu region.

Intra- and interspecific variation in Middle Eocene mytoniids with a further assessment of the validity of the genus Mytonius.

KATHRYN J. MCGRATH1, DANA A. COPE2 and JAMES W. WESTGATE2. 1Department of Sociology and Anthropology, College of Charleston, SC, 2Department of Earth and Space Sciences, Lamar University, Beaumont, TX.

Our ability to understand the paleobiology and biogeography of Uintan primates has been constrained in the past by taxonomic problems and an inability to understand both intra- and interspecific variation in a context similar to studies of recent primates. The goal of this study is to better understand these factors in a problematic group of Middle Eocene primates. The status of the genus Mytonius and its relationship to or...
synonymy with the genus Ourayia is a case in question. Over 130 published and unpublished dental specimens from northeast Utah, southern California and the trans Pecos and Laredo regions of Texas were analyzed qualitatively and quantitatively to examine this question. The results strongly support the validity of Myotinus as a distinct genus. While certainly similar to Ourayia in many respects, it consistently differs from the latter in numerous traits. Many of these relate to a different P4 morphology (a major basis for its original diagnosis) and a consistent de-emphasis of five molars and of these, three – invertebrates, fungi, and Saccoglossis gabonensis nuts – were consumed every month. Monthly consumption of S. gabonensis ranged between 19% (December) and 79% (May) and was uncorrelated with production of ripe fruits. Thus, the most frequently consumed sooty mangabey foods are available year-round, yet their monthly consumption varies significantly. We conclude that consumption of top ranked foods by Tai mangabeys is not driven primarily by seasonal availability. Supported by National Science Foundation grants BCS- 60017683, 0921770, and 0922429.

Variation in age at introduction of weaning foods in small-scale farming and herding populations is inversely associated with indicators of pathogen risk.

LUSEADRA MCKERRACHER1, DANIEL SELLEN2, PABLO NEPOMNASCHY3, DAMIAN MURRAY4 and MARK COLLARD1. 1Department of Anthropology, Simon Fraser University, 2Department of Anthropology, University of Toronto, 3Faculty of Health Sciences, Simon Fraser University, 4Department of Psychology, University of British Columbia.

Infant's age at introduction of weaning foods varies substantially among human populations. Since weaning affects maternal and infant energetics as well as interbirth interval, this variation has implications for life history, demography, and public health. However, the underlying causes of the variation are not well understood. One hypothesis is that mothers increase infant fitness by increasing infant age at introduction of weaning foods in response to pathogen risk until a point of diminishing returns is reached, after which they decrease. We tested the pathogen risk hypothesis with ethnohistoric data from 57 natural populations. We tested the pathogen risk hypothesis with ethnohistoric data from 57 natural populations. Age at introduction of weaning foods was regressed on an index of pathogen risk. We also carried out a partial foods and matrix test in which we correlated age at introduction of weaning foods with pathogen risk while controlling for genetic distance, to account for the potentially confounding effects of phylogenetic autocorrelation. Contrary to expectation, the relationship between age at weaning food introduction and pathogen risk was linear and negative rather than quadratic. One explanation for why our analyses did not support the hypothesis is that a maternal response to increasing disease risk is to redirect energy from breastfeeding to the conception of additional offspring. Others are that increasing disease risk may drive mothers to invest in their own immunological responses at the expense of their infants, or that earlier cessation of exclusive breastfeeding results in higher rates of pathogen transmission. Suggestions for future analyses that can distinguish among these possibilities are made.

This study was funded by SSHRC-CGS, 766-2008-1083. Additional support was provided by the Canada Research Chairs Programme, the Canada Foundation for Innovation, the British Columbia Knowledge Development Fund, and Simon Fraser University.

A call for the creation of a generalized anthropogenic disturbance scale for primate field research.

TRACIE MCKINNEY. Department of Sociology and Anthropology, Marshall University.

Field primatologists often work in environments that have sustained moderate to severe anthropogenic alteration. It is important for researchers to disclose the levels of environmental modification in order to allow for appropriate cross-site comparisons of behavioral or ecological data. Recognizing that human-commensal primates differ from more remote populations does not negate their utility as study populations. Rather, the study of commensal-living primates has much to offer in terms of identifying minimal requirements for a species' survival and for understanding behavioral and ecological plasticity.

To encourage greater transparency in field data collection, I propose the development of a simple, generalized anthropogenic disturbance scale. This preliminary scale was adapted from the ordinal classification presented by Bishop and colleagues (1981), with the addition of a category for diet and an expansion of options under each heading. Following this standard, disturbance levels of each primate troop may be identified in the literature by a four-character code. Each character represents, in turn, habitat modification, dietary modification, human-primate interactions, and predation risk. The options provided under each category allow for thousands of possible combinations, yielding a simple but detailed description of a study population's environment. It is my hope that this scale will allow for identification of inter- and intra-specific variation, better criteria for identifying pathological behaviors associated with disturbance, and a clearer understanding of the consequences of environmental degradation on wildlife. In addition, the scale may prove useful as a measure of anthropogenic change over a single troop's history.

The research that generated this idea was funded by Earthwatch Institute and Conservation International.
The size and shape of life history in the hominin fossil record.

KIERAN P. MCNULTY. Evolutionary Anthropology Laboratory, Department of Anthropology, University of Minnesota.

Deciphering the relationships among growth, development, and life history is difficult in extinct taxa, and nearly impossible for fossil species. While dental histology has provided a crucial temporal framework in which juvenile hominins and the fossil hominin Australopithecus africanus. Using exemplar specimens to represent the terminal growth form in each species, specimens were related to their exemplar by the Procrustes distance between their 3D landmark configurations. This provides a sense of how much shape change might still be expected in the growth of each juvenile. Size was measured as centroid size of each configuration, and compared to the exemplar in a similar fashion. Bivariate plots of the resulting metrics offer a simple illustration of how size and shape are related during ontogeny.

Results of this research suggest that A. africanus has a size-shape relationship very similar to that of modern humans. Interestingly, gorillas also share this relationship between size and shape during post-M1 ontogeny, whereas the two species of Pan share a different pattern. These results run counter to what might be expected from the timing of dental development. Moreover, they suggest that the ontogenetic allometry in the human lineage might be primitive among hominines, with Pan exhibiting a derived condition.

Dental microstructural confirmation of diet in extinct lemurs.

LINDSAY R. MEADOR and LAURIE R. GODFREY. Department of Anthropology, University of Massachusetts Amherst.

Traditional semi-destructive methods of evaluating Relative Enamel Thickness have contributed significantly to knowledge of extinct primate diets. Technological advances now allow researchers to compile robust 3D datasets utilizing nondestructive microCT scanning. To date, however, few strepsirrhines have been included in such analyses. Here we present results of our microCT study of the internal structure of molars of one extinct (Propithecus verreauxi) and two extinct (Archaeolemur sp. cf. A. edwardsi and Megaladapis edwardsi) lemurs. The degree to which the latter two overlapped in diet has been the subject of recent debate. Data collected included enamel volume, dentine vol-
life history and demographic profiles. New and revised age estimation methods are often published in the literature, but their use in forensic or bioarchaeological contexts is rarely reported. This preliminary study applied nine age estimation methods to 20 male skeletons (mean age 54.5 yrs, range 29-85) from the JCB Grant Collection at the University of Toronto. The commonly used Suchey-Brooks and Todd pubic symphys method, the Lovejoy et al. and Buckberry and Chamberlain auricular surface methods, and the Icagn et al. fourth rib method were performed with the newer less established Rouge-Mailart et al. acetabulum method, the Passalacqua sacrum method, and the Kunos and DiGangi et al. first rib methods.

The most accurate age estimation method was Buckberry and Chamberlain's, followed by Rouge-Mailart et al., Passalacqua, and Kunos' methods. Suchey-Brooks, Todd, and Lovejoy et al.'s methods performed admirably, while Icagn et al. had the worst accuracy rating. Most age estimations fell within their 95% confidence interval range. Based on this small sample of older males, most of the newer methods had a higher accuracy rating than the commonly used methods. Newer methods tend to be developed using a higher proportion of older individuals, allowing them to better categorize persons over 50 years rather than lump them into a “50+/60+” category. Their higher categorial mean ages reflect this change. Despite the improvements, newer methods tend to follow the pattern of over-aging younger individuals and under-aging older individuals. This study was funded by the Social Sciences and Humanities Research Council, grant 752-2010-2124.

VALENTINE MEYER, JAROŠLAV BRUCK, CHRISTINE FOURCADE, FREDERIC SANTOS, BRUNO DUTAILLY and BRUNO MAUREILLE. Université de Bordeaux, UMR PACEA 5199, Laboratoire d’Anthropologie des Populations du Passe, Universite Bordeaux 1, France.

Recently, two reconstructions of a neandertalian pelvis and associated functional implication have been published with contrary results. Studies with new data are necessary to further investigate the question. Two years ago, new fragments of pelvis were discovered in the collections, from the Regourdou site (Montignac, France), of the Musée National de Préhistoire (Les Eyzies-de-Tayac, France). The newly discovered fragments are associated with the young adult Regourdou 1 whose remains also include an almost complete sacrum (still unpublished). Our study proposes an exhaustive morphological description of these bones associated with measurements and a comparison of visual and linear traits. Our study material is composed of neandertalian pelvis (Tabun C1, Kebbara 2, Feldhofer 1, Krapina 207 and 209, La Ferrassie 1) and a large sample of French modern pelvis. According to preliminary results, the ilium and ischium fragments, well preserved, match the sacrum of Regourdou 1 and form a relatively complete pelvis, allowing us to study morpho-functional implications. Our analysis shows that the morphology of the Regourdou 1 pelvis is typical of late Neandertals while our metric data point out that it is in neandertalian variability. Regourdou 1 presents characteristics which have already been described in Kebbara 2 or Feldhofer 1 e.g. (the obliquity of the antero-inferior iliac spine and the thinness of the cotylo-sciatic breadth).

The discovery of a new almost complete pelvis from Regourdou opens up new prospects for the study of the morphology of Neandertals' birth canal and its obstetrical implications.

A quantitative analysis of residual rickets prevalence in early modern London.

KATHRYN M. MEYERS. Department of Anthropology, Michigan State University, and Department of Archaeology, University of Edinburgh.

Rickets is the result of prolonged vitamin D deficiency in sub-adults caused either by a lack of sun exposure or poor nutrition. It was first recorded as a significant problem in London during the mid-17th century, where contemporary medical practitioners described it as epidemic. Analysis of the cultural and environmental changes during this period supports the recorded decrease in vitamin D synthesis. However, this epidemic is not substantiated by skeletal evidence. Diagnosis is often unsteady; hence each hand contact may induce different kinetics. The aim of this study is to understand how hyllobatids cope with the complexity of their environment by using an, at first glance, simple pendular mechanism. We collected more than 200 substrate reaction force measurements of one to three consecutive handholds, on three different setups, from three siamangs. The combined use of three 3D force transducers and four cameras allows for a total body kinematic and kinetic analysis. Vertical peak forces showed more variation than expected and varied between one to four times bodyweight. Data were gathered for both continuous contact and ricochet brachiations, but interestingly, a lot of strides had a duty factor very close to 0.5. During a pendular movement it is expected that the body first accelerates and then decelerates after mid-support. Remarkably the fore-aft forces often showed an opposite pattern in two consecutive handholds. This means that, although energy recoveries remain substantial (over 50%), siamangs do not always fully use the gravitational induced acceleration and deceleration cycle during brachiation. This study was funded by the National Fund for Scientific Research (Belgium) and by the Flemish Government (through the CRC).

Ontogenetic changes in prehensile tail use by lowland woolly monkeys (Lagothrix poeppigii) in Yasuní National Park, Ecuador.

EMILY R. MIDDLETON1,2,3 and CHRISTOPHER A. SCHMITT2,3. Department of Anthropology, New York University, New York, National Park, Ecuador.

American Journal of Physical Anthropology
In this study, we investigate the role of age, sex and lifestyle on enthesesal development and modifications. For this purpose, 484 skeletons representing individuals with known age at death, sex, and profession were analyzed with regard to enthesal modifications. All the skeletons come from the Frascatto collection of Sassari, (Italy, early 20th century). 23 postcranal entheses were studied regarding the development of enthesal robusticity (surface rugosity) and proliferative as well as erosive enthesopathies. The scoring method proposed by Mariotti et al. (2004, 2007) was used for the data collection.

Results indicate age as the main factor influencing enthesal modifications. Sex-related patterns are also evident. However, physical activity only plays a minor habitat role; the distribution of the observed features, and it appears that robusticity lateralization and modifications of specific attachment sites are more informative about life-style. Overall, our data indicate that caution is warranted when using skeletal markers as indicators of biomechanical effects in bio-cultural reconstructions.

The impact of habitat quality on reproduction in female red colobus monkeys (Procolobus rufomitratus) in Kibale National Park, Uganda.

KRISTA MILICH¹, **REBECCA STUMP**¹ and **JANICE BAHR**².

¹Department of Anthropology, University of Illinois at Urbana-Champaign, ²Department of Animal Sciences, University of Illinois at Urbana-Champaign.

Female mammalian reproduction requires sufficient nutrition to support the high metabolic and physiological costs associated with conception, pregnancy, and lactation. In the endangered red colobus monkey (Procolobus rufomitratus) as a model, we investigate the relationship between habitat quality and female reproduction. By comparing groups living in previously logged areas of the forest with groups living in unlogged areas of Kibale National Park, Uganda, our three main objectives were to determine: 1) the relationship between previous logging activity and current habitat quality; 2) the impact of habitat quality on female reproductive hormone concentrations, and 3) the impact of habitat quality on female reproductive success.

Focal follows of 40 females in 6 groups of red colobus (3 in the logged areas and 3 in the unlogged areas) resulted in approximately 7000 hours of observation time. Global Positioning System, Geographic Information System, and Remote Sensing technologies were used to create maps of the ground cover in each group’s home range. Urine and fecal samples were collected and analyzed using radioimmunoassays to determine reproductive hormone concentrations. Hormone analyses indicated that reproductive function of females living in disturbed areas is significantly diminished compared to those living in unlogged areas. Additionally, while females in both the logged and unlogged areas produced offspring, infants in the logged areas experienced higher mortality. This study demonstrates the physiological connections between habitat quality and female reproduction. Determining how ecological factors impact hormones is crucial for understanding how environmental changes may have occurred, with implications for human evolution.

This study was funded by NSF-DDIG, LSB Leakey Foundation, Primate Conservation Inc, The Explorers Club, The Sophie Dunford Conservation Fund, Primate Action Fund, Idea Wild, and the University of Illinois Graduate College.

Dietary and anthropometric assessment of nutritional status among agriculturalists of Ngilo-Ilo, East Java.

AARON A. MILLER¹, **ETTY INDIARI**² and **WILLIAM R. LEONARD**³. ¹Department of Anthropology, Northwestern University, Evanston, IL, ²Laboratory of Bio and Paleoanthropology, Gadjah Mada University Faculty of Medicine, Yogyakarta, Indonesia.

Since the description of the Flores hominin remains in 2004, there has been increased interest in the nutritional ecology and origins of small body size among indigenous populations of Indonesia. Previous research on dietary consumption and energy expenditure among rural Javanese populations has found high activity levels and marginal energy intakes (eg., Edmundson 1977, 1979). To further explore aspects of energy balance and nutritional health in this region, we collected anthropometric, dietary, and activity data on 84 men and 133 women (18-80 years) from the agricultural village of Ngilo-Ilo in East Java.

Agriculturists of Ngilo-Ilo are short and light. Mean (±SE) stature and body weights are 159.9±0.9 cm and 51.8±1.0 kg, respectively, for men, and 147.7±0.6 cm and 45.8±1.1 kg for women. Body mass indexes (BMI) average 20.3±0.3 kg/m² for men and 20.5±0.3 kg/m² for women, with 27% of the sample being underweight (BMI < 18.5 kg/m²). Dietary energy intakes are significantly lower than daily expenditure levels (1157±51 vs. 2303±49 kcal/day in men; 887±36 vs. 1914±35 kcal/day in women; P < 0.001), in part reflecting the fact that measurements were taken during the “fasting month following a religious practice”. Protein intakes are also significantly lower than WHO recommendations (31.9±1.8 vs. 41±0.8 g/
Primate tail function: balancing the variables.

CHARLOTTE E. MILLER AND DANIEL SCHMITT. Department of Evolutionary Anthropology, Duke University.

The function of primate tails in locomotion is poorly understood. While the role of prehensile tails is increasingly well studied, there are few empirical studies of tail use in balance, and little mention of the tail's potential importance in changing whole body center of mass (COM) in the vertical and fore-aft planes. We hypothesize that tail movements will fluctuate with the body's COM in walking, but at higher speeds and on arboREAL substrates tail movements will increase to play a greater role in balance. The angle and height of the proximal and distal tail are measured relative to the tail base during quadrupedal locomotion for a range of arboreal and terrestrial primates (n=9 species) on flat ground or a raised horizontal pole. Irrespective of phylogeny, anatomy, and preferred locomotor substrate, we find that primate tails are placed in position at the initiation of a locomotor bout and remain relatively fixed in the vertical and fore-aft planes. Variability increases in some primates at higher speeds and when pole size is very small. Movements in the tail base (and hence body) have little effect on overall tail position, implying that active mechanisms may isolate tail movements from those of the body. We find that it may be possible to separate the components of tail movement related to body movements and complex social behaviors from those involved in active control of locomotion, and provide new insight into tail function and anatomy in non-prehensile species.

This study is supported by NSF BCS0452217 and SBR9290904.

Increased expression of carbonic anhydrase 2 in frontal cortex in human evolution.

DANIEL J. MILLER1, MARIO CACERES2, CAROLYN SUWYN3, JAMES W. THOMAS4, REBECCA ROSEN5 and TODD M. PREUSS3,5 1Department of Anthropology, George Washington University, Washington, D.C., 2ICREA and Institut de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 3Division of Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 4Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 5Department of Pathology, Emory University School of Medicine, Atlanta, GA.

Human cognitive specializations are a central focus of physical anthropology, and elucidating changes in gene and protein expression among extant primates is crucial to understanding how the human brain has evolved. Comparative genomic studies suggest that humans evolved patterns of gene expression to support high levels of synaptic activity and plasticity. However, these studies focus mainly on gray matter (GM), and recent neuroimaging studies suggest that functional changes in GM are accompanied by reorganization of myelin sheaths in the underlying white matter (WM). In this study, we report increased expression of carbonic anhydrase 2 (CA2), an enzyme involved in the generation and compaction of myelin, is strongly upregulated at RNA and protein levels, presumably in response to increased metabolic demands during hominin evolution. Microarrays indicate increased CA2 mRNA expression in adult human GM compared to chimpanzees and macaques, and is confirmed by polymerase chain reaction (PCR) analysis. Western blotting of human frontal cortex indicates that increased message is accompanied by increased levels of CA protein, and also indicates that CA2 is more abundant in human WM compared to GM. Immunohistochemistry confirms these results and also indicates that CA2 is strongly expressed in oligodendrocytes, both in GM and WM. The strong expression of CA2 in adult human WM has profound implications for previous studies demonstrating that myelination is a process that continues well into adulthood, and the higher levels of expression in humans compared to chimpanzees and macaques is consistent with an increase in human neuronal and synaptic activity.

This study was funded by: JSMF 21002093; NIH RR-0106; NIANIH 5P01 AG026423-0; The GWU Codlow Grant.

The reproductive ecology of breastmilk immunity in Ariaal women of northern Kenya.

ELIZABETH M MILLER. Department of Anthropology, University of Michigan, Ann Arbor.

Women invest significant energy in lactation in order to provide their infants with nutritional and immunological support during the first few months of life. Several lines of evidence suggest that the generation of immune components in breastmilk is energetically costly, making passive immune transfer a maternal resource subject to life history trade-offs. Life history theory generates hypotheses and predictions governing trade-offs between reproduction and the production of passive immunity, with women seeking to maximize fitness by adjusting energetic investment between offspring and somatic maintenance. This study examines three predictions derived from life history theory: 1) breastmilk immunity will decline over the lactation period, demonstrating reinvestment in somatic maintenance; 2) breastmilk immune production will decline with parity; and 3) breastmilk immunity will be associated with maternal energy stores. These predictions were tested in lactating Ariaal women, a natural fertility population from northern Kenya. Two hundred and forty five lactating Ariaal women were assayed for immunoglobulin A (IgA), the most abundant immune component in breastmilk. There was a polynomial relationship between breastmilk IgA with and months postpartum, with IgA levels initially declining then rebounding during later lactation. Extremely parous women had a significant drop in breastmilk IgA, indicating a cumulative cost of IgA production over the reproductive span. However, there was no evidence of an association between IgA and maternal body composition. The talk will conclude by discussing challenges and future directions in the study of female reproductive ecology and immunity.

This study was supported by NSF Grant Number BCS-0750779 and a Leakey Foundation General Research Grant.

Putting pieces together again: statistical formula for os coxa and sacrum.

MICKI MILLER. Western Michigan University.

Ancient and modern mass graves with commingled human remains are in need of investigation all over the world. Important collections include those of the Holocaust, Iraqi Kurds, the Battle of Wishy and the Titanic (if she is raised), just to name a few. One major hindrance to this investigation is the task of putting individuals back together again due to postmortem processes that can take place in and around mass graves such as fluvial movement, grave site disturbances or the settling of dirt separating different elements. Many bones can be matched by color or general fit as belonging to a given individual. But when these methods do not work due to investigator bias or inexperience, more than one element as a possible fit or, there are no matching colors, a statistical formula may be helpful.

This study explores the possibility of deriving a formula to statistically match...
AAPA ABSTRACTS

217

Patterns of morphological integration and modularity in the expression of craniofacial robusticity characteristics in extant Homo sapiens.

STEVEN F. MILLER¹ and ROBERT G. FRANCISCUSS², ¹Department of Anthropology, University of Iowa, ²Department of Orthodontics, University of Iowa.

Within genus Homo, characteristics such as thick cranial vaults and expanded supraorbital, infraorbital, temporal, and nuchal regions are collectively viewed as aspects of craniofacial robusticity. The work of some researchers suggests that these features may be tied to a broader "robusticity complex", in which the expression of all of the individual robusticity characteristics, or superstructures, of the cranium are intrinsically linked. If true, previous studies employing characteristics of craniofacial robusticity as independent features could be called into question.

This study investigates patterns of expression between features of craniofacial robusticity in a geographically diverse sample of extant Homo sapiens (n=140) using a morphological integration framework in which statistically significant levels of correlation between features of craniofacial robusticity are demonstrative of integration, while non-significant levels of correlation provide evidence for modularity as independent expressions of these traits. Craniofacial robusticity is examined among four specific regions in our sample: the frontal, zygomatic, temporal, and occipital regions. The expression of robusticity among these regions is quantified using 72 three-dimensional coordinate landmarks and evaluated via partial least squares regression analysis. Results show that while levels of interaction between the highlighted areas of craniofacial robusticity are characterized by relatively low correlation values, many of these obtain statistical significance providing at least partial evidence for integration between subunits and thus the presence of a craniofacial "robusticity complex" in extant Homo sapiens.

Longitudinal changes in the composition of milk from Gorilla gorilla.

LAUREN A. MILLIGAN¹-² and MICHAEL L. POWER²-³, ¹Department of Anthropology, University of California, Berkeley, CA, ²Nutrition Laboratory, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, ³Research Department, American College of Obstetricians and Gynecologists, Washington, DC.

The lack of longitudinal milk composition data in nonhuman primates primarily is due to the fact that milk collection generally requires the mother to be separated from her offspring and anesthetized, both of which are minimized in the wild and captivity. Animal care staff at the Smithsonian National Zoological Park trained an adult female Gorilla gorilla to permit unobstructed physical examination including manual expression of the mammary glands. Milk samples were collected weekly from the offspring's birth in January 2009 through June 2010. Samples were analyzed for protein (n=24), fat (n=19), and sugar (n=19), including at least one sample from each month of lactation, with the goal of documenting the pattern of compositional changes over the course of lactation in G. gorilla. Protein content was higher and more variable in the first 45 days of lactation (1.94 ± 0.15% versus 1.0 ± 0.01%, P<0.001). In samples after 45 days protein (minimum = 0.9%, maximum = 1.1%) and sugar (minimum = 6.7%, maximum = 7.8%) were relatively constant; fat was the most variable (minimum = 0.8%, maximum = 3.3%) and tended to increase with infant age (r=0.48, p<0.071). These compositional changes are similar to those seen in human milk. Higher protein concentration early in lactation may reflect increased immunoglobulin content and increases in milk fat later in lactation may reflect inclusion of solid foods in the offspring's diet, and thus longer internursing intervals. Gorilla milk appears remarkably similar to human milk on these parameters.

Measuring the genetic affect of the Mississippian transition in the Lower Illinois River Valley: an ancient DNA analysis.

GEORGIA MILLIARD¹, JESSICA HARRISON¹, JENNIFER RAFF², FREDERIKA KAESTLE¹ and DELLA COLLINS COOK¹, ¹Department of Anthropology, Indiana University, ²Department of Anthropology, University of Utah.

In order to better understand human demographic changes, it is necessary to unravel the relationship between physical human movement and its genetic signal and, furthermore, to identify appropriate values that describe the amount of human movement and movement genotypes. Currently there is no empirical value that estimates migration in human populations, particularly migration as it might have occurred 10,000s years ago. In Spring 2007, we collected over five hundred (n=552) saliva samples with geographic information of the individuals, their parents and grandparents in Yemen and sequenced HVR1 of the mitochondrial DNA. We calculated the number of individuals whose birthplace was different from their mother's birth (n=110) and father's birth (n=104), obtaining similar values for both. We calculated the distance between places of birth and found that there was a significant distance difference between the maternal and the paternal homeplace. This distance difference could have been due to migration, cultural change, or a combination of both.
of birth for each individual relative to their parents’. The average distance between individuals’ birthplace and their mothers’ was 66Km and from their fathers’ was 77Km. These values allow us to gain insight into how far people in developing countries are moving in one generation. We also calculated the number of haplotypes for the individuals (n=96) and the number of haplotypes for all samples (n=287). We determined the proportion of individuals who moved (0.22) and the proportion of haplotypes that had moved (0.33) based on those whose birthplace was different from their mother’s. These values allow us to recognize the difference between human physical movement and movement estimated from genetic signals. These data provide a starting point to understanding migration using empirical demographic and genetic data.

This study was funded by NSF, Grant BCS-051850.

Linear enamel hypoplasia (LEH) and age at death (AAD) at medieval St Gregory’s Priory and cemetery, Canterbury, UK.

JUSTYNA MISZKIEWICZ and PATRICK MAHONEY. School of Anthropology and Conservation, University of Kent, Canterbury.

Studies of linear enamel hypoplasia (LEH) are widely employed in assessments of health status of prehistoric populations. The majority of research has focused on LEH as a permanent mark of childhood pathophysiological “stress”, though specific causation of the pathology has not been established, creating a multifaceted means of stress examination. Here, we examined LEH in human burials from St Gregory’s Priory and adjacent cemetery, dating to the medieval period in Canterbury, UK. The priory and Priory burials represented lower (n=30) and higher status (n=19) social groups, respectively.

Linear enamel hypoplastic defects were counted on mandibular and maxillary anterior permanent teeth. The age and sex of each skeleton was estimated using standard methods. Differences in LEH, and AAD, were sought between the social groups. Results indicate a significantly greater prevalence of LEH in the cemetery (mean=17.6) compared to the Priory (mean=7.9; t=-3.03, df=46, p=0.002). Adult age at death was also significantly lower in the cemetery (mean=39.8years) compared to the Priory burials (mean=44.1years; t=2.275, df=47, p=0.013).

Results indicate that childhood stress may reflect adult mortality in this sample, and that the wellbeing of individuals from diverse social backgrounds can be successfully assessed via LEH studies. Results are discussed in terms of the multifactorial etiology of LEH, as well as heterogeneity of pathogen immunity and mortality.

Multi-proxy approach to deep-time paleoclimate reconstruction.

ISABEL P. MONTANÉZ. Geology Department, University of California, Davis.

Study of paleoecologic parameters within a paleoclimate framework permits evaluation of the interplay and feedbacks between surface and ecosystem processes. Robust deep-time paleoclimate reconstructions require a multi-proxy approach involving comparable and complimentary proxies. Mean annual continental paleotemperatures have been assessed using organic and mineral proxies including fossil leaf patterns and phytoliths. We seek to add paleosol pollen distributions, and the oxygen (and hydrogen) isotope compositions of biogenic hydroxyapatite and soil-formed carbonates, phyllosilicates and Fe-oxides. In all, the directions include the use of ‘clumped-isotope thermometry’ of paleosol carbonates and biomarkers of lacustrine Archaea and fossil soil microbes.

Lacustrine records have long provided high-resolution continuous time-series of regional hydroclimates. Fossil soil morphologies coupled with major element chemistry yield quantitative estimates of mean annual precipitation and seasonality that are consistent with independent paleobotanical estimates. The oxygen isotopic values of soil-formed minerals are also reliable tracers of soil- and meteoric water, and in turn, regional hydrologic processes. The hydrogen and carbon isotope compositions of leaf wax biomarkers show promise as proxies of paleo-aridity and aridity-induced plant metabolic changes. Where available, the textural and geochemical compositions of stalagmites are proving to be powerful recorders of changes in regional air temperature and effective moisture that can be precisely dated. Lastly, paleotemperature pCO2 can be estimated using independent and complimentary CO2 proxies: the stomatal-index method for fossil leaves and the stable isotope compositions of soil carbonate and goethite. Additionally, the fossil leaf stomata approach shows promise as an effective paleolimnology proxy.

Exploring catastrophic mortality during the Amarna Period in Ancient Egypt (BC 1531-1534).

ROBERT TAYLOR MONTGOMERY and JEROME C. ROSE. Department of Anthropology, University of Arkansas.

The Amarna Period in Egypt (BC 1531-1534) is characterized by the relocation of the political and religious capitals to a virgin location and an abrupt change in religion and art. One hypothesis for this change, supported by historical texts, suggests that the large-scale cultural change was an adaptation to epidemic disease. This study examines sex differentials and the overall mortality profile of the Amarna monastery cemetery (n = 208) to assess the likelihood of epidemic disease being present. Age-specific mortality distributions are compared to known attritional and catastrophic mortality samples associated with intense cultural change. These comparisons demonstrate that the overall structure of the Amarna demographic profile is consistent with a catastrophic mortality sample. For instance, infants (0-5) constitute 21% of the sample, juveniles (5-15) represent 18.7%, and young adults (15-25) comprise 20.6% of the sample. Younger individuals should be the least represented in the overall distribution. Females outnumber males 1.14:1 and peak later than males within the 25-35 year age group. While initial observations suggest females show elevated risks of dying, ANOVA shows it to be not significant. Mortality rates, indiscriminate of sex, at Amarna appear to reflect an acute mortality crisis resulting in a catastrophic mortality pattern; supporting the idea that epidemic disease could have affected the traditional Egyptian way of life during the Amarna period.

Parallels in primate brain expansion have a conserved genetic basis.

STEPHEN H MONTGOMERY1, ISABELLA CAPELLINI2, CHRIS VENDITTI2, ROBERT A BARTON2 and NICHOLAS I MUNDY1. 1Department of Zoology, University of Cambridge, 2Evolutionary Anthropology Research Group, Department of Anthropology, Durham University, 3School of Biological Sciences, University of Reading.

The expansion of the brain is a major hallmark of primate evolution. However, whether brain expansion is limited to a few lineages or is a ubiquitous trend across the primate phylogeny is not clear. Using phylogenetic methods and a pruned dataset of brain size we have reconstructed the evolutionary trajectories of brain size in primates. Our results show that, from a small-brained ancestor, brain size has increased multiple times independently across primate lineages. However, despite a general trend to expand, brain size does decrease in some lineages.

We subsequently explored whether the parallel evolution of increased brain size is due to parallelism at the molecular level by sequencing six genes with known roles in neurogenesis across 21 species, representing all major clades of anthropoids. Using molecular tests for
selection, we show that these loci have been under pervasive positive selection across anthropoids. Furthermore we found that the molecular evolution of several of these genes, including two microcephaly genes (ASPM and CDK5RAP2), is positively associated with brain size. This association is stronger with neonatal brain size than adult brain size, suggesting a role in prenatal development that is consistent with a direct effect on neuronal proliferation. Interestingly, ASPM shows a negative association with brain size in the Callitrichidae, a family in which brain and body size has secondarily decreased. This study demonstrates that brain expansion has occurred in parallel across primates and that the genetic basis of brain size evolution may be conserved.

Premolar root variation in Pan and its implications for hominin systematics.

N. COLLIN MOORE, MATTHEW M. SKINNER, and JEAN-JACQUES HUBLIN. Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig.

Variation in premolar tooth root number and morphology plays a central role in hominin systematics. The goal of this study is to document variation in maxillary and mandibular premolar root morphology in a large sample of Pan to establish expected levels and types of variation in fossil hominin taxa. This study employs high resolution computed tomography to assess external root form and the distribution of root canals within each premolar. For each premolar, the number of roots and canals was scored on a categorical scale and both jaw and tooth size measurements were recorded to test for a correlation between size and root form.

Cladistic analysis of 51 Pan troglodytes verus (46 maxillae/21 mandibles from 24 males/20 females/7 unknown) were segmented to produce virtual models. Root number and canal number were recorded for each specimen and measurements included root volume, surface area, and length(s) including standard linear dimensions of the maxilla and mandible. Kruskal-Wallis and Mann-Whitney statistics were used to test whether jaw and/or tooth size differed between premolars with different root and canal configurations. The results indicate a considerable difference in the degree of variation in root form and canal number depending on premolar position which has implications for interpreting the significance of variation within the hominin fossil record. No relationship was found between jaw size and root/canal number. The correlation between root/canal number is not always clear from external examination, highlighting the importance of examining canal number when characterizing root morphology in extant and fossil taxa.

This study was funded by the Max Planck Society and NESPOS.

Bone tapping in several Upper Midwest archaeological populations: an osteological and experimental analysis.

MEGAN MORAN1 and KATHLEEN BLUE2. 1Department of Anthropology, Minnesota State University, Mankato, 2Department of Anthropology, Minnesota State University, Mankato.

Bone tapping is a postmortem modification of human remains seen in several precontact peoples of the Upper Midwest. Previous analyses of bone tapping in these groups have primarily looked at the archaeological aspects of the phenomenon. Preliminary osteological analysis of sites from western Minnesota and Wisconsin suggest that almost all individuals exhibiting tapping are adults, with a majority being males. Bone tapping is most commonly seen in femora, followed by humeri and tibiae. The average dimensions for the perforations include a length of 17.5 cm and width of 8.5 cm. In some of the sites, similar numbers of perforations occur on the distal and proximal ends of the bones, while other sites show a preference toward tapping of the distal bone ends. Tapping is generally seen in only a small subset of a given population.

In addition to the osteological analysis, this study includes an experimental aspect. Femora from Bos taurus were used as a proxy for human bones and tapped at intervals spanning from the day of death to two months postmortem using a stone tool similar to that used archaeologically. The experimental work suggests that tapping occurred in the perimortem period based on the appearance of hinge fractures and embedded bone fragments. However, this study also suggests that temperature fluctuations, season of death, and location/placement of the remains may greatly impact the timeframe during which the bone displays a “green bone” response, thereby complicating any estimations of the exact timing of the phenomenon archaeologically.

New middle Miocene hominoid partial in nominate from the Siwalik sequence of Pakistan.

MICHÈLE E. MORGAN1, JOHN C. BARRY1,2 and DAVID PILEBAM1,2. 1Peabody Museum of Archaeology and Ethnology, Harvard University, 2Department of Human Evolutionary Biology, Harvard University.

A partial left in nominate identified as Stiopithicus indicus has been recovered from the Chinji Formation, Potwar Plateau, dated at 12.3 Ma. Cranial and caudal portions are missing, but original dimensions can be estimated, along with the degree of iliac flare and the orientation of the ilium relative to the acetabulum. Among living and fossil primates it is less unlike Proconsul nyanzae, although exhibiting some probable derived features. This is the seventh S. indicus postcranial element recovered from the Chinji Formation, and the first in nominate for the genus. Size suggests that it is female, likely between 20–25 kg. The fossil has a very robust linea arcuata and a smaller ischial tuberosity than cercopithecoids and hylobatids. The iliac fossa is relatively broader than P. nyanzae but is unlike extant great apes. The in nominate is compatible with the inference that S. indicus was primarily arboreal and had a varied locomotor repertoire consisting of both pronograde quadrupedalism and occasional antropo- grade activities such as vertical climbing. The extent to which the speci men helps resolve the degree of postcrani al homoplasy between Pongo and the African apes remains unclear.

Ontogeny of sexual dimorphism in long bones of gorilla.

NAOKI MORIMOTO, MARCIA S. PONE DE LEON and CHRISTOPH P. ZOLLIKOFER. Anthropological Institute, University of Zurich, Switzerland.

Among great apes, gorillas show the most pronounced sexual dimorphism. Several morphometric analyses document how craniofacial dimorphism is brought about during ontogeny. However, comparatively little is known about the ontogeny of sexual dimorphism in the postcranium, because long bone morphology and associated trajectories of ontogenetic shape change are difficult to quantify. In this study, three-dimensional data of Gorilla g. gorilla femora were acquired using medical CT and micro CT technology. Cross-sectional features (i.e., external radius, surface curvature, and cortical bone thickness) are measured and visualized along the entire length of the diaphysis, and infant stages to adulthood, utilizing Elliptical Fourier Analysis and methods of morphometric mapping. Morphometric maps are further processed with a combination of 2-dimensional Fourier analysis and multi-variate analysis of shape. Our results show that males and females share ontogenetic patterns, but that males follow an extended ontogenetic trajectory. Diaphyseal shape variation that is independent of ontogeny and sex was also examined. These analyses indicate considerable intra-specific variation in muscular topography.

Luminance contrasts and the adaptive advantage of monochromatic vision in a nocturnal exudativorous primate.

GILLIAN L. MORITZ1 and NATHANIEL J. DOMINY1,2. 1Department of Biological Sciences, Dartmouth College, 2Department of Anthropology, Dartmouth College.
It has been suggested that the energetic cost of maintaining functional short (S-) opsin pigments might exceed the adaptive advantages of dichromatic vision under scotopic conditions. Such a view is supported by the convergent evolution and prevalence of monochromatic vision among nocturnal primates. For advocates of this hypothesis, the existence of functional S-opsin pigments in species such as tarsiers is taken as evidence of a recent adaptive shift from diurnality to nocturnality. Yet recently, a signature of purifying selection at the S- and M-opsin gene loci was reported for the eye-aye, a nocturnal primate. For such species, the advantages of detecting chromatic signals or cues are unknown; further, the tasks in which luminance cues alone might explain S-opsin inactivation are also unknown. Recently, the ecological advantages of detecting luminance contrasts has been shown for diurnal, frugivorous primates, but scarcely anything is known for nocturnal species. To address these issues, the spectral recognition of foods consumed by Galago sengalensis braccatus, Tarsius bancanus, and T. syrichta. Next, we used irradiance spectra under twilight, full moon, and new moon conditions to calculate the radiance spectrum of each food object and to estimate the relative quantum catches for each species. The results of our models suggest that Galago, a monochromat, can subsist on luminance contrasts alone. Accordingly, when the luminance contrasts of critical stimuli are high, natural selection might favor the loss of S-opsin pigments. This study was funded by Sigma Xi and the David and Lucile Packard Foundation.

Dental attrition patterns in two cercopithecine species from Tai forest, Ivory Coast.

PAUL MORSE1, DAVID DAEGLING2, SCOTT QCGRW3, RYAN COVEY* and ELEANOR SHRIVER.1,2,3,4,5

1Department of Anthropology, University of Florida, 2Department of Anthropology, University of Oxfords, 3Department of Anthropology, University of Florida, 4Institute for Human Visions, University of Florida, 5Department of Anthropology, Fort Lewis College, Durango, CO.

Sacoglottis gabonensis (2n = 58) was hypothesized to represent adaptations to a high-attrition diet. We contrasted macroscopic wear in these species to evaluate the null hypothesis that patterns of attrition between them would be similar, despite dietary differences. We measured attrition as the proportion of exposed dentine area to dental crown area for P4-M3 in adult Cercocebus (n = 16) and Procolobus (n = 18) of both sexes. Dentine exposure on P4 relative to attrition on M1 scales similarly in the two taxa; however, at a given proportion of dentine loss on the molars, Cercocebus displays relatively more attrition on the P4. Variation in P4 attrition is higher in Procolobus. The finding of absolutely greater wear on M1 versus M3 is never observed in Cercocebus, but it is occasionally seen in Procolobus. These data compel rejection of the null hypothesis and provide evidence of different utilization of individual teeth in the two taxa.

Supported by National Science Foundation grants BCS-0922429, 0921770, and 60017683.

Behavioral and ecological consequences of sex based differences in taste bud densities in Cebus apella.

MAGDALENA N. MUCHLINSKI and SYLVIA M. PAESANI. Department of Anatomy and Pathology, Marshall University. Joanna C. Edwards School of Medicine.

Fungiform papillae (FP) are the only gustatory structures on the anterior tongue. Taste buds (TBs), which are located in FP, house taste receptors. In humans, FP and TB densities correlate with taste sensitivity and food preferences. Homo, Pan, and Cebus females have higher FP densities than males. Homo, Pan, and Cebus have larger brains, slow development, and higher offspring investment compared to most primates. An increase in maternal investment places an intense pressure on females to (1) obtain high-quality foods, and (2) detect potential toxins at low levels. Higher FP densities in females may be a foraging adaptation for pre/postnatal development. This study examines sex differences in TB densities in Cebus. TBs can be used to evaluate differences in taste sensitivity. We asked the following questions: (1) do males have fewer FP, but more TBs than females, (2) do males have fewer FP and TBs than females, and (3) do males have fewer FP, but match females in the TB count? TBs were counted on four female and six male C. apella tongues. Tongues were embedded, serially sectioned, and stained with hematoxylin-and-eosin. Females have 1-5TBs/FP, averaging around 4TBs/FP. Male values range between 0-2TBs/FP, and average 1TB/FP. Furthermore, there are notable size differences in FP. Females have larger FP and higher FP and TB densities. The anatomical evidence indicates that females have greater taste sensitivity than males. Future research on food preference/selection in Cebus is expected to show sex specific behaviors similar to those observed in Homo and Pan.

This study was funded by MU-Advance.

The roles of immunity in human life-history trade-offs and evolution.

MICHAEL MUEHLENBEIN. Department of Anthropology, University of Indiana, Bloomingston.

Immunological research has traditionally focused on clinical and molecular studies to characterize the structure and function of various immune responses used for allo-stasis. More recently, the study of ecological immunology has focused on explicating the role of immunological responses in the determinants of variation in immune functions and ultimately the fitness consequences of this variation. One broad perspective is that because immunocompetence is an integral part of organismal fitness, it is involved in physiological trade-offs with other functions. Several studies in humans now conclude that development, maintenance, and activation of immune responses generate a substantial energetic burden. Furthermore, increased metabolic demands during infection are met largely through the actions of various hormones and immune factors. In fact, many molecules exhibit pleiotropic actions on metabolic, immune and reproductive functions, including thyroid hormones, cytokines, glucocorticoids, and androgens.

The present paper reviews the evidence for metabolic costs of immunity in humans, trade-offs between immune activation and growth/reproduction in humans, and those studies which attempt to identify the proximate endocrinological moderators of immune functions. Understanding the precise energetic costs of acute immune activation in adults will facilitate better treatment plans for metabolic dysregulation during illness, and a more complete understanding of the immunomodulatory actions of hormones will benefit clinicians who utilize hormone supplementation to treat a variety of conditions. Furthermore, results suggest that “feeding a cold, and starving a fever” may be appropriate advice given that different immune functions are optimized by different pathogens have different energetic and nutritional needs. Funded by Indiana University-Bloomington and University of Wisconsin-Milwaukee.

Dental pathology and dental morphology in osteoarthritis.

DAWN M. MULHERN. Department of Anthropology, Fort Lewis College, Durango, CO.

Recording dental pathology and dental morphology within written forms is cumbersome and inefficient. Osteoarthritis...
vides a simple interface that allows fast and accurate recording of dental data. Dental pathology including carious lesions, abscesses, hypoplastic lesions, as well as cultural modifications can be recorded. The method for scoring hypoplastic lesions and modification is consistent with Standards for Data Collection from Human Skeletal Remains (Buikstra and Ubelaker, 1994). The choices for scoring carious lesions and abscesses have been expanded in Osteoware compared to Standards, providing greater flexibility in scoring location and severity. Osteoware further facilitates accurate scoring of dental pathology by modifying the available pathology categories based on the dental inventory for each tooth.

Dental morphological data collection is based on the Arizona State University Dental Anthropology System. Specifically, the ASU dental casts should be used in conjunction with Osteoware. All of the descriptions for dental morphological traits are provided in Osteoware and are taken from the ASU System (Turner, Nichol, and Scott, 1991). For each morphological trait, text boxes appear next to the appropriate teeth in a diagram of the dental arcade so scores can be entered quickly and easily. This presentation demonstrates the procedure for recording dental pathology and morphology using Osteoware through several case studies.

Osteoware is supported by grants from the National Center for Preservation and Technology and Training (NCPTT), National Park Service, and the Smithsonian Web 2.0 Fund.

Facial mask markings used to reveal taxonomic differences in the Bornean slow loris (Nycticebus menagensis).

RACHEL A. MUNDS1, K.A.I. NEKARIS1 and SUSAN M. FORD2.
1Nocturnal Primate Research Group, Oxford Brookes University, 2Department of Anthropology, University of Central Florida, and the National Center for Preservation and Technology and Training (NCPTT), National Park Service, and the Smithsonian Web 2.0 Fund.

A better understanding of subtle morphological disparities, such as pelage pattern and color variation, vocal cues, and genetics have aided in elucidating the true number of nocturnal primates over the years. Such an understanding can be noted within slow lorises (genus Nycticebus), which were once comprised of only two species, but taxonomic studies revealed an array of speciation, resulting in the recognition of three additional species. Diversity is still being noted in the newly described species, such as the Bornean loris (N. menagensis). With extreme differences in adult facial masks and the geographic barriers isolating the populations, a taxonomic study was justified. Bornean loris museum specimens and photographs were used to study facial morphological differences to assess the possibility of subspecies or species. Nine facial mask differences were significant in demarcating species. These nine features influenced the amount of white visible on the face, supporting the idea that contrasting color patterns aid in species recognition. Similar facemask patterns significantly clustered together by geographic regions (F = 14, 88 = 17.5, p ≤ 0.05). Based on facemask differences and geographic boundaries, our results support the classification of three subspecies of Bornean lorises: N. m. menagensis found in the north of Borneo, N. m. borneanus in central Borneo and N. m. bancanus of the South of Borneo.

This study was funded by the Primate Society of Great Britain, Primate Action Fund, Primate Conservation Inc., and The Margot Marsh Biodiversity grant.

A comparative study of the occurrence of transverse radiopaque lines in archaic, early modern, and Holocene human populations.

JORDON MUNIZZI1, LIBBY COWGILL2, TOSHA DUPRAS1 and JOHN SCHULTZ1. 1Department of Anthropology, University of Central Florida, 2Department of Anthropology, University of Missouri.

Transverse radiopaque lines (TRL’s) are a hard-tissue pathology which develop in subadult long bones after episodes of nonspecific stress such as nutritional or metabolic insult. This pathology is well documented in archaeological contexts and is used as a tool for making paleodemographical inferences about the general health of populations. Stable isotope studies have suggested that early modern humans were exploiting a wide range of dietary resources by the mid-Upper Paleolithic, while Neander-tals appear to have utilized a narrower spectrum of resources, expending more energy on large game. This may be a significant factor in differential survival success; Neandertals might have been more susceptible to seasonal resource fluctuations and may have suffered increased nutritional and metabolic stress as a result.

This study will evaluate differences in the frequency and timing of TRL’s among three Pleistocene and Holocene subadult populations, the tibial diaphyseal shafts of 200 archaic, early modern, and Holocene humans were scored as displaying or not displaying TRL’s. TRL’s were counted, and age-at-formation was calculated. Kruskal–Wallis nonparametric tests were used to compare the frequency of occurrence of TRL’s and age-at-formation among the three groups. Results indicate that archaic humans developed more TRL’s than early and Holocene humans, and they formed those TRL’s earlier in life. This is consistent with other research indicating that Neandertal populations experienced higher levels of nonspecific stress early in ontogeny, which may be related to seasonal food shortages among Late Pleistocene populations.

Terminal patterning within the Tipu cemetery based on fluoridation electrode analysis: demographic and health implications.

NICOLE MUSSELWHITE1 University of Southern Mississippi.

This project ascertains the sequence of burials using fluorine analysis at the Colonial Maya site of Tipu in order to explore demographic and other cultural effects associated with European contact. The cemetery at Tipu in west central Belize, dating from within the first century of Spanish contact, has provided one of the largest and best preserved ancient Maya skeletal series, with over 500 burials recovered. These interments have undergone general bioarchaeological analysis, but thus far, there has been no means to evaluate how demographic, health, and activity patterns might have changed over time. This is of interest given the rapid cultural change associated with this time period, especially since the site underwent large fluctuations in population size due to immigration from the Northern Yucatan. By measuring fluoride ion levels within the sample using an electrode, a relative chronology was determined using both horizontal and vertical location to test for patterning. The overall range of fluorine levels was not marked, reflecting the relatively short use of the cemetery from 1541-1704. Variation in fluorine levels allowed for the determination of the cemetery’s spatial partitioning and documented changes in demographic distribution and mortuary practices, including burial orientation and stacking of interments. In particular, these findings have helped further the understanding of the roles of gender and status within the cemetery at Tipu, especially over time.

3D modelling to analyze heat dissipation on fossil endocasts.

FABIO MUSSO1, JOSÉ MANUEL DE LA CUÉTARA2 and EMILIANO BRUNER2. 1Universidad de Burgos, Burgos, Spain, 2Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain.

Brain evolution in the human genus is associated with a definite increase in metabolic expenditure. Currently, there is no agreement on the existence of specific cooling mechanisms in Homo sapiens to balance the heat production related to such high metabolic rates. At the same time there is little information on the thermoregulatory biology of the brain mass in our own species. Cortical and meningeal vessels have been hypothesized to have a functional role in this sense, as suggested by anatomical differences among fossil hominids. Here, we
this study was funded by the Program Advantages and limits of the method are and Australopithecines merits attention. between modern humans, Neandertals, logical elements, some differences study rely only on raw geometry without ary heat distribution on the regular lat- lattice. After CT-based endocasts recon- struction and voxel-based 3D model ren- dering, we find numerically the station- ary heat distribution on the regular latt- ice defined by the voxels. Although this study rely only on raw geometry without consicranial photograph of each individual was taken to scale using a digital camera. The landmarks were then reestablished using only the images, and the same measurements were taken on the same individuals. A paired samples t-test is conducted to test the hypothesis that standard sliding caliper measurements can be consistently replicated using measurements taken from digital photographs. Left and right anterior, posterior, and lateral measure- ments were taken on the temporomandib- ular fossae of one-hundred and nine indi- viduals from the Hamann-Todd Osteologi- cal Collection. Pencil marks were used to identify landmarks for caliper measure- ments and were then erased and one calibration of Biology, St. Catherine Univer- sity, 3Department of Biology, Seattle Pacific University.

Determining the metabolic cost and move- ment consequences of child-carrying is crit- ical to our understanding of human evolu- tion. Current hypotheses of behavioral interactions within early human populations suggest that female and/or male rela- tives might have helped mothers of small children carry their offspring for periods of time, effectively transferring to these mothers more energy for breast-feeding or future reproduction. To determine how child-carrying affects the free walking speed choices of adults as a function of sex and task, we calculated the walking speed of 6 females and 6 males as they walked around the perimeter of a gym while per- forming 12 tasks in a randomized order; Tasks consisted of all combinations of 3 loading conditions – carrying a 10kg tod- dler-proportioned manikin on the should- ers or hip, or a comparable mass around the waist – and 4 walking speed directives (“slowest”, “walk-all-day”, “brisk”, and “fastest”) walks. We found that speed cate- gory (p<.0001), sex (p = 0.08), and the interaction of sex and speed (p<.0001) affected free-walking speed, but not load- ing condition (General Linear Model). For all loading conditions, females walked sig- nificantly faster than males (or marginally so) at all but the fastest speed directives, with the sex difference decreasing with speed (14, 11, and 7 % difference from slow- est to brisk walk). At the two fastest speed categories, free-walking speed was slower for hip than for shoulder carrying. Although the carrying task was a larger burden for the females due to their smaller body mass, females consistently chose faster walking speeds than males. This study was funded by 3M Faculty/ Student Collaborative Grant #212607 (Center of Excellence for Women, Science, and Technology), the Office of Col- laborative Undergraduate Research, and the Endowed Professor in the Sciences at St. Catherine University, St. Paul, Minnesota.

Growth velocity and percent of achieved adult growth of juveniles at the Campbell site. ASHLEY NAGEL1, LIBBY COWGILL2 and DANIEL TEMPLER3. 1Department of Anthropology, University of Missouri, 2Department of Anthropology, University of North Carolina Wilmington.

This study documents and interprets patterns of long bone growth in a Late Mississippian sample from the Campbell site (23PM5) (ca. AD 1350 to 1540), Pemiscott County, Missouri. Occupants of the site were sedentary small agri- culturalists. Sedentary, agricultural life- styles are associated with increases in chronic infection and dietary deficiency. Stressors of this nature often negatively impact longitudinal growth. Several interrelated hypotheses are tested to better understand how such environ- mental processes impacted longitudinal growth at the Campbell site. First, it is predicted that the rate of growth at Campbell will be reduced when com- pared to groups with lesser rates of infection and wider dietary breadth. Percentages of achieved growth and age will significantly differ between the Campbell site and comparative samples. Maximum diaphyseal lengths of the humerus, radius, ulna, femur, and tibia were collected from all available individ- uals from the Campbell site (n=132). Comparative data were derived from four samples, which span a diverse selection of time periods and subsistence strat- egies: Japan (Jomon, forager), Alaska (Point Hope, forager), Kulunbarni (Nubia, agriculturalists) and Mistichalj (Bosnia- Herzegovina, pastoralists). Age was esti- mated on the basis of dental eruption and formation. The results of this analysis indicate that individuals at the Campbell site differed in their patterns of growth, particularly from the hunter-gatherer samples. In general, Campbell juveniles were smaller and delayed in relative growth of long bones. This study was funded by the Univer- sity of Missouri-Columbia Undergradu- ate Research Mentorship Fellowship.

Prediction of the timing of catch-up for children with delayed skeletal maturation. RAMZI W. NAHHAS1, DANA L. DUREN2,3, RICHARD J. SHERRWOOD1,3, ROGER M. SIERSVOGEL1,3, STEFAN A. CZERWINSKI1, WM. CAMERON CHUMLEA1,3 and BRADFORD TOWNE1,3. 1Lifespan Health Research Center, Department of Community Health, Boonshoft School of Medicine, Wright State University, Dayton, OH, 2Department of Orthopaedic Surgery, Boonshoft School of Medicine, Wright State University, Dayton, OH, 3Department of Pedia- trics, Boonshoft School of Medicine, Wright State University, Dayton, OH.

Normal variation in skeletal maturity can yield a skeletal age (SA) that differs from chronological age (CA) by a few years without being considered patho- logical. Some children with delayed maturation (SA < CA) remain delayed for a number of years, while others

American Journal of Physical Anthropology
catch up to their peers (SA = CA) relatively quickly. We hypothesize that the probability of such “catch-up maturation” varies with CA and SA. SA was assessed using the FELS Method for 19,240 hand-wrist radiographs from the Fels Longitudinal Study of 626 boys and 590 girls born 1921-2001, aged 1m-18y. We predicted future SA using multivariate regression and an empirical method of trajectory matching to illustrate the range of future patterns of skeletal maturity among children with similar SA histories. Our data suggest that, for those who are delayed in skeletal maturation, the probability of catching up to one’s CA-matched peers increases prior to the average age of onset of the pubertal growth spurt in stature (10.7y for boys, 8.7y for girls). This probability decreases prior to the average age at peak height velocity (13.8y for boys, 11.5y for girls), and then increases again (since all individuals eventually reach the mature state). Our findings are based on several levels: 1) they provide insight into the relationship between maturation and growth, 2) knowledge of the probability of “catch-up maturation” assists pediatricians in determination of treatment timing, and 3) progress and tempo of maturation provide insights into key developmental processes and life history relevant to comparisons within and across taxa. This study was funded by NIH grants R01AR055927 and R01HD012252.

Dietary adaptations of prehistoric Japanese in light of nitrogen isotopic compositions of bone collagen amino acids: with special focus on aquatic resources.

YUICHI I. NAITO1,4, NOA H. HONCH2,3, YOSHIITO CHIKARAISHI4, NAOHIKO OHKOUCHI4 and MINORU YODA5
1Department of Marine Biotechnology, Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 2Research Laboratory for Archaeology and the History of Art, University of Oxford, 3Biogeochmistry Research Centre, School of Chemistry, University of Bristol, 4Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology.

The stable nitrogen isotopic compositions of bone collagen amino acids from a variety of archaeological human and faunal populations from Japan were investigated. The samples are assigned to wide range of prehistoric periods mainly including Initial Jomon (c. 10,000-6,000 BP), Early Jomon (c. 6,000-5,000 BP) and the Okhotsk Culture Period (c. AD 550-1200). At the two Jomon sites, we observed characteristic and consistent isotopic values for two amino acids: glutamic acid and phenylalanine. While glutamic acid showed quite a large inter-trophic 15N-enrichment along the food chain, phenylalanine showed little 15N-enrichment. However, at the coastal site of the Okhotsk Culture, unexpected δ15N variability of phenylalanine was observed for marine faunal species. Because most of marine species are migratory, we think that the variability reflects the isotopic differences of nitrogen sources between oceanic regions. In addition, several factors such as ocean currents and differences in tools and strategies for procuring marine animals might relate to the observed isotopic differences between these periods. We have developed a range of new methods for quantitatively evaluating the consumption of marine protein using the δ15N values of glutamic acid and phenylalanine. By applying these methods to above samples, we estimated that the coastal Jomon and the Okhotsk Culture populations consumed approximately 70-80% and 60-100% of their dietary protein from marine resources, respectively. In contrast, it seems that the inland Jomon population consumed little marine protein.

This study was funded by Ministry of Education, Culture, Sports, Science and Technology, and the Japan Society for the Promotion of Science; Grant numbers: 20370908, 17107006, 1837099.

Bioarchaeology of a French medieval monastic cemetery: interpreting ritual changes and the impact of historical events.

The site of Saint-Laurent de Grenoble (Isère, France) is one of the oldest Christian sites in France (A.D. 380-1800). Following typical historical sequence, Christian burials gradually replaced older Gallo-roman cemeteries. The first Christian monument officially consecrating the cemetery was a memoria dedicated to the first bishop of Grenoble (A.D. 380-420). With the growing Episcopal influence, Saint-Laurent quickly evolved into a formal church (A.D. 500-600). Two main transitions influenced the composition of the burial grounds during Saint-Laurent history: (1) The settlement of the Benedictine monks in 1022 helped replace the declining church by developing a monastery. (2) During the 14th century the joint influence of repetitive plagues (1342, 1346...) and the Hundred-year war majorly strained local populations. The contextual analysis of over 600 skeletons has been developed in order to evaluate the impact of these events, specifically: (1) the ritual changes brought by the monks and (2) the economic crisis associated with natural disasters and war. Biological variables (stature, demography, paleopathologies...) were assessed in combination with archaeological data (burial type, artifacts deposits...) in order to properly interpret the results. Most variables clearly indicate a key transition in the cemetery composition with the settlement of the monk, toward high status individuals. In addition, the political and economical consequences of the 14th century's turmoil resulted in a major degradation of health and increased mortality for local populations.

A finite element analysis of the catarrhine sixth cervical vertebra: a preliminary investigation of stability hypotheses.

THIERRA K. NALLEY. School of Human Evolution and Social Change, Institute of Human Origins, Arizona State University.

Morphological variation in the anthropoid lower cervical spine has been linked to differences in positional behavior, but hypotheses examining how this variation reflects differences in mechanical environment have not yet been tested. Previous work suggests that suspensory primates have skeletal mechanisms that restrict and stabilize movement in the coronal plane, while non-suspensory primates, including humans, will demonstrate features promoting stabilization in the sagittal plane. Finite element analysis provides a method to investigate structure-function hypotheses regarding bony response to different force moments. Finite element models of four catarrhine species—Homo sapiens, Pan troglodytes, Papio anubis, and Australopithecus afarensis (A.L. 333-106)—were constructed from microCT scans, scaled, and compared. Pure moments of force were applied to the transverse and spinous processes to induce anteroposterior and mediolateral bending, as well as torsion about the vertical axis of the spine. The resultant stress differences were calculated and compared among taxa. The Pan vertebral demonstrates reduced stresses during lateral bending when compared to other specimens, suggesting generalized stabilization in the coronal plane, whereas the Homo and Papio vertebrae appear to be more optimized to resist bending in the sagittal plane. These results support stabilization hypotheses that cervical vertebrae shape is linked to differences in positional behavior. The pattern of response exhibited by the A. afarensis vertebra is most similar to that of the Pan vertebra; however, the stress magnitudes experienced by the A. afarensis vertebra generally place it intermediate between extant humans and chimpanzees. Implications for A. afarensis positional behavior are discussed.

Alloparental behavior in captive Galago senegalensis.

LEANNE T. NASH and SHARON E. KESSLER. School of Human Evolution and Social Change, Arizona State University, Tempe, AZ.

Observations of alloparenting in galagos, a relatively nongregarious primate...
There is no statistically significant difference between 2D:4D and androgen receptor gene sensitivity in haplorrhines.

EMMA NELSON1 and SUSANNE SHULTZ. 1School of Archaeology, Classics and Egyptology, University of Liverpool, 2Institute of Cognitive and Evolutionary Anthropology, University of Oxford.

The second to fourth digit ratio (2D:4D) is a marker for prenatal androgen effects (PAE) and has been linked to the programming of sexually selected traits in primates. In humans high 2D:4D (lower PAE) is associated with insensitivity of the androgen receptor gene (ARG), but relationships with testosterone (T) have been contradictory. Here we investigate relationships between 2D:4D, T and ARG sensitivity across haplorrhines. Data on 2D:4D was acquired from our own studies and other variables were taken from the literature. The ARG contains a CAG repeat sequence which correlates with the gene’s transcription capacity: mean CAG sequences (CAGn) that are short are more sensitive to T and induce larger physiological effects from the same levels of androgens. Analyses employed species-level CAGn and male serum T and were phylogenetically controlled. Results show significant associations across super families: species with higher T had lower 2D:4D and lower body size and 2D:4D was positively correlated with CAGn. Ceboids had higher T than Old World species, but 2D:4D was associated with longer CAGn and higher T, with humans exhibiting the most extreme values. Through hominin evolution increasing 2D:4D may be indicative of increasing androgen insensitivity despite the apparent increase in T levels. We discuss the possible implications of down-regulation of the ARG on hominid social evolution.

Virtual reconstruction of A. africanaus endocasts and new cranial capacity estimates.

SIMON NEUBAUER1, PHILIPP GUNZ2, GERHARD W. WEBER2 and JEAN-JACQUES HUBLIN. 1Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany, 2Department of Anthropology, University of Vienna, Austria.

The fossil record of Australphalasthecus africanaus includes several fairly well preserved specimens that allow the size and morphology of this species’ brain to be investigated. However, most specimens are not complete, distorted to some degree, and/or contain stone matrix in the endocranial cavity. The use of CT data has facilitated investigations of the endocranial, especially of skulls filled with matrix. Today, surface semilandmarks and geometric morphometric methods make it possible to reconstruct missing parts and correct for distortion in a reproducible and reliable way. Here, we reconstruct virtual endocasts of Sts 5, Sts 60, Sts 71, StW 505, Taung, and MLD 37/38 using a probabilistic approach and provide new endocranial volume (EV) estimates. After segmentation of preserved portions of the endocranial cavity and reconstruction of bilateral portions by mirror-imaging, we used computer algorithms to reconstruct missing parts. We measured endocranial landmarks and several hundred semilandmarks on curves and surfaces to capture the available morphology in detail. The same landmark set was measured on samples of chimpanzees and humans. For each A. africanaus specimen, we created multiple estimations of the missing and distorted parts via thin-plate-spline warping, using Sts 5 and the modern individuals as reference specimens. We validated our method by simulating missing portions in Sts 5 and comparing our reference-based estimates to the true EV. The variation of EV among the multiple reconstructions reflects the estimation uncertainty caused by the variability among reference specimens. We discuss the results with respect to the choice of reference specimens and previous literature. Supported by EU FP6 Marie Curie Actions grant MRTN-CT-2005-019564 “EVAN” and by the Max Planck Society.

Hominoid cranial base variation supports a valid taxonomic distinction between Paranthropus boisei and Paranthropus robustus.

LISA NEVELL1 and BERNARD WOOD. 1Howard Hughes Medical Institute, 2Institute for Evolutionary Anthropology, University of Texas, Austin.

This study examines the prevalence and timing of linear enamel hypoplasias (LEH's) in the deciduous and permanent dentition of 48 individuals recovered from a rural Roman cemetery at Vagnari, south Italy. These results are used to investigate infant and childhood health status, histological and archaeological evidence concerning the health of children in Roman Italy. All teeth (n = 525) were examined for enamel defects and revealed an overall prevalence of 64.6% in the permanent dentition. No LEH's were observed in the deciduous dentition (n = 131). The prevalence of LEH's in contemporaneous Roman samples are higher than in the Vagnari sample, suggesting that political-economic variables may have contributed to the comparatively healthy conditions for subadults at Vagnari. There is no statistically significant difference in LEH prevalence between the sexes within the Vagnari sample, suggesting similar levels of stress in males and females during childhood. These results are consistent with historical sources, which imply that male children were preferentially favored in Roman society. The subadults (0-15 years) experienced a higher average number of defects per tooth, whereas the average number of defects progressively decreases in the older age categories. This evidence suggests that Roman children who suffered fewer stress events during dental development may have also experienced greater longevity (45+ years). Measurement of each LEH indicates a peak occurrence at 2.75 years, which is interpreted as indicating the end of the weaning process and is consistent with historical evidence for Roman weaning practices. Hypoplasias occurred up to 15 years, suggesting that stress was experienced throughout childhood, and not just during weaning.

Associations between 2D:4D, testosterone and androgen receptor gene sensitivity.

EMMA NELSON1 and SUSANNE SHULTZ. 1School of Archaeology, Classics and Egyptology, University of Liverpool, 2Institute of Cognitive and Evolutionary Anthropology, University of Oxford.

The second to fourth digit ratio (2D:4D) is a marker for prenatal androgen effects (PAE) and has been linked to the programming of sexually selected traits in primates. In humans high 2D:4D (lower PAE) is associated with insensitivity of the androgen receptor gene (ARG), but relationships with testosterone (T) have been contradictory. Here we investigate relationships between 2D:4D, T and ARG sensitivity across haplorrhines. Data on 2D:4D was acquired from our own studies and other variables were taken from the literature. The ARG contains a CAG repeat sequence which correlates with the gene’s transcription capacity: mean CAG sequences (CAGn) that are short are more sensitive to T and induce larger physiological effects from the same levels of androgens. Analyses employed species-level CAGn and male serum T and were phylogenetically controlled. Results show significant associations across super families: species with higher T had lower 2D:4D and lower body size and 2D:4D was positively correlated with CAGn. Ceboids had higher T than Old World species, but 2D:4D was associated with longer CAGn and higher T, with humans exhibiting the most extreme values. Through hominin evolution increasing 2D:4D may be indicative of increasing androgen insensitivity despite the apparent increase in T levels. We discuss the possible implications of down-regulation of the ARG on hominid social evolution.
Institute, Department of Human Genetics, University of Utah, Center for the Advanced Study of Hominid Paleobiology, Department of Anthropology, George Washington University.

We use the nature and the degree of intraspecific variation in cranial base variables among extant higher primates (Homo sapiens, Pan paniscus, Pan troglodytes, Gorilla gorilla and Pongo pygmaeus) as comparative analogues to test taxonomic hypotheses within the Paranthropus clade. A multivariate randomized Levine test is performed on principal component factor loadings of logged cranial base measurements and geometric mean ratio (or GMR) shape data. When logged data are considered, the variation in the combined sample of Paranthropus boisei and Paranthropus robustus does not exceed the intraspecific variation within any of the hominoid species. When GMR shape data are considered variation within P. boisei but not P. robustus exceeds the variation within each of the extant hominoid species. The degree of the variation in P. robustus does not differ significantly from between sex samples of any extant hominoid species, within sex (i.e., single sex) subsamples of the extant hominoid species, and the Tupiguarani pottery tradition. The aim of this work is to test this scenario by means of multivariate comparison of cranial morphology among 16 skeletal series, including Guarani, Tupi, and Marajoara human skeletal remains. The comparisons were undertaken through Principal Components and Mahalanobis's Distances analyses. Our results strongly suggest a close association between the Tupiguarani and the Marajoara skeletal remains. In other words, the results obtained support the long held idea that the Tupiguarani culture originated in Amazonia and subsequently spread to other parts of Brazil, Bolivia, Paraguay, Uruguay and Argentina mainly by means of demic diffusion.

FAPESP grants 04/01321-6, 08/58729-8 and CNPq grant 300818/2007-6.

Grooming reciprocity in wild male chimpanzees.

NICHOLAS E. NEWTON-FISHER1 and PHYLLIS C. LEE2. 1School of Anthropology and Conservation, University of Kent, UK, 2Department of Psychology, University of Stirling, UK.

Understanding cooperation remains a central issue in evolutionary anthropological research, although the importance of direct reciprocity as an evolutionary mechanism is questioned. Biological-markets theory provides a useful model for understanding the evolution of cooperative behavior in social groups. Applied to the grooming interactions of non-human primates, as the grooming-trade model, it makes a specific prediction regarding the occurrence of reciprocity: that this should occur when otherwise-preferred rank-contingent benefits are not available. We investigate this model as an explanation for grooming reciprocity among wild male chimpanzees, testing specific predictions derived from the model, using data from the Sonso (Budongo) community.

Our results provide mixed support for the grooming-trade model. While some grooming – and grooming within particular dyads – was directed by lower to medium ranked individuals, effort was matched through mutual grooming, not through alternation of grooming roles. We suggest that our results may question the utility of Rensch's rule, reporting various levels of correlation. The present study investigates correlation between SSD and social stratification.

Environmental influence on sexual dimorphism in humans.

DEJANA NIKITOVIC. Department of Anthropology, University of Toronto.

In humans, as well as in other members of the animal kingdom, females and males exhibit certain levels of sexual dimorphism (SSD). Mild compared to other species, SSD in humans is well documented. Although variations in SSD between populations have been observed, factors that lead to it are still unclear. Myriad studies analyzed correlation between inter-population variability in SSD and social stratification, polygyny, sexual division of labor, temperature, latitude, and size (Rensch's rule), reporting various levels of correlation. The present study investigates correlation between SSD (measured as a ratio of mean male height to mean female height) among 68 modern human populations and several environmental variables: climate (minimal, maximal and average temperature, seasonality, and precipitation), temperature, latitude, and size (Rensch's rule), reporting various levels of correlation.

Reduced major axis regressions revealed no statistically significant correlation between SSD and climate. Absence of correlation with infant mortality and GDP did not confirm that male stature is more plastic than female. Allometric regression on population data showed a strong positive linear correlation between female and male height. However, the obtained slope value is inconsistent with Rensch's rule, suggesting that SSD cannot be seen as a function of stature.

Morphological variation of the paranasal sinuses in strepsirrhines.

TAKEI Y. NISHIMURA1, RENAUDA LEBRUN2, MARCIA PONCE DE LEON3 and CHRISTOPH P. E. American Journal of Physical Anthropology.
ZOLLIKOFER, 1Primate Research Institute, Kyoto University, Japan, 2Institut des sciences de l’évolution, Université Montpellier II, 3Anthropological Institute, University of Zurich.

Variations in the paranasal sinus anatomy of extant and fossil anthropoid primates have been extensively examined using computed tomography (CT), and have potential utility for phylogenetic analyses. We used this approach to evaluate the anatomy in 18 genera of extant strepsirrhines. The maxillary sinus is formed in all the genera. The lorisiforms have an additional pseudostium opening to the nasal cavity. In Propithecus, the inferior meatus expands laterally in the region anterior to this sinus, as seen in Gorilla and Pithecia, and the maxillary sinus is segmented into three distinct chambers which have openings to the middle meatus, respectively. In Eulemur, an additional sinus-like cavity is formed in the region posterior to this sinus. Sphenoid sinuses, in combination with an opening to the ethmoidal region is found in all the genera, despite of differences in volume. Distinct patterns of pneumatization of the frontal region are found in Eulemur, Daubentonia, Indri, Propithecus, and Avahi. The frontal sinus in Avahi communicates with the maxillary sinus. In many of the other genera, a small cavity expanding from the ethmoidal region is formed in the circumfrontal-ethmoidal region, and this feature is probably homologous to the frontal sinus. The paranasal sinuses are more variable in form in the Indridae than in the other families. The present study confirms the view that the lack of paranasal sinuses in the Old World monkeys is quite unique among the order Primates. This study was founded by Grant-in-Aid from the JSPS (#21770263) and Ito Foundation, Tokyo.

The mosaic morphology of LB1: a new 3D geometric morphometric study.

MARILYN LISANNE NOBACK and KATERINA HARVATI. Department of Early Prehistory and Quaternary Ecology, Eberhard Karls Universität Tübingen and Senckenberg Research Institute, University of Tübingen and Senckenberg Research Institution.

Musculoskeletal stress markers (MSMs) have been used to reconstruct the behaviors of past human groups but have been criticized on several levels regarding their interpretive reliability for habitual muscle use. One critical factor is that qualitative methods for assessing MSM development have high intraobserver error rates. New methods that quantify MSM surface area may create representations of MSM development that are more objective and ultimately allow more robust statistical analyses. This study utilized a NextEngine 3D laser scanner to measure the surface area and basic dimensions of several upper limb muscle insertions on the humeri, radii, and ulnae of a sample of adult males (n = 12) from the Pottery Mound site (LA416) in central New Mexico. Qualitative data was collected from direct bone observation using the Hawkey-Merbs method. The hypothesis tested is that 3D, 2D and qualitative methods will not agree in their results, using the Hawkey-Merbs method. The hypothesis tested is that 3D, 2D and qualitative methods will not agree in their results, using the Hawkey-Merbs method. The hypothesis tested is that 3D, 2D and qualitative methods will not agree in their results, using the Hawkey-Merbs method.

The Global Mammal Parasite Database: integrating data to examine primate ecology, conservation and infectious disease.

CHARLES L. NUNN1 AND SONIA ALTIZER. 1Department of Human Evolutionary Biology, Harvard University,
Wild primates are hosts to a wide diversity of infectious diseases, including many that also infect humans. Understanding the drivers of this diversity is fundamental for many basic questions in evolutionary anthropology, ranging from the role of pathogens in primate socioecology to how parasitism has shaped human evolution. At a practical level, many human infectious diseases have origins in non-human primate populations, and parasites are increasingly important to primate conservation.

In this talk, we describe an online resource – The Global Mammal Parasite Database – that we launched in December 2004 and have continued to develop. The database involves collaboration among more than 20 researchers, students and assistants and is freely available for others to use at “http://www.mammalparasites.org”. Starting with 2462 records of host-parasite associations, the primate database has more than doubled in size (currently 5650 records) during the past five years, with substantially broader coverage of both host and parasite species. In addition to data on host-parasite combinations and references, records include data on prevalence, sample size, parasite taxonomy, parasite transmission mode, host specificity, and geographic sampling. In organizing this long-term collaborative effort, we gained new insights to building and integrating large databases, sharing data online, and authorship issues. We describe some of our solutions, including: organizing data into a relational database structure with controls over data entry and checking; achieving taxonomic concordance for hosts and parasites among the 450+ references; engaging with independent research groups that are using the data; and sharing the credit with contributors to the database.

This research was supported by the National Science Foundation (DEB-0212096, EF-0723939, BCS-0923791), The National Center for Ecological Analysis and Synthesis (NCEAS), Cambridge MA, 2Odum School of Ecology, University of Georgia, Athens GA.

HPA activity in pregnant and lactating Tsimane’ women: implications for maternal health and infant brain development.

COLLEEN H. NYBERG. Department of Anthropology, University of Massachusetts, Boston.

Despite the tremendous interest in understanding the consequences of prenatal stress for fetal health and adult disease risk, the adaptive functions of HPA activity in healthy pregnancies have been less widely considered. Given the unique human reproductive strategy of giving birth to highly altricial infants, glucocorticoids may play a pivotal role in facilitating parturition and accelerating fetal tissue maturation. The goals of this study are: (1) to document HPA reactive scope in basal and reactive measures of cortisol in pregnant and lactating Tsimane’ women, and (2) to discuss implications for maternal health and infant brain development. Results indicate that pregnant Tsimane’ women have elevated basal cortisol but dampened reactivity measures compared to nonpregnant women, a finding suggestive of maternal buffering during pregnancy. Lactating women have similar cortisol profiles compared to nonlactating women, raising the possibility that breastfeeding serves an important role in attenuating HPA activity following birth, thus reducing the risk for related to disorders such as postpartum depression. Furthermore, Tsimane’ infants and children display less rapid negative feedback following a naturalistic reactive event, an inhibitory process that is coordinated in the hippocampus. These findings are consistent with the proposed hyporeactive period of HPA activity that extends through infancy and early childhood in part, to protect the developing hippocampus and hypothalamus from the neurotoxic effects of cortisol. Maternal provisioning may overlap with this sensitive period for postnatal brain growth and serve to buffer adversity until the negative feedback mechanisms of the HPA axis are entrained.

This study was funded by a National Science Foundation DDIG BCS-0622576, an American Association of University Women Dissertation Fellowship, a Northwestern University Graduate Research Grant, and a Northwestern University Fellowship and a Northwestern University FAN grant.

Classifying taphonomic and cranial modification in Osteoware.

CLAIRE O’BRIEN. Repatriation Osteology Lab, National Museum of Natural History, Smithsonian Institution, Washington D.C.

Taphonomy is the study of the postmortem changes to bone. Comprehensive documentation of these changes is essential as part of any osteologic analyses. As taphonomic descriptions are often qualitative, they present a challenge to the researcher how to document the variables accurately and precisely, as well as analyze the data in comparative contexts. Osteoware addresses these issues by standardizing the data collected with a comprehensive form and providing ample space for description. Observations that are documented include bone color and staining; weathering and surface damage; cultural and curatorial modifications; and the presence of any adherent materials. Cranial modification resulting from cultural practices as well as inadvertent deformation such as plagiocephaly should also be thoroughly documented. Documentation should include both skill shape and indicators as to the deforming device(s). Osteoware promotes the Osteologist with three forms that standardize the data collection and also a field for long description. This presentation will demonstrate how to use the Osteoware database to document observations regarding taphonomic changes and cranial modification and will include case studies from the Natural Museum of Natural History collections.

Osteoware is supported by grants from the National Center for Preservation Technology and Training (NCPTT), National Park Service, and the Smithsonian Web.

Daily energy expenditure in highly active humans participating in a natural temperate environment.

CARA OCBOCK1, HERMAN PONTZER2, JOHN GOOKIN3 and SHEILA BAYNES2. Department of Anthropology, Washington University, 2Department of Anthropology, Hunter College, The National Outdoor Leadership School.

How much energy do humans expend undergoing rigorous physical activity in a natural temperate environment? Numerous studies have explored the cost of human basal metabolism, thermoregulation, and activity; however few have taken this research outside of the laboratory and into a natural environment. In this study, we measured the daily energy expenditure of healthy, highly active adults participating in a National Outdoor Leadership School course. Daily energy expenditure (kCal/day) was measured over a six day period using the doubly labeled water and flex-heart rate methods. Daily activity, including hiking and rock climbing, and caloric intake were also measured during this period. Resting metabolism measurements and flex-heart rate calibrations were performed using oxygen consumption and carbon dioxide production both before and after subjects participated on their course. The high activity levels of limited cultural buffering available to this sample allows this study to serve as a model for predicting daily energy expenditure for early human pastoral cultures as well as modern hunter gatherer societies. Furthermore, this study provides the basis for future comparison of human daily energy expenditure in extreme hot and cold environments.

Systematic examination of infant growth metrics and their association with development of obesity in early adulthood: The Fels Longitudinal Study.

ANDREW O. ODEGAARD1, AUDREY C. CHOHI, STEFAN A. CZERWINSKI2, BRADFORD TOWNE2 and ELLEN W.
DEMERTH, 1 Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, 2Lifespan Health Research Center, Boonshoft School of Medicine, Wright State University.

Rapid infant growth predicts obesity, but the best metric for use in clinical settings is unclear. We compared growth status measures: weight for age CDC z-scores (CDCWAZ), length for age CDC z-scores (CDCLACLZ), and weight for length z-scores (CDCWCLZ) measured every 3-6 months from birth to 5 years, and rapid infant growth (defined as > +0.67 SD change in score) from birth to each subsequent age, in relation to the risk of obesity (BMI > 30 kg/m²) in early adulthood (20-30 years of age) in 512 infants in the Fels Longitudinal Study. Odds ratios (OR) and c statistics were calculated using logistic regression models adjusted for sex, gestational age at birth, age at adulthood obesity assessment, maternal and paternal BMI and birth weight. For the status measures, CDCWAZ at 1 month had the strongest association and greatest c statistic for risk of obesity (OR=6.0, 95% CI 2.0-17.6, c=0.834, comparing those > 75th percentile to those < 75th percentile). CDCWCLZ and CDCLACLZ were more weakly and inconsistently associated. Looking at rapid infant growth, CDCWCLZ change from birth to 36 months provided the strongest association and greatest c statistic (OR=7.6, 95% CI 1.6-36.7, c=0.858, comparing those > +0.67 SD to those < +0.67 SD). These c-statistics are high, indicating comparable predictive ability to widely-used chronic disease risk assessment tools such as the Framingham Risk Score. Simple infant growth metrics, in combination with parental BMI, may provide a useful tool for targeting obesity prevention efforts very early in life.

Anthropological study on medieval Korean people.

CHANG SEOK OH1,2, MYEUNG JU KIM3, YI-SUK KIM4, MIN SEO5, IN SUN LEE6, DO-SEON LIM7, SANG JUN LEE7, SOO NG DEOK LEE6,8, SEUNG BUM SEO2,9, and DONG HOON SHIN10 1Department of Anatomy, National University of Forensic Medicine, Seoul National University, 2Department of Anatomy, Dankuk University, Korea, 3Department of Anatomy, Ewha Womans University, Korea, 4Department of Anatomy, Dankuk University, Korea, 5Department of Radiology, Seoul National University Hospital, Korea, 6Department of Dental Hygiene, Eulji University, Korea, 7Department of Forensic Medicine, Seoul National University, Korea.

Anthropological study on ancient remains excavated from archaeological site is very important to understand physical characteristics, health and disease of medieval Korean. We will present here our research achievements on medieval Korean people until now. Medieval Korean individuals and remains (n=85) have been mainly collected from lime soil mounds in Korea (1392-1910). But, the unique structure of the LSMB tomb resulted in the expected preservation of the corpse from putrefaction and decomposition. Recently, we have been engaged in the excavation of the tomb for several years and collected human remains, which comprise our Joseon Dynasty Human Remain Collection. The numbers of the collected cases of ancient Korean remains are as many as 200, and these samples has been used in our anthropological researches. In the past years, we found dental caries, osteoarthritis (OA), rheumatoid arthritis (RA), diffuse idiopathic skeletal hyperostosis (DISH), spina bifida, kyphosis, spondyloarthropathy, osteomyelitis and trauma from them. The parasite infection by Aescaris lumbricoides, Trichuris trichiura, Dracunculus medinensis, Chloaridches sinensis and viral infection were also found in medieval human remains. The studies of enamel hypoplasia, harris lines, and artherosclerosis in the mummy, aDNA studies on autoysomal and Y-STR analysis have been done as well. Through our researches, we were able to confirm various diseases affected medieval Korean society. These researches would be helpful for us to understand characteristics and changes of ancient diseases and physical states of ancient Korean people.

This work was supported by the Seoul National University Brain Fusion Program Research Grant.

Bear phalanx traumatically introduced into a living human: prehistoric evidence.

HILLARY M. OJEDA1, GARY D. RICHARDS2, CAILLIN L. IBARRA3, and CAROLINE F. HORTON4. 1Department of Anthropology, University of California, Berkeley, 2Department of Biomedical Sciences, A. A. Dugoni School of Dentistry, University of the Pacific, 3Institute for Dental History and Museum, and 4Anatomical Sciences, Stony Brook University. 5Department of Biological, University of California, Berkeley.

Traumatically induced skeletal injuries are relatively common in the archaeological record. Most such injuries can be ascribed to a 'normal' range of events that occur during an individual's lifetime. Alternatively, a more restricted group of trauma induced skeletal injuries in prehistoric populations provides deeper insights into cultural history. Such cases might include those referable to medico-surgical and religious/ritualistic practices. We describe prehistoric evidence of the traumatic insertion of an Ursus distal paw phalanx into the elbow region of a living human that then healed and remained in situ until death and its cultural implications.

The individual derives from the Central California archaeological site of CCo-295. Assessment of the artifactual component suggests a Middle Horizon date (n=1500-500 B.C.). The skeleton is that of a female aged between 30-40 years. Comparisons were made with the other 159 recovered individuals to define the normal range of arm bone morphology and compile data on the range of pathological conditions present. Three Ursus subspecies (n=15) were examined in order to identify the taxon represented by the phalanx. The combination of fractured bones indicates crushing by a heavy object. This woman was wearing bear paw elements at the time of her injury, either as an arm band or attached to her clothing. A bear phalanx was driven into the elbow region, the basal phalangeal tubercle being impressed into the supra-articular region of the humerus. The presence of Ursus body parts indicates an elevated societial role for this female, mostly likely that of a shaman or healer. Funding provided to HMO and CFH by the Undergraduate Student Opportunity Fund, University of California, Berkeley, CA.

MorphoBank: collecting and storing phenomic data for phylogenetic research in the “cloud”.

MAUREEN A. O'LEARY. Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York.

The web-application and database, MorphoBank, has been in place for a decade for use by biologists assembling phenomic data to test phylogenetic hypotheses of fossil and living species. This web workspace and archive supports distributed, collaborative research by autonomous groups of scientists. MorphoBank implements many tools similar to those in widely-used desktop programs (e.g., MacClade) but in a web environment. Several advantages result from this development: 1) Teams can collaborate on data collection in real time, particularly as teams, rather than individuals, increasingly conduct phylogenetic research. All team members simultaneously work on one copy of the data; 2) New media manipulation tools permit documentation of characters and states with a range of media, such as 2D and 3D images, video, and sound. Use of media frequently enhances communication of homology concepts; 3) New zooming and labeling tools implemented in MorphoBank leverage the dynamic power of the web to make media affiliated with cells maximally useful; 4) The database permits storage...
of metadata (species names, media, collection information, etc.) that map to Darwin Core 2 and Dublin Core community standards. Collecting data in MorphoBank marks a shift from keeping data on local hard drives to keeping it within the “cloud” where software can be centrally maintained and upgraded. One of the largest projects in MorphoBank currently is the NSF-funded: Assembling the Tree of Life for Mammals project with a team of over 20 researchers collaborating on over 4,000 phenomic characters for phylophenomics.

This study was funded by NSF grants DBI 0743509, DEB 0629836, and EAR 0622359.

Survey of actual and potential insect prey for two chimpanzee communities at Gombe Stream National Park, Tanzania.

ROBERT C. O’MALLEY1, RUDOLF H. SCHEFFRAHN2 and FRANCISCO ROBERT C. O’MALLEY1, RUDOLF H. SCHEFFRAHN2 and FRANCISCO

Insects are consumed by chimpanzees across Africa, though often little is known regarding the availability and abundance of insect prey (or potential prey). Here we present results from a transect survey of ants, termites, and honeybees in Gombe Stream National Park, Tanzania. We walked twenty-two paired 500m transects (one following an existing trail and the other in a random cardinal direction from the same origin) and two additional 500m transects in late 2009 – early 2010. The habitat type along each transect was scored at 10m intervals. We hand-collected samples from all social insects and termites detected within 3m of the transect. The eleven transects on existing trails were re-walked to assess driver ant (Dorylus spp.) abundance. Insect genera known to be consumed by chimpanzees were abundant across the area surveyed. Among ants, Crema-

togaster spp. were detected on every transect. Both Pachycondyla spp. and Camponotus spp. were common. Dory-

lus spp. were rare, and Oecophylla long-

inoda were not detected. Among ter-

mites, Pseudocanthotermes spp. and various soil-eating termites were detected more often than Macrotermes subhyalinus (counting both mounds and foragers). We detected one honeybee (Apis mellifera) hive, and foraging hon-

neybees were uncommon.

Gombe chimpanzees ignore some potential insect prey that are abundant, accessible, and palatable. In the Kusakela community, insect prey choice does not correlate with abundance as measured by our survey. We conclude that the potential rate of intake for different insects, the corresponding caloric and nutritional returns, and community feeding traditions have stronger influences on prey choice than relative abundance.

This research was supported by a USC Joint Initiative Merit Fellowship, a USC Summer Dissertation and Writing Award, a USC International Field Research Award, a USC Gold Family Fellowship, and the USC Jane Goodall Center.

The ontology of feeding ecology in ring-tailed lemurs.

M. TEAGUE O’MARA. School of Human Evolution & Social Change, Arizona State University.

Social processes help shape feeding behaviors and guide developing animals through key life history and dietary transitions. Learning what and where to eat from other group members may be essential for some primates to master complex feeding ecologies, whereas in others directed social learning may not be present. Few comparative data, particularly from strepsirhines, are available to test hypotheses on social processes associated with the ontogeny of feeding behavior. Here I present mixed longitudinal data collected on infant, juvenile, and adult ring-tailed lemurs at the Beza Mahafaly Special Reserve to document the transitions through food types and test for directed social processes (e.g., co-feeding) that contribute to young animals learning group-specific diets. Infant lemurs show food exploration behaviors as early as two weeks and ingest young leaves at four weeks, mature leaves and flowers at five weeks, tougher to process fruits at seven weeks, and show no sucking behavior by the end of seven months. Infant diets largely overlap with maternal diets. Juveniles have more diverse diets than either adults or infants and show higher dietary overlap with members of their own age category than with other members of the social group. Infants typically use co-feeding behaviors as they begin to feed on their own. However, rather than as a targeted learning process, it seems that the act of their nearest neighbor feeding (typically their mother) promotes an infant to feed on the nearest items, whether or not it is typical of group diet. This study was supported by the National Science Foundation (DDIG # 0851761), J. William Fulbright Foundation, Private Conservation, Inc, and the ASU School of Human Evolution & Social Change.

A 3D musculoskeletal model of the chimpanzee for movement analysis.

MATTHEW C. O’NEILL2, SUSAN G. LARSON2, BRIGITTE DEMES3, JACK T. STEERN, JR., and BRIAN R. UMBERGER2. 1Department of Anatomical Sciences, Stony Brook University School of Medicine, 2Department of Kinesiology, University of Massachusetts, Amherst.

Chimpanzee locomotion has long provided a critical comparative context for studies of human locomotor performance and the evolution of bipedalism. However, in contrast to humans, much about the mechanics, energetics and control of chimpanzee locomotion is still unknown. Musculoskeletal modeling and simulation provide a robust method for integrating complex morphological and experimental data, and permits estimation of quantities that are difficult or impossible to measure in vivo. In this study, we develop a model of the chimpanzee in order to begin filling the gaps that exist between our understanding of human and chimpanzee neuromusculoskeletal function.

We constructed a 3D musculoskeletal model of the chimpanzee (Pan troglodytes) in SIMM®. The model includes geometric representations of skeletal elements, kinematic descriptions of the joints, and Hill-type models of 35 muscle-tendon units of the hind limb. The model allows calculation of muscle-tendon lengths and moment arms, as well as force and moment generation capabilities of the hip, knee, ankle, and foot musculature. Here, as an important step in model validation, we compare the predicted muscle moment arms from our model to previously published measurements from chimpanzee cadaveric specimens. We find good correspondence between the predicted flexion-extension moment arms in our model and the published data. In general, our model reproduced both the direction and magnitude of the measured moment arm functions. These results indicate that our musculoskeletal model is suitable for inverse and forward dynamics analyses of chimpanzee hind limb function during walking, running and jumping.

Supported by NSF BCS-0935321 and NSF BCS-0935327.

An assessment of biological affinities among the prehistoric inhabitants of the Iranian Plateau and adjacent regions based on allocation of permanent tooth size.

PATRICK O’NEILL and BRIAN E. HEMPHILL. Department of Physics, Geology and Anthropology, California State University, Bakersfield.

While archaeologists have long claimed the inhabitants of the Iranian Bronze Age site of Tepe Hissar participated in a trade network that stretched across Central Asia, a recent dental study (Hemphill 2010) found no evidence that gene flow accompanied these contacts. However, an earlier craniometric study
of fertile females whereas opportunities for paternal care were estimated using the number of immature offspring a male had in the group. We determined concentrations of T non-invasively from fecal samples. Correlations of fecal T, dominance rank, season, and temperature, which are known to influence T levels, we found that only the number of a male's immature offspring predicted concentrations of fecal T \(t = -2.287548, p = 0.0231 \); males with more immature offspring had lower concentrations of T than did males with fewer immature offspring. Our findings are consistent with the predicted inhibitory effect of T on paternal care but are surprising for a species that reproduces throughout the year. Results of the present study suggest that paternal care is an important component of reproductive effort in male baboons. This study was funded by the National Science Foundation, grant numbers IBN-0322613 and BSE-0323553 to J.A. and S.C.A.; and the National Science Foundation, grant numbers IBS-0322613 to J.A. and S.C.A.; and the National Science Foundation's Doctoral Dissertation Improvement Grant to P.O.O.

Mechanoreceptivity of prehensile tail skin varies between atelines and Cebus

JASON M. ORGAN\(^2\), MAGDALENA N. MUCHLINSKI\(^2\) and ANDREW S. DEANE\(^3\). \(^1\)Department of Surgery and Center for Anatomical Science and Education, Saint Louis University School of Medicine; \(^2\)Department of Anatomy and Pathology, Marshall University; \(^3\)Department of Anatomy and Neurobiology, University of Kentucky College of Medicine.

The prehensile tail of New World Monkeys may have evolved twice (in parallel): once among the Atelines (Alouatta, Ateles, Brachyteles, Lagotrichs), and once in Cebus. This line of reasoning derives primarily from musculoskeletal evidence suggesting similar mechanical structure of the prehensile tail in these two groups. Both atelines and Cebus have caudal vertebrae capable of withstanding significantly higher bending stresses than nonprehensile-tailed platyrrhine caulca. Atelines and Cebus also share similar pinnation structure of the prehensile tail. Bones in the former, and the lack of a volar pad in the latter. This study investigates the presence of mechanoreceptors (e.g., Meissner's Corpuscles) in the ventral tail skin of atelines and Cebus, and makes a comparison with high tactile precision and prehension. Our data indicate that the volar pad of Lagotrichs contains Meissner's Corpuscles whereas the tail skin of Cebus does not. These data suggest an as-yet unidentified means by which Cebus samples its environment from a sensory (touch) perspective.

New wrist bones from Homo floresiensis.

CALEY M. ORR\(^1\), MATTHEW W. TOCHERI\(^2\), JESSICA L. ARROTT\(^2,3\) and ROKUS AWE DUE\(^1\), E. WAHYU SAPTOMO\(^4\), THOMAS SUTIKNA\(^5\), JATMIKO\(^1\), SRI WASISTO\(^5\), MICHAEL J. MORWOOD\(^6\) and WILLIAM L. JUDDERS\(^7\). \(^1\)Department of Anthropology, National Museum of Natural History, Smithsonian Institution, \(^2\)Department of Forensic Sciences, Stony Brook University, \(^3\)Human Origins Program, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, \(^4\)University of Wollongong, Australia.

The carpals from the Homo floresiensis type specimen (LB1) lack features that compose the shared, derived radial-wrist complex of Neandertals and modern humans. This paper presents a description and three-dimensional morphometric analysis of new H. floresiensis carpals: a right capitate and two hamate from another individual at Liang Bua (most likely LB6). The comparative sample includes a number of great ape and human-like carpals, and a large sample of H. sapiens, and fossil hominins. The new carpal is smaller than that of LB1, but is nearly identical in morphology. As with carpals from LB1, the apes, and species of Australopithecus, the new specimen displays a deeply-excavated nonarticular area along its radial aspect, a scaphoid facet that extends into a J-hook articulation on the neck, and lacks an enlarged palmarly-positioned trapezoid facet. Because there is no accommodation for the derived, palmarly blocky trapezoid that characterizes H. sapiens and H. neanderthalensis, this individual would have had a plesiomorphically wedge-shaped trapezoid (like LB1). Hominin hamate morphology is more conserved across taxa, and the new specimens fall at the extreme edge of variation for H. sapiens in a number of metrics. However, they are exceptionally small, and are plesiomorphic in having a robust hamulus lacking the derived oval-shaped cross section characteristic of human and Neandertal hamuli (and variable in those of Australopithecus).
mentation of a second individual with primitive carpal morphology from Liang Bua further supports the hypothesis that the Flores lineage originated prior to the Neandertal cladogenetic event and refutes claims that the LB1 wrist is pathological.

This research was supported by the Smithsonian Institution Scholarly Studies Program (MWT), the Smithsonian Institution Fellowship Program (CMO), and the Wenner-Gren Foundation (WJL).

Human remains from the late Upper Paleolithic of Irlich, Germany — a preliminary report.

JÖRG ORSCHEIDT¹, AXEL VON BERG² and STEFAN FLOHR³, ¹Department of Archaeology, University of Hamburg, Germany, ²Generaldirektion Kulturelles Erbe, Amt Koblenz, Germany, ³Department of Biology, University of Hildesheim, Germany.

Human remains from the late Upper Paleolithic (Azilienn, Ahrensburg Culture, Federmesser Groups) in Central Europe are scarce. In 1953 some human bones, covered with red ochre, and associated artifacts were discovered in material taken from a sand pit near the city of Irlich, Germany. The finds were stored in a local museum archive. In 2000 the finds were re-discovered and analyzed with macroscopic, radiologic, and histological techniques. AMS dating of the bones revealed a calibrated age of 12,500 to 11,200 BP.

The bones could be assigned to at least three individuals, represented by a few complete bones or bone fragments each. Age at death of individual 1 was estimated at 20-30 years. An intact femur and a distal ulna from this individual exhibit layers of porotic bone formation, indicative of a pathological process stimulating periosteal bone apposition. Age at death of individual 2 was estimated at 6 to 10 years, and that of individual 3 at about 1 year.

The artifacts consist of a projectile point (antler), two flint artifacts (backed knife, burin spall), a left mandibular first incisor of a red deer with 10 grooves and a perforation on the root. The scanty fossil report of individuals from this time period makes even poorly documented and fragmented material an important source for this specific period. The finds from Irlich probably represent a multiple burial which seems to have been common during this time. Re-investigations at the site are not possible due to heavy mining activities during the last decades.

Exploring the limits of using the mandibular ramus angle as a sexual indicator in extant and fossil hominids.

ROSACELI ORTEGA¹, RUTGER J.W. JANSSMA¹, SEAN G. DOLAN¹ and RAMI SALEM², ¹Department of Anthropology, New Mexico State University, ²Department of Anthropology, Boston University.

The study of the human mandible in sexual determination has often been overlooked based on Hrdlička's (1940) overwhelming studies showing its lack of significance and evolutionary track. Yet many studies have taken a second look at the mandible since in many forensic cases or archaeological excavations the mandible is frequently recovered. The aim of this study is to determine the significance of the mandibular ramus angle (MRA) in accurately distinguishing between known sex of fossil hominids with extant African great apes and modern humans.

Using Loth and Henneberg's (1996) technique of determining, photographs of known adult male and female African great apes (Gorilla g. beringei, Pan paniscus, and P. troglodytes) (n=112), modern humans (n=55) and H. neanderthalensis were analyzed in ImageJ to determine the MRA of each individual. Metric measurements of the MRA were completed in lateral view and analyzed in StatGraphs.

Results indicate that neither species of Pan shows a statistically significant difference (p=0.0583, p=0.04783). However, Neanderthals (p=0.0216) and modern humans (p=0.0000) do. Gorilla is significantly different (p=0.0004), but its pattern is opposite to that of Homo. This indicates that the MRA of late Homo is more similar to modern humans than African great apes in which future work could reveal if earlier hominids show a comparable pattern. Consequently, our conclusion have the potential to improve the understanding of the acquisition of homind features throughout our evolution and introduce an alternative reliable method of sexing adult fossil hominids.

ANNA OSTERHOLTZ, RYAN P. HARROD and DEBRA L. MARTIN, ¹Department of Anthropology, University of Nevada Las Vegas.

The examination of co-mingled ossuary collections creates unique analytical challenges as bones can only be examined on an individual basis. The estimation of demographic information and the analysis of disease patterning are much more difficult. The focus of this project is to identify and interpret signs of osteoarthritis and defects consistent with osteochondritis dessicans and osteochondral fracturing, as well as score for the presence and degree of musculoskeletal markers, on a the patellae from a large Bronze Age (2200-2000 BC) ossuary from Tell Abraq, United Arab Emirates. A preliminary estimate of at least 224 adults and 14 subadults was determined; these are used to examine pathology and trauma. Results indicate a high prevalence of osteoarthritis (approximately 51%) and osteochondral defects (approximately 52%) that was not correlated to estimated sex. This lack of correlation may be due to several factors, including challenges in sex estimation, a skewed sex distribution, or an actual lack of correlation. Regardless of the difficulties of estimating sex in archaeological deposits, the osteoarthritis and trauma to the knee. Other studies have suggested that this maritime/ agricultural settlement, located on the shores of the Gulf region, has been a very important trade destination as well as a meeting ground for groups moving around the gulf region. The unique pattern of wear and tear to the knees and femurs in these ancient cases or archaeological excavations suggests the contention that there are a number of different types of laborers interred in tomb.

Evaluating competing models of Pan troglodytes foraging tool use across space.

ERIK OTAROLA-CASTILLO¹,², STACY LINDSHIELD¹, JILL PRUETZ¹,² and BRENT DANIELSON³,¹,²,³ ¹Ecology and Evolutionary Biology Program, ²Department of Anthropology, ³Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA.

While primatologists have enhanced our knowledge of tool use behaviors in non-human primates, mechanisms driving foraging-related tool use remain poorly understood. Based on results from a previous hypothesis test on wild chimpanzees (Pan troglodytes) by Lindshield et al. (previous paper), we present a set of candidate, mechanistic models of foraging-tool use as a response to competition intensity and cultural transmission. We review the literature and compile a dataset of broad classes of tool use behavior across chimpanzee populations. We use the degree of seasonality of rainfall and temperature, as proxies for the intensity of competition, and use geographic distance among sites as a cultural transmission covariate. We evaluate eleven (11) competing, mechanistic models using Akaike's Information Criterion (AIC) and the available tool use data to arbitrate between them. Our best model uses rainfall seasonality as its environmental parameter. This simple model predicts the available data with higher probability than models that include additional environmental variables and cultural transmission. Using our winning model, we predict the probability of tool use behavior
Recording cranial and postcranial measurements in Osteoware.

STEPHEN OUSLEY. Department of Anthropology and Department of Applied Forensic Sciences, Mercyhurst College, Erie, PA.

When documenting skeletal remains, metric data can be useful for a variety of purposes, including estimating sex, ancestry, stature, and age. Ideally, the measurements would be standardized to allow the greatest number of comparisons to previously published measurements. The 34 cranial measurements in Standards (Buikstra and Ubelaker 1994) follow those of the Forensic Data Bank (FDB; Moore-Jansen et al. 1994), which are predominantly based on Martin’s classic definitions. In Osteoware, the cranial measurements follow the Howells (1973) definitions, 60 measurements which include all of the FDB cranial measurements as well as additional measurements, including subtenses, fractions, and radii. These measurements are stored in fields named for Howells’ three-letter designations for craniometrics. Mandibular measurements are those included in the Standards. Additionally, saving a record requires a designation for whether or not the cranium has been reshaped through cultural means.

Postcranial measurements in Osteoware, as in Standards, come from the 44 FDB definitions plus additional vertebral and metacarpal lengths. Left and right bones can be entered by choosing side from a drop-down list. Postcranial data are entered separately for adult bones with unfused epiphyses and for subadult bones with fused epiphyses. The entered measurements are checked as the numbers are entered to help avoid data entry errors. To aid further analysis, Measurements from isolated bones can also be entered through the commingled bones entry program. Osteoware is supported by grants from the National Center for Preservation Technology and Training (NCPTT) National Park Service, and the Smithsonian Web 2.0 Fund.

Exploring long-term range use among white-headed gibbons (Hylobates lar) in Khao Yai National Park, Thailand.

LYDIA E. OVERBAUGH, THAD Q. BARTLETT, and WARREN Y. BROCKELMAN. University of Texas at San Antonio, San Antonio, Texas, 2Ecology across space and provide a probability map for the African continent. The latter will be useful as a theoretical departure for future researchers to test models using newly acquired data on chimpanzees. Moreover, our models may be useful for understanding variation in tool use behavior in humans and other species.

Investigating Athapaskan history through the analysis of genetic variation in the Tlingit and Haida populations of Southeast Alaska.

AMANDA C. OWINGS, MATTHEW C. DULIK, SERGEY I. ZHADANOV, JILL B. GAIESKI, JUDY RAMOS, MARY BETH MOSS, FRANCIS NATKONG, THEODORE G. SCHURR, and GENOGRAPHIC CONSORTIUM. Department of Anthropology, University of Pennsylvania, 2Yakutat Tlingit Tribe, 3Hooham Indian Association, Hydaburg Cooperative Association.

The origins of Athapaskan Indian populations and the timing of their dispersal across the circumboreal region are key issues for reconstructing the peopling of the Americas, and defining putative links to ancestral Siberian populations. To investigate these issues, we analyzed genetic variation in Tlingit and Haida populations from southern Alaska. In this analysis, we directly sequenced the control region of mitochondrial DNA (mtDNA) in 83 individuals, screened them for eight SNP markers that define the basal portions of the mtDNA phylogeny (L, M, N, and R) through Custom TaqMan assays, and surveyed them for haplogroup defining SNPs through PCR-RFLP analysis. For a select set of samples, we also sequenced the entire mtDNA genome to obtain greater phylogenetic resolution of these maternal lineages. For the Y chromosome analyses, we screened 27 male samples with 23 SNPs and 17 STRs using ABI customs Taq, AmpF/STR YFilier, and Y Multiplex II kits. Our results show that the majority of individuals (86.7%) have mtDNAs belonging to haplogroups A, C, and D, with remainder having non-native haplogroups. In addition, some 40% of the male individuals belonged to haplogroups C and Q, with the remainder having non-native haplogroups. These data provide important insights into the genetic and linguistic history of Athapaskan populations in this region, as well as more recent historical influences on genetic variation there. Furthermore, in combination with genealogical, ethnographic, and historical information, we are able to explore the migration histories associated with their clans in different parts of Southeast Alaska.

This study was funded by the National Geographic Society, IBM, the Waitt Family Foundation, and the Department of Anthropology at the University of Pennsylvania.

Do we need additions to the geometric morphometrics tool-box?

CHARLES OXNARD,1,2 and PAUL O’HOGINS,1,2.1School of Anatomy and Human Biology, University of Western Australia, 2Department of Anatomy, Hull/York Medical School, UK.

D’Arcy Thompson represented direct differences between animal structures by el Ab initio deformations. Fifty years later Oxnard showed they could aid in interpretation of multivariate statistical axes. Nowadays such elastic deformations, as Cartesian transformation grids drawn using thin plate splines, are most useful in understanding geometric morphometric results. They are now very widely used. New ways of gathering data about forms and patterns use not only standard anatomical landmarks, but also semi-landmarks and sliding land-marks, both of which help to increase the information content of form, especially of relatively large, unfeatureless regions, like...
the skull vault. Transformation grids treat these landmarks as points on rubber sheets (in two dimensions) or in rubber volumes (in three dimensions). Elastic distortions of the rubber sheets and volumes computed using thin plate splines can help visualize differences or changes in biological form.

What happens, however, when differences between structures in different species, or changes in structures within a single species, are not well represented by elastic deformations? What happens, in other words, when the differences or the changes involve non-elastic deformations? The developmental, functional and evolutionary biology of landmarks on hominid skulls suggests that non-elastic deformations are common. Sometimes two-dimensional rubber sheets develop holes or cusps, and three-dimensional data exhibit holes, explosions and implosions. Transformation grids are ill suited to such phenomena. In other words the biology indicates that new approaches are needed to handle such complexities.

How to do it is the question.

Supported by Australian grants: ARC, DP 0557157, DP 0772742 and DP 1092538, Western Australia, UK grants: The Leverhulme Trust (F/00224), BBSRC BB/E015305, BB/F02094, and EVAN (MRTN CT-2005-019564) and PALAEO (MEST-CT-2005-020601) and EU grants: Marie Curie Initiatives, Vienna, Hull and York.

The effects of logging, hunting, and vegetation on the densities of simakobu monkeys (Simias concolor) on the Pagai, Mentawai Islands.

LISA M. PACIUlli. Natural Sciences Department, Wake Tech., Raleigh, NC.

One of the primary goals of conservation biologists is to determine how various factors affect animal populations and in particular, endangered species. In this study, the effects of three variables - logging, hunting, and vegetation, and the interaction between hunting and vegetation - on the endangered and endemic simakobu monkey (Simias concolor) were investigated. The study was conducted in nine forests varying in logging history on the Pagai, Mentawai Islands. Hunting-related, vegetation, and simakobu density data were collected along three 4km long transects spaced 300m apart in each forest. Hunting data included correlates of hunting intensity such as the number of logging roads, local trails, and the number of people observed intersecting the transects. Also, every 200 m, information on all trees ≥ 3 cm dbh within a 25m by 5m quadrant was recorded. ANOVAs and ANCOVs were employed, but none were significant (e.g., ANCOVA, df = 8, F = 0.3812, p = 0.814). Reasons for this could be the low power of the tests to detect effects of the independent variables (i.e., the main effects), the small sample sizes (n = 9 sites), etc. However, one can envision a scenario in which the upper ranges of simakobu populations are set by resource availability. In turn, resource availability depends on the vegetation in a habitat. Logging either enhances vegetation and resource availability for specific primate species, or diminishes it. Hunting is then layered on top, lowering the densities already established by habitat vegetation and the effects of logging upon it.

This study was funded by the Wildlife Conservation Society and Primate Conservation, Inc.

Challenging population-based variation in bone-turnover rates: implications for interpreting the impact of diet and disease, growth and development, and the aging process on rib microanatomy.

ROBERT R. PAINE and BARRETT P. BRENTON. 1Department of Sociology and Anthropology, Texas Tech University, 2Department of Sociology and Anthropology, St. John’s University.

The use of histological assessments for determining bone-turnover rates and its implications for estimating the age of individuals has been critically evaluated in both archaeological and forensic contexts. To date, explanations for why estimated age-at-death values from histological data diverge significantly from expected figures using osteological assessments or autopsy data have generally been explained as a result of influences from biomechanical action and/or metabolic stress.

Our findings related to rib microanatomy and age-at-death of a sample of autopsied individuals known to have died from forms of malnutrition showed extremely slow bone-turnover rates represented by low Osteon Population Density (OPD). A consistent criticism of this work has been that a comparable sample of ‘normal’ individuals was needed to draw our conclusions. We argue here that the focus should shift to addressing the much broader issue of questioning the existence of inter- and intra-population variation of bone-turnover rates. To this end, an extensive review of the osteological and genetic literature shows no compelling evidence for any type of inherent population variation in the tempo and mode of bone-turnover among humans.

Furthermore, we report here that a comparison of histological age-at-death estimation formulas based on various baseline populations do not show significant differences between them. The implications of these conclusions speak to the need to increase our understanding of bone-turnover rates in the broader context of diet and disease, growth and development, and the aging process. The application of this work to the archaeological and evolutionary record of our species is also highly significant.

Hardness as a proxy for stiffness: the utility of portable durometers for estimating elastic modulus of primate foods in the field.

JAMES PAMPUSH,1 DAVID DAEKING,1 ANNA VICK,1 SCOTT MCGRAW2 and ANDREW RAPOFF3 1Department of Anthropology, University of Florida, 2Department of Anthropology, Ohio State University, 3Department of Mechanical Engineering, Union College.

Among the material properties of primate foods, elastic modulus (E) or stiffness is recognized as an essential variable for determining fracture characteristics. Assessment of stiffness in the laboratory is straightforward; however, obtaining reliable stiffness measures under field conditions presents significant logistical hurdles. Portable durometers are relatively inexpensive and can provide consistent hardness measurements of primate foods. Hardness can be shown to correlate positively with elastic modulus for some materials. In this study, we evaluate whether Shore A and D hardness values can be effectively used to estimate elastic modulus of plant and other organic materials.

We collected Shore A and D hardness values using hand-held durometers (Hoto Instruments, Northbrook, IL) from a variety of commercially available foods, woods, and primate foods from the Tai Forest, Ivory Coast. Stiffness was determined on the same samples using an MTS 858 tester (Eden Prairie, MN). We calculated regressions for converting A and D hardness to E. The Shore D scale (for harder materials) provides good indication of relative stiffness and reasonable estimates of absolute stiffness of hard primate foods. The Shore A scale (for softer materials) was found to be less effective for predicting relative or absolute E of those foods which return values at the high end of the Shore A range. Finally, due to the heterogeneity of natural materials, the selection of surfaces from which durometer data are collected is critical, and the relationship of hardness to E appears to be distinct for particularly brittle materials.

Supported by National Science Foundation grants BCS-0922429, 0921770, and 0922414.

The Roman giant: overgrowth syndrome in skeletal remains from Imperial Age.

WALTER PANTANO,1 FLAVIO DE ANGELIS2, SIMONA MINOZZI2, FRANCESCO DI GENNARO1, GINO FORNACIARI3 and PAOLA CATALANO3. 1Special Superintendence to Archaeological Heritage of Rome, 2Department of Anthropology, Ohio State University, 3Department of Anthropology, University of Florida.

American Journal of Physical Anthropology
AAPA ABSTRACTS

Metric assessment of the foramen magnum for sex determination in adults and subadults.

CHRISTINA PAPAGEORGOPOULOU1,2, VIVIANE KOTHE3 and FRANK SIEBENNUND1,2,3}

1Institute of Anthropology, Palaeogenetics Group, Johannes Gutenberg University, Mainz, Germany; 2Archaeological Service Grisons, Switzerland; 3Seminar für Ur- und Frühgeschichte, University of Basel, Switzerland.

The basal region of the human skull is robust and well protected by soft tissues and tends to withstand inhumations (Grave, 2001; Ferat et al., 2009) and physical insults (Holland, 1989). Osteometric studies have tried to evaluate the skull base and especially the foramen magnum (FM) as indicator of sex in adults (e.g. Gapert et al., 2009; Güney et al., 2000; Uysal et al., 2005) and subadults (Veroni et al., 2009). Although sex differentiation in adults and subadults is possible using the FM, no comprehensive study has assessed the use of the FM for sex determination in adults and subadults and to develop discriminant functions. The sagittal and the transverse diameter of the FM were assessed on 597 skulls from an ossuary (17th-19th c. AD, Grisons, Switzerland) and additional data were collected from Central European archaeological populations and skeletal collections (10,000 BC – 1900 AD) for comparative purposes. The FM size showed significant differences between sexes on all larger skeletal samples (>30 individuals). The correlation between FM diameters was significant for both sexes, but low (rho = 0.25–0.55). The classification accuracy of DFA ranged between 58 % and 75 %. The FM showed no size change after 7 years of age, signifying the use of FM on sex determination of children and juveniles. The present study demonstrates the utility of the FM as sex indicator, particularly useful for subadults and poorly preserved or cremated skeletons.

Nocturnal ranging in a diurnal promisum primate: is this cathemeral-like behavior an effect of the mating season, habitat, or something else?

JOYCE A. PARGA. Department of Social Sciences, University of Toronto at Scarborough.

Occasionally, anecdotal reports emerge of nocturnal activity occurring in diurnal primates. The ring-tailed lemur, *Lemur catta*, is a diurnal promisum for which such anecdotal reports of night ‘wakefulness’ exist. To further investigate the possibility of nocturnal activity in this promisum, 5 individuals (3 males, 2 females) from 3 social groups on St. Clouds Island, USA were fitted with GPS (Global Positioning System) collars across one week of the breeding season in November 2009. Collars were programmed to record location data once every half-hour, around the clock. GPS data revealed nocturnal activity in the form of ranging behavior (traveling). A peak in nocturnal ranging (apart from the hours surrounding dawn and dusk) took place between the hours of 2300 and 0300. Mean distance travelled during these hours was 213m (n=5). The maximum distance travelled by an individual (a male) was 2.2km in a single night. All but one individual demonstrated nocturnal ranging across the majority of nights the collars were deployed. Data also captured a nocturnal inter-group encounter at 0200 once during the study. These results suggest that under particular habitat conditions (or perhaps only during the mating season), ring-tailed lemurs can exhibit significant amounts of both diurnal and nocturnal activity in a seemingly ‘cathemeral-like’ fashion. Cathemerality, an activity pattern comprised of distinct periods of diurnal and nocturnal activity, is a trait most commonly associated with other Malagasy prosimians (e.g. *Eulemur* and *Hapalemur* spp.). Night ranging behavior of this sort by *L. catta* has not been previously described.
The prehistoric period in Guam includes the Pre-Latte and Latte periods. A study from Naton Beach excavated from Tumon Bay in Guam has yielded a large number of Pre-Latte burials which have interesting examples of atypical dental modification, which is not seen on the later Latte burials. While modification of the teeth for non-masticatory reasons has been discussed in various populations around the world, it is rare and found in solitary instances across the Mariana Islands. In both time periods, dental modifications have been noted on the labial surface of the teeth and include horizontal abrasions, tooth filing/incising and possible drilling for inlays. This study focuses on the tooth abrasions. Macro- and microscopic analyses and digital photographs were conducted using an Omnico stereo zoom microscope and Moticam 1000 to elucidate the size and shape of the abrasions and the orientation of the wear. The Pre-Latte sample includes 30 individuals of which 50% (n=15) have tooth abrasion on the labial surface and is not sex specific. The wear appears as horizontal (transverse) striations on the maxillary dentition of the central and lateral incisors, and can extend as far distally as the premolars. Behavioral and task-related activities are considered for reconstructing the dietary patterns observed. The need for extensive ethno-anthropological research into the use of teeth as tools, subsistence, and crafts is necessary to understand the biocultural phenomena and interaction of the prehistoric Chamorro and the environment in which they lived.

Differential diagnosis of an infection affecting the temporal bone of an individual from Medieval Asturias, Spain.

NICHOLAS V. PASSALACQUA, Department of Anthropology, Michigan State University.

This presentation will focus on the differential diagnosis of lesions affecting a single individual recovered from the medieval cemetery of San Juan (Antiguo Colegio San Isidoro) located in Oviedo, Asturias, Spain. The cemetery, which was excavated in 2000, yielded an MNI of 47 individuals dating from approximately 1650-1875 AD. While multiple individuals recovered from the cemetery present osseous anomalies and disease states, one particular individual (recovered from Tomb 26) exhibits unique bony features associated with some kind of inner ear infection. Unfortunately, this region of Asturias has acidic soils which typically result in poor preservation of osseous materials, thus the only remains available for examination were a fragmentary cranial. The individual is a young adult female aged ~17-25 years. Initially an atypical pattern of asymmetrical dental wear suggested heavier usage of the right dentition. Upon further inspection, the right external auditory meatus (EAM) was noticed to be enlarged and there was bony destruction and remodeling of the right temporal bone in the region of the sigmoid sinuses with small communications between the intracranium and the inner EAM as well as some changes of the infero-medial right petrous portion. Because of the bony remodeling present, it is unclear if this infection was the direct cause of death, but the mortality rate of similar intracraniial infections is ~20% (Quiling and Johnson 2005). Differential diagnosis specifically from forward projection and the presence of bony destruction and remodeling, suggests osteomyelitis likely from chronic otitis media, petrositis or mastoiditis (Sherman and Buchanan 2004).

Electromyography of forearm muscles in digitigrade baboons: implications for interpreting the functional morphology of knuckle-walking features in African apes.

BIREN A. PATEL, SUSAN G. LARSON, and JACK T. STERN JR., Department of Anatomical Sciences, Stony Brook University.

Despite some controversy, researchers hold firm to the idea that the limited range of dorsiflexion at the radiocarpal and midcarpal joints documented in knuckle-walkers is aided by several osseo-ligamentous close-packed positioning mechanisms. Although limited and highly anecdotal, available electromyography (EMG) data from wrist and digit flexor muscles of African apes support these claims. When gorillas and chimpanzees knuckle-walk, there appears to be negligible activity in the flexor carpi radialis, flexor carpi ulnaris, flexor digitorum superficialis, and flexor digitorum profundus muscles. Minimal muscle activity lends support for the idea that only passive mechanisms are needed to prevent these distal joints from collapsing into extreme dorsiflexion as body weight passes over the supporting hand during forward progression. To investigate this hypothesis further we studied by means of telemetered EMG the activity of forearm muscles in two baboons (Papio anubis). Despite their use of an extended digitigrade hand posture, baboons lack the well-developed close-packing morphologies in the radiocarpal and midcarpal joints that are found in knuckle-walkers. We observed that flexor muscles, especially of the wrist, are more active during stance phase in baboons than in knuckle-walkers during both ground and branch locomotion. We infer that these muscles are recruited to minimize dorsiflexion at these distal joints and to maintain a digitigrade posture, which serves to increase effective forelimb length. This new experimental data from non-hominoids supports the interpretation that derived osseo-ligamen-
Comparison of boom calls in Cerco-
pithecus mona from Benin and
Grenada.

MAY PATINÓ1, MARISSA RAMSIEY2,3,
REIKO MATSUDA GOODWIN4,
GRAESON HARRIS-YOUNG1, KEITH
J. BENSEN3 and MARY E. GLENN1,3,
1Department of Anthropology,
Fordham University, 2Department of
Human Evolution, Max Planck Institute
for Evolutionary Anthropology, 3Wind-
ward Islands Research and Education
Foundation, 4Department of Sociology
and Anthropology, Fordham University.

Cercopithecus mona is one of several gue-
nons known to make low-frequency boom
calls. We investigated the level of intraspe-
cific variation in adult male boom calls in a
West African and a Caribbean mona popu-
lation living in different habitats. Record-
ings were made with a Sennheiser shotgun
microphone and a DAT recorder, and were
analyzed within Raven. Mona habitat in
Benin is flat, heterogeneous seasonally dry
dry forest (1,100 mm/yr rain) at low altitudes,
with relatively low tree diversity and basal
area. Mona habitat in Grenada is steep,
evergreen tropical rainforest (4,060 mm/yr
rain) with high tree diversity and basal area.
Previous studies have demonstrated that
there may be a selective advantage to
producing low-frequency calls in densely
forested environments, as such calls travel
farther and with less attenuation than
high-frequency calls. We found the two
populations’ boom calls to be nearly identi-
cal in dominant frequency, lowest fre-
cuency, and duration, suggesting that vocal
plasticity may be limited. High frequency
and bandwidth are significantly different,
however, with the Benin population utiliz-
ing higher frequencies than the Grenada
monas (t = 5.33, p < 0.000, n = 32). This may
reflect a wider range of acoustic environ-
ments available to the Benin population
and/or adaptation by the Grenada popula-
tion in order to take better advantage of
a low-frequency acoustic environment. Alter-
nately, the calls in each population may be
differentially altered by the surrounding
environment or different recording devices.
Further studies including additional sites
could demonstrate how these acoustic
changes, if real, may affect the transmis-
sion of these calls in different habitats.

Intercondylar shelf angle: field
determination of ancestry from the
distal femur.

STEPHANIE PAULE, HEATHER
WALSH-HANEY, ERICA ARRUDA,
LUIS CORTINAS and NICOLE WEBB,
Division of Justice Studies, Florida Gulf
Coast University.

In forensic contexts the absence of cra-
nia frequently hinders the identification
of ancestry. Alternatively, ancestry can
be accurately interpreted through the
metric assessment of femora. In partic-
ular, the radiographic measurement of
the intercondylar shelf angle has proven
to be an extremely accurate method of
differentiating between African and Eu-
ropean ancestry groups.

The intercondylar notch height and the
posterior cortex of the femur used to
assess the intercondylar shelf angle via
radiography can also be observed
without radiography; yet, a non-radi-
ographic technique has not been developed.
Our research fills this void by testing the
accuracy of a non-radiographic
technique through the analysis of
30 femora from positively identified
skeletal remains. Our methods involved
laying a straight edge ruler along the
most antero-inferior border of the inter-
condylar notch to the most superior as-
pect of the intercondylar line. We
located Blumensaat’s line by orienting
the femur in a lateral position such that
the medial epicondyle was eclipsed by
the lateral epicondyle when viewed
from above. Then, using a protractor we
measured between the two landmarks.
We analyzed the same 30 femora using
the Craig and Brogdon techniques and we
found no significant differences in the
results; thereby, confirming the utility of the
non-radiographic method.

Potential of human talus shape for
sex discrimination.

IAN PAWN, Department of Anthropol-
ogy, Florida State University.

The human talus is subjected to biome-
chanical forces that affect its size and
shape. The potential of the talus for bio-
metric sexing is recognized by anthro-
pologists as it has significant dimor-
phism relating to its importance in
weight-bearing. Variation in talus shape
was studied using the Windover collec-
tion, a sample where many individuals
can be sexed from cranial and pelvic
characteristics. Windover is therefore
an ideal collection for preliminary stud-
ies of sexual dimorphism using non-trad-
itional methods.

A sample (n = 20) of 10 male and 10
female tali were selected. All tali
chosen were from the left side to avoid poten-
tial issues of asymmetry. Eleven land-
marks, selected to capture the shape of
the entire talus including the articular
surfaces, were used in relative warps
analysis to inspect for key shape differ-
ences, regression using shape variables
on dummy variables distinguishing
males and females, and regression
using centroid size and sex as independ-
ent variables to account for size factors.
There are significant differences
(ranging from p = 0.002 to 0.02) in talus
shape between males and females. Fur-
ther, these analyses identify the pri-
mary areas that produce this variation.
The shape of the head was very similar
in males and females. The primary dif-
ferences are lengthening of the body
and an increase of the length and width
of the trochlear articular surface in
males. Based on these results, future
study of shape variation in the talus
should focus on the trochlea.

Using tests for signatures of selec-
tion to validate and prioritize admixture mapping results.

LAUREL N. PEARSON1, JUAN
PEDRO KUSANOVIC2, ROBERTO
ROMERO2, JEROME F. STRAUSS 3rd3
and MARK D. SHRIVER1, 1Department of
Anthropology, The Pennsylvania
State University, 2Perinatology
Research Branch of the Eunice Kennedy
Shine National Institute of
Child Health and Human Development,
National Institutes of Health in Be-
thesda, Maryland and Wayne State Uni-
versity, 3School of Medicine, Virginia
Commonwealth University.

Admixture mapping is a valuable method
for identifying novel gene regions affect-
ing traits and disease risks that vary
among populations. However, admixture
linkage disequilibrium blocks are very
large (approximately 6 to 9 cm
for African Americans), these regions of-
ten contain many genes. Using the idea
that tests to detect signatures of selection
can help prioritize genotyping for replica-
tion and validation, we use admixture
mapping and selection screening to iden-
tify function regions and select loci that
may identify loci conferring increased risk in a
study of preterm premature rupture of
membranes (PPROM).

African-American women are at a sig-
nificantly greater risk of preterm birth
than other US resident populations.
Women of self-reported African-Ameri-
can ancestry were recruited at Hutzel
Hospital (Detroit), the Hospital of the
University of Pennsylvania (Philadel-
phia) and MCV Hospitals (Richmond) (n = 632). Genotyping of 371 women
with confirmed PPROM and 261 women
with normal pregnancy outcomes was com-
pleted using a genome-wide panel of
1,509 ancestry informative markers
(AIMs) designed for admixture mapping
analysis in African-American popula-
tions. Using prior allele frequencies
from three parental populations (West
African, European and East Asian),
Bayesian admixture mapping was con-
ducted using the computer program
ADMIXMAP. Regions on five chromo-
somes (2, 8, 11, 19 and 21) were identi-
ﬁed as signiﬁcantly contributing to risk
of PPROM. Using Tajima’s D, cross-pop-
ulation extended haplotype homozygos-
ity (XP-EHH), and local recombination
branch length (LSBL), 14 of 27 SNPs tested
show evidence for selection. The SNP’s
identiﬁed using this approach have been
prioritized for genotyping in a rep-
lication sample.

American Journal of Physical Anthropology

AAPA ABSTRACTS
Activity, ontogeny, and cross-sectional geometry of the femur and tibia.

O. M. PEARSON1, T. R. PETERSEN1, V. S. SPARACELLO1, S. DANESHVARI1, G. MLADY2 and F. E. GRINE3.

1Department of Anthropology, University of New Mexico, 2Department of Radiology, School of Medicine, University of New Mexico, 3Department of Anthropology & Department of Anatomical Sciences, Stony Brook University.

This paper explores patterns variation on the cross-sectional geometry (especially shape, as measured by I_{\text{max}}/I_{\text{min}} or midshaft antero-posterior [AP] and medio-lateral [ML] diameters) in the midshaft femur and tibia using three data sets. One data set consists of a world-wide sample of external dimensions of the limb bones, the second of cross-sectional properties derived from CT scans of Zulu, African American, and Khosu samples, and the third of cross-sectional geometry of the midshaft femur and tibia of 4 women, all of whom have done a substantial amount of running, but started training at different times in their lives. Both the external dimensions and cross-sectional geometry show only weak correlations between midshaft shapes (r_{\text{external}} = 0.12 and r_{\text{cross-sectional}} = 0.33, respectively). Inclusion of bi-iliac breadth as a covariate does not improve the correlation. Results from the 4 runners show an intriguing pattern that may help to explain the results: three of the women began training before their growth spurt and continued heavy training through junior high and high school. All three have relatively flattened femoral and tibial shafts. One runner started training in college and now runs marathons; she has a very round shape, as measured by I_{\text{max}}/I_{\text{min}} or midshaft antero-posterior [AP] and medio-lateral [ML] diameters. Nevertheless, bioarchaeological research often does not find a clear association between burial status and skeletal health. Based on archaeologically derived skeletal collections from China’s Central Plains, we examine the relationship between burial status and health status during two distinct periods: Middle Neolithic Yangshao (5000-3000 BC) when the earliest chieftom-level societies began to develop and a state-level society dated to the time of the Eastern Zhou dynasty (770-221 BC).

For both time periods, sex of the deceased had the strongest association with burial wealth, although the direction of this relationship was diametrically opposite between the two cases. In the Neolithic series, female burials on average had a richer inventory, while the majority of male burials had minimal or no grave goods. In the Eastern Zhou case, the proportion of male skeletons increased with an increase in burial rank. Age at death was a significant factor in determining burial status for the Eastern Zhou only.

Late onset skeletal markers showed a more direct association with burial status than did those attributes developing during childhood. The collection likely represents urban dwellers, higher status burials were associated with significantly greater frequencies of carious lesions, calculus accretion, and antemortem tooth loss. This study was funded by PSC-CUNY, # 63645-00 41.

New age constraints on the early Miocene faunas from Rusinga and Mfango Islands (Lake Victoria, Kenya).

DANIEL J. PEPPER1, ALAN L. DEINO2, KIERAN P. MCNULTY3, THOMAS LEHMANN4, WILLIAM E.H. HARCOURT-SMITH5, HOLLY M. DUNSWORTH5 and DAVID L. FOX5.

1Department of Geology, Baylor University, 2Berkeley Geochronology Center, 3Department of Anthropology, University of Minnesota, 4Forschungsinstitut und Naturmuseum Senckenberg, 5Department of Anthropology, Lehman College CUNY, 6Department of Anthropology, Graduate Center CUNY, 7Division of Paleontology, American Museum of Natural History, 8Department of Anthropology, Northwestern University, 9Department of Geology and Geophysics, University of Minnesota.

More than 90 species of mammals, including the stem hominoid Proconsul, have been documented from early Miocene deposits in Rusinga and Mfango Islands (Lake Victoria, Kenya). These faunas form an important comparative reference for understanding the evolution of Miocene mammals in East Africa, and thus their ages are crucial to understanding Miocene mammalian evolution. This study was funded by PSC-CUNY, # 63645-00 41.

Division of labor in the jaw adductor muscles of strepsirrhines.

JONATHAN PERRY1 and ADAM HARTSTONE-ROSE2. 1Department of Anatomy, Midwestern University, 2Department of Biology, Penn State Altoona.

If each of the jaw adductor muscles has a different biological role, then there should be anatomical differences between the muscles that correlate to dietary differences between taxa. We compared physiological cross-sectional area (PCSA) and leverage of the jaw adductor muscles in frugivorous, folivorous, and insectivorous strepsirrhines to test for division of labor among the muscles of mastication. The ratio of masseter PCSA to temporalis PCSA is greater in folivores than in frugivores and insectivores (p=0.003). The ratio of medial pterygoid PCSA to total adductor PCSA is greater in folivores and insectivores than in frugivores (p=0.026). These findings support published hypotheses. The masseter and medial pterygoid appear to be emphasized in strepsirrhines that eat tough foods. We found no significant correlation between leverage and diet, for any muscle or bite point. Within extant strepsirrhines, jaw adductor leverage from Rusinga suggested that all of the Miocene fossiliferous beds were deposited during an interval of less than 500 kyr at ca.17.8 Ma (Drake et al., 1988, Journal of Geologic Society, London 145: 479-491). However, the dates were from a limited stratigraphic interval, and all obtained by the conventional K–Ar bulk-total fusion technique, forestalling investigation of internal argon systematics of the samples.

Our recent field studies to clarify the paleoecological and geochronological contexts of Early Miocene catarrhines evolution have yielded new age constraints on the oldest catarrhines from Rusinga/Mfango, which differ in age to Proconsul species from other early Miocene localities (i.e. Songhor, Napak, and Koru). Thus taxonomic dissimilarities between the sites may be related to paleoenvironmental differences or relatively rapid (<100 kyr) turnover in faunal composition. This study was funded by National Science Foundation grant BCS- 0852609 and BCS-825615 and the Leakey Foundation.
Macronutrients in leaf resources consumed by a community of monkeys in Budongo Forest Reserve, Uganda.

JOSHUA S. PETIMAR1, ANDREW J. PLUMPTRE2 and JESSICA M. ROTH-MAN1,4. 1Department of Biological Sciences, Hunter College of the City University of New York, 2Albertine Rift Programme, Wildlife Conservation Society, 3Department of Anthropology, Hunter College of the City University of New York, 4New York Consortium in Evolutionary Primatology (NYCEP).

Leaves comprise large portions of the diets of monkeys in Budongo Forest, Uganda. They constitute the majority of the diet of folivorous black-and-white colobus monkeys (Colobus guereza), and can seasonally represent up to 80% of the diets of typically frugivorous monkeys such as blue monkeys (Cercopithecus mitis) and red-tail monkeys (Cercopithecus ascanius), indicating that they may serve as an important fallback food. We analyzed crude protein (CP), lipids, structural carbohydrates (TNC) and fiber (neutral detergent fiber; NDF, acid detergent fiber; ADF, lignin; ADL) in 67 samples from 32 species of the most commonly eaten young and mature leaves. The Budongo primates ate leaves that contain 10-42% CP, 36-80% NDF, 30-65% ADF, 7-43% ADL, 1-38% TNC and 0.5-7% CL on a dry matter basis. About 60% of the leaf samples contained condensed tannins. Young leaves were higher in CP, but similar in NDF, ADF, ADL, TNC and CL to mature leaves. When compared to leaves of the same species in nearby Kibale National Park, Uganda, which is another stronghold for primates, Budongo leaves were similar in macronutrient composition. Forest guenons are known to have longer retention times than expected based on body size, and colobus monkeys are foragel fermenters, indicating that leaves may provide an important energy source for cero-pithecin. Further studies on digestive ecology and food intake are needed but our results suggest that when eating diets comprised mainly of leaves, monkeys in the Budongo community gain adequate amounts of protein and energy to meet their estimated requirements.

Leprosy and the primate connection.

LUZ-ANDREA PFISTER1, ALICIA K. WILBUR2, LISA JONES-ENGEL1 and ANNE C. STONE3. 1School of Human Evolution and Social Change, Arizona State University, 2Washington National Cathedral, 3National Geographic Society.

The geographic and zoonotic origin of leprosy, one of the most ancient scourges of humanity, remains enigmatic. Mycobacterium leprae, the causative agent of leprosy, exhibits a very ancient parasitic lifestyle. Based on the massive genome decay of M. leprae, we hypothesize that M. leprae originated millions of years ago, well before the origins of Homo sapiens. However, our previous work using a genomic timescale indicates that M. leprae was in the Old World much more recently, around 10,000 years ago. How would this obligate parasite have persisted in the small, relatively isolated human and prehuman populations that peopled the world? We hypothesize that nonhuman primates harbored, and have continued over the millennia, to harbor M. leprae. Further, we suggest that a primate reservoir may explain the continuous or even increasing incidence of leprosy in endemic regions of the world despite prevalence below a transmission threshold. To test our hypothesis, we have collected buccal/nasal swabs from South and Southeast Asian macaques. These samples were tested for the presence of M. leprae DNA with a quantitative PCR assay that targets the 85b antigen, a gene unique to M. leprae. Out of 900 samples tested from different contexts such as temple, urban, and wild macaques, 26 were positive. The positive samples were collected in regions where human cases of leprosy are also high, supporting our hypothesis. Currently we have developed a strain typing method based on multiplex PCR followed by next generation sequencing to determine the type of strains present in macaques and compare them to human strains.

An assessment of health and lifestyle among prehistoric Chamorro from Tinian Island in the Northern Mariana Islands.

MICHAEL PIETRUSEWSKY1, MICHELE TOOMAY DOUGLAS2, MARILYN SWIFT2, RANDY HARPER2 and MICHAEL A. FLEMING2. 1Department of Anthropology, University of Hawaii at Manoa, 2Swift and Harper Archaeological Resource Consulting, Saipan.

This study focuses on the effect of Wari state sanctioned activities on gene flow in regional populations during the Middle Horizon (AD 600-1000) in Peru. The intensity of interaction between the state and regional populations in the context of an imperialist agenda is often difficult to discern from the archaeological record. Population genetic tests utilizing cranial nonmetric data are used to detect increased gene flow or genetic isolation in populations identified as having Wari influence. Appreciable gene flow was likely due to attempts by the Wari to incorporate communities either through direct control or
negotiated alliances. To further address the possibility of direct administration of regional communities by the Wari the results of this study are compared to strontium isotope studies on the same population. The identification of actual migrants interpreted with respect to the mortuary context and biological distance results allows for a more powerful evaluation of population interactions. Populations from different physical environments with varying levels of existing social complexity prior to Wari contact were sampled to address questions of differential incorporation strategies. Samples include the Wari heartland in the south-central highlands, south coast, central coast, and north-central highlands. Middle Horizon populations are also compared to those from the Late Intermediate Period (AD 1000-1400) in these regions. Animal use on the narrow social interaction associated with the Wari collapse. The results of this study are important for understanding the genetic consequences of social processes including expansion, mortality, and resistance, and alliance formation. This research was supported by the William M. Bass Endowment and the Diversity Enhancement Summer Research Fellowship.

Frequency of diagonal-sequence and lateral-sequence gaits in Saimiri sciureus when using lateral branches.

HENRY PINKARD1, LAURA E. JOHN-SON2, CHARLOTTE E. MILLER2 and DANIEL SCHMITT. 1Department of Evolutionary Anthropology, Duke University.

The widespread use of diagonal-sequence (DS) walking gaits by primates has been associated with mechanical requirements of moving on thin, flexible supports. However, Dunbar and Badam (1999) opportunistically filmed wild, juvenile bonnet macaques moving on fine-branches and branches with lateral stems and suggested that foot placement strongly influenced footfall patterns. DS gaits were more common on thick branches and lateral stems, where the base of support was wide. Lateral-sequence (LS) gaits were more common when animals were on the narrow longitudinal branch, where the base of support is narrow. To test the effect of the use of lateral stems on footfall patterns, two adult Saimiri sciureus, a species known to frequently use LS gaits, were prompted to walk under three conditions: (1) a single longitudinal pole, (2) a longitudinal pole with eight lateral poles spaced every 6", and (3) a flat wooden board representing terrestrial conditions. Individuals used DS gaits 100% of the time on the single longitudinal pole (n=96), 98.2% of the time in the lateral pole condition (n=106), and 97.5% of the time in the terrestrial condition (n=59). For all DS gaits, diagonality values suggest that footfall patterns do not become more diagonal when lateral poles are used, or on the ground (single pole average diagonality: 65; lateral poles: 64; ground: 68). These data do not support the hypothesis that use of lateral stems influences footfall patterns. This study was funded by NSF BCS 0452217.

Offsetting the costs of reproduction: the role of social support in human evolution.

BARBARA A. PIPERATA and DEBBIE GUATELLI-STEINBERG. The Ohio State University.

Lactation is the most energetically demanding stage of human reproduction, increasing women’s energy needs by 25-30%. While this is a significant increase in energy budget, it is relatively low compared to other mammalian species since human milk is substantially more dilute than milk from other primates, is relatively dilute due to a shared life history pattern that includes the birth of mostly single, slow-growing offspring that maintain close contact with their mothers and breastfeed on demand. The lower cost allows female primates greater flexibility in the strategies they can use to meet their increased energy needs (i.e. increase energy intake, reduce energy expenditure and/or draw on energy reserves). However, the ability of individual females to alter their dietary or energy expenditure patterns is affected by their physical and social environment. Energetics data collected on Amazonian women demonstrates that the social environment, particularly the availability of social support, affects maternal energy budgets, offsetting the cost of lactation. While there is evidence that social support affects lactational energetics in modern humans, the literature provides no evidence of this strategy in our closest living relatives, the great apes. Considering recent paleontological discoveries, we build on the work of others who have addressed the topic of hominin reproductive energetics. Specifically, we add to discussions regarding the role of helpers in providing offspring care and focus on how social support, directed at the woman, could impact maternal energy budgets. As energetic stress is related to fecundity, we consider the importance of offsetting the costs of lactation during hominin evolution. This study was funded by the Wenner-Gren Foundation (Grant # 6881) and the National Science Foundation (Grant # BCS 0201936).

Maximal oxygen uptake among the Tsimane: role of acculturation?

ANNE PISOR1, MICHAEL GURVEN2, HILLARD KAPLAN2 and AARON BLACKWELL. 1Integrative Anthropological Sciences, University of California Santa Barbara, 2Department of Anthropology, University of New Mexico.

Maximal oxygen uptake (VO2max) is frequently used as a measure of physical fitness, yet few data exist on VO2max in non-industrialized populations. Existing work suggests that in both industrialized and non-industrialized populations, VO2max increases with age in a similar pattern, though at a given age, non-industrialized populations tend to have higher VO2max than industrialized populations. The Tsimane, forager-horticulturalists from Bolivia, live in both acculturated and remote communities. We hypothesized that Tsimane in remote villages would have a pattern of VO2max decline similar to other forager-horticultural groups, with higher VO2max at any given age than Tsimane in more industrialized communities. Because of the high levels of activity associated with horticulture and foraging, we predicted that both acculturated and unacclimated Tsimane would evidence higher VO2max at any given age than the U.S. population. A step test was administered to Tsimane participants from the age of 5 to 82. Estimated VO2max was calculated using the Astrand-Ryhming nomogram. Tsimane results were compared to data from the Ache, a forager-horticultural group from Paraguay, and U.S. data. As predicted, the Tsimane demonstrate higher VO2max at any given age than the U.S. population, consistent with results collected from the Ache. Rural and acculturated Tsimane populations have far less discrepancy in VO2max levels at any given age than that seen between the U.S. and Ache or Tsimane populations. The market integration being experienced by Tsimane affects subsistence, but has minimal effects on physical fitness levels, suggesting activity levels may not change with acculturation as much as previously thought.

Mandibular shape variation in extant platyrhines.

MARY KATHLEEN PITTIRI and KAR- YNE RABEY. Department of Anthropology, University of Toronto.

Platyrhine species exhibit a wide range of mandibular morphologies, the variation of which has not been extensively studied. Some of this variation is likely attributable to differences in dietary regime. Here we assess mandibular outline shape variation in seven species representing five genera of extant platyrhines. Shape variation in two different aspects of mandibular morphology was examined: the outline of the mandible in lateral view and the outline of the condyle in superior view. Outlines from digital images of ~400 male and female specimens of Cebus, Chiropotes, Pithecia, Cacajao and Alouatta were
AAPA ABSTRACTS

MINDY PITRE and PAMELA MAYNE CORREIA. Department of Anthropology, University of Alberta, Edmonton.

Histological preservation measures [e.g., Histological Preservation Index (HPI), Oxford Histological Index (OHI)] are diagenetic parameters used to determine the histological integrity of bone. Although these measures are considered replicable, the results of our investigations suggest that one in particular, an adaptation of the HPI, is prone to both intra- and inter-observer error, even when applied by experienced users. Using light microscopy, 266 thin sections (including 65 examples of serial sections) of the Tell Leilan skeletal material from Syria (2900 – 1900 BCE) were assigned an HPI value by Pitre and Mayne Correia. Intra-observer error was great for Pitre (25.3%) error) and could translate into inter-observer error in assigned HPI values between Pitre and Mayne Correia (24.4%). We suggest that variation in bone preservation — owing to several intrinsic (e.g., age, sex, pathological conditions) and extrinsic factors (e.g., temperature, variety and behaviour of the invading microorganism) — likely exacerbated the observer error in assignment of HPI values in single thin sections and between serial sections. The findings suggest that histological preservation measures may not be useful for determining bone integrity and as a result, not useful as a criterion for the selection of bioarchaeological samples for subsequent chemical analyses.

J. MICHAEL PLAVCAN. Department of Anthropology, University of Arkansas, Fayetteville.

The factors that impact female body size, and how such changes impact sexual size dimorphism, are relatively poorly understood. Several studies suggest that female resource competition may favor larger female body size. Using group size as a proxy for potential female resource competition, Linde

HapMap-based study of cytosolic GSTs: SNP diversity of xenobiotic-metabolizing genes among human populations.

RENATO POLIMANTI, SARA PIACENTINI, FLAVIO DE ANGELIS, GIAN FRANCO DE STEFANO and MARIA FUCIARELLI. Department of Biology, University of Rome “Tor Vergata”.

Xenobiotic-metabolizing enzymes are involved in interactions between living organisms and their environments. Therefore, it is probable that the evolution of these proteins responds to and reflects changes in environment. Glutathione S-Transferase enzymes (GSTs; EC: 2.5.1.18) constitute the principal Phase II superfamily which plays a key role in cellular detoxification. GST genes are organized in chromosomal clusters; most of these genes are polymorphic, mainly due to single nucleotide substitutions. Different studies proved significant inter-ethnic differences in allelic frequencies of GST genes but, at present, no studies investigated if these genetic polymorphisms reflect random drift or rather selective pressures.

The aim of this study is to test the hypothesis that the genetic variability of GST loci is influenced by environmental changes. Making use of the HapMap database, we analyzed the population differences in the 18 cytosolic GST genes by utilizing allele frequencies of SNPs shared among eleven populations.
in the International HapMap project. Comparison between GST data and variation at neutral independent loci was used to verify if GST patterns were related to selective pressures. Our results show that most GST SNP’s demonstrated different patterns among populations of African, Asian and European origin, in accordance with those observed with neutral polymorphisms. Contrary to GST gene polymorphisms displayed divergent population relationships respect to those obtain with neutral loci, suggesting that these genetic markers may be influenced by environmental changes and therefore subjected to natural selection mechanisms. This study was funded by MIUR Grant, COFIN 2006 (2006053308) to G.F. De Stefano and RSA (Ricerca Scientifica di Ateneo), grant 2005, University of Rome “Tor Vergata” to M. Fuciarelli.

Brain size and endurance running in human evolution.

JOHN POLK1, STEVEN LEIGH1, REBECCA STUMP2, KARL ROSENGREN2 and ARTHUR KRAMER1.
1Department of Anthropology, University of Illinois Urbana-Champaign, 2Department of Psychology, Northwestern University, 3Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign.

Many species of Homo exhibited large brain size and locomotor repertoires that included endurance running. While most previous studies have focused separately on locomotor or cognitive evolution, there is increasing evidence for direct links between locomotion and both cognitive function and brain size. Here we review evidence for the association between exercise and cognition in humans and animal models, and the development of mechanisms that underlie these associations. Several observational studies show positive associations between physical activity and cognition but they cannot evaluate whether a causal relationship exists. Meta-analyses of prospective clinical trials show clearly that exercise training improves cognition, and that the benefits are largest for executive control processes (e.g., planning, working memory, multitasking). Exercise training has also been shown to increase the volume of grey matter in the frontal and temporal cortices, as well as in the anterior white matter, and blood flow to the dentate gyrus of the hippocampus. Animal models have been used to investigate the cellular and molecular mechanisms that underlie the effect of exercise on brain structure. These studies showed that neurotrophic molecules such as brain-derived neurotrophic factor, and IGF-1 help to regulate the effect of exercise on brain vascularity and cognitive abilities. Together, these studies suggest that increases in aerobic exercise can improve cognitive function and increase brain size within species. If the cellular and molecular mechanisms are conserved across species, the adoption of endurance running may contribute to brain size increases and cognitive improvements during human evolution.

Comparative genomics of humanness - what does your DNA tell you about what makes us human?

KATHERINE S. POLLARD. Gladstone Institutes, University of California San Francisco.

Comparative genomics is a powerful approach to investigate the genetic basis for what makes us human. The uniquely human parts of our genome can be identified by comparing rates and patterns of DNA sequence evolution to those in chimpanzee and other animals. Slow evolution suggests functional constraints, whereas rapid sequence change is a hallmark of adaptation. In recent years, our lab and others have developed statistical and computational tools that enable us to scan genomes for lineage-specific changes in the rate of DNA substitutions. Using this approach, we identified hundreds of evolutionarily conserved sequences that were extensively changed in the human genome since divergence from our common ancestor with chimpanzee. Most of these Human Accelerated Regions (HARs) do not code for proteins, but instead are located in introns and intergenic regions near protein-coding genes, suggesting that they may be regulatory sequences controlling expression of adjacent genes. Consistent with the hypothesis that these non-coding HARs contribute to human-specific phenotypes through changes in gene expression, the sequence changes in many HARs are predicted to have created or destroyed binding sites for regulatory proteins. Bioinformatics coupled with experimental follow-up have shown that (1) HAR1 is a novel RNA gene expressed in the neocortex during development; (2) HAR2 is a limb enhancer with human-specific gene expression in the embryonic hand; and (3) HAR152 is a modified binding site for NGN2, an important neurological transcription factor. HARs are promising candidates for understanding the genetic basis for human-specific biology and health.

Stature estimation in Andean skeletal populations: methods, challenges and implications for modern human variation.

EMMA POMEROY and JAY T. STOCK. Leverhulme Centre for Human Evolutionary Studies, Department of Biological Anthropology, University of Cambridge.

Estimating stature from the skeleton is a classic problem in anthropology. Recent years have seen a florescence of population-specific regression equations derived from anatomically reconstructed stature (e.g. Revised Fully Technique, Raxeter et al. 2006, AJPA 130:374-384), an increasing recognition of the limitations of existing equations and the importance of inter-population variation in body proportions. Limited work has been published on stature estimation in South American populations, and Andeans present a special problem due to the widespread practice of artificial cranial modification (ACM) and the limited availability of well-preserved, complete postcranial remains. This study focuses on stature estimation of Andean populations from northern Chile (n=119) to assess a) the applicability of published stature estimation equations to Andean populations; b) the impact of ACM on stature estimation; and c) the implications of the results for variation in modern human body proportions. Differences between anatomically-reconstructed stature (Revised Fully Technique) and estimates from published equations were assessed using linear regression, Pearson’s correlation, and Student’s t-tests. Of the widely-used equations from worldwide populations, only Feldesman and Fountain’s (1996) White equation (both sexes) and Generic equation (males only) (AJPA 100:207-224) performed adequately. Femoral equations for male and female Native North and Central Americans and a Patagonian population (males only) gave the best results. ACM had a negligible effect on stature estimates. Equations using femoral length generally outperformed those employing tibial length, which suggests a unique pattern of body proportions among Andeans relative to other populations from the Americas and worldwide. This may reflect adaptation or random variation specific to this region. This study was funded by the Arts and Humanities Research Council (UK), the University of Cambridge, Swiss National Science Foundation, and the Arts and Humanities Research Council (UK), the University of Cambridge, Swiss National Science Foundation, and the Arts and Humanities Research Council (UK).

Homing in on stone: new insights from a virtual reconstruction of the Steinheim cranium.

MARCIA S. PONCE DE LEÓN1, CHRISTOPH P. E. ZOLLIKOFER2 and ALEXANDER FLISCH2. Anthropological Institute, University of Zurich, Switzerland.

The Steinheim cranium represents one of the best-preserved Mid-Pleistocene hominins from Central Europe, but its taxonomic and phylogenetic status has remained a conundrum since its discovery in 1933. This is partly due to its uniquely gracile build amongst a contemporaneous sample of fairly robust specimens, and its mosaic of generalized archaic (Homo cf. heidelbergensis) and
derived Neandertal features. However, a major hindrance in assessing its morphology has been the specimen's severe taphonomic deformation and partial filling with sediment. Here we present a virtual reconstruction, which attempts to infer its morphology at the time of the individual's death, and we compare variants of its restored morphology with other Middle Pleistocene hominin crania. We used industrial cone-beam computed tomography to acquire high-resolution volumetric data, remove sediment fillings electronically, and recover all skeletal structures. Based on historical site inferences, we can infer a taphonomic deformation scenario, which is reversed in virtual reality. The overall morphology of the reconstructed Steinheim specimen is clearly different from that of the Neandertals, but more closely approximates the morphology of other any well-defined hominin taxon. This in congruence with earlier studies suggesting close phyletic relationships between Homo cf. heidelbergensis and the Neandertals.

Hadza forager energetics and the evolution of the human metabolic strategy.

HERMAN PONTZER1, DAVID A. RAICHLEN2, BRIAN M. WOOD3, 1Anthropology, University of Arizona, 2School of World Studies, Arizona State University, 3Department of Anthropology, University of Arizona, 4Anthropology, University of Illinois Urbana-Champaign.

In this study we examined whether ranging patterns in Saguinus fuscicollis were more consistent with coordinate or route based mental maps. At 2 minute intervals over the course of 36 days, we observed the feeding behavior of one group of S. fuscicollis using point sampling and recorded the animals' locations using a GPS unit. We also recorded the location of sleeping sites (n=9) and all feeding trees of plant species that comprised >1% of the group's feeding time (n=85). From these data, we calculated a circuit index (CI = distance traveled/straight-line distance) to test the degree to which individuals move directly between sites. Based on an evaluation of 156 travel segments the CI was 2.07, indicating that the monkeys did not move directly between feeding and resting sites. We also plotted the monkey's daily movement patterns using GIS software to determine if they use a route-based system of navigation. These analyses show that the monkeys move directly between sites. Based on the remaining days, the monkeys' visitation sequences were more efficient than randomly generated sequences 93% of the time. These results indicate that S. fuscicollis accurately encodes the spatial relationships among feeding and sleeping sites in their home range, and use a route-based mental map to navigate.

Funded by Northern Illinois University and the University of Illinois Urbana-Champaign.

Odontometric analysis of an urban population: can analysis of tooth dimensions contribute to sex estimation in a population with diverse ancestries?

AMIEE B. POTTER1, SHAMAN M. AL-ANEZI2, GUY L. TASA3 and AMY H. BELL1. 1Virginia Commonwealth University, School of World Studies, Anthropology Program, 2Virginia Commonwealth University, School of Dentistry, 3Department of Anthropology and Historic Preservation, Olympia, WA.

Sex estimation, critical in the identification of human skeletal remains, may be difficult when craniofacial or pelvic landmarks are missing, but it is both a physiologically constrained product of our evolutionary history and sexual dimorphism and great accuracy in sex identification has been demonstrated with odontometrics in homogeneous populations. These conclusions, however, may be population specific, suggesting reduced accuracy of such applications in ethnically heterogeneous contexts. Tooth size variation in an urban sample including individuals representing multiple ethnicities was examined with the aim of determining whether significant sexual dimorphism was present. The null hypothesis of no significant sexual dimorphism, suggesting odontometrics can not be used accurately to estimate sex in heterogeneous populations, was tested. Mesiodistal and buccolingual diameters of central incisors through second molars were collected from 60 mixed sex dental casts. Statistical analysis was completed on 28 dimensions for 14 teeth from the left maxilla and mandible and composite measures including Crown Area, Crown Shape Index, Crown Module, and Summary Tooth size. Student's t-tests and discriminant function analyses were used to investigate sexual dimorphism. Male tooth size was significantly larger in 12 dimensions and 7 composite measurements. Four discriminant functions had sex prediction accuracies of 0.80 and 0.81. Although accuracy is lower when estimating sex based on tooth dimensions within a heterogeneous population, these data indicate that significant sexual dimorphism is present and may contribute to sex estimation in the forensic context.

American Journal of Physical Anthropology
The Smithsonian Institution’s Human Origins Program Database (HOP-DB) is a collaborative effort to make data from the published records of paleoanthropology and related disciplines web-accessible to interested students and researchers as well as the general public. This effort presents numerous issues and challenges, on both theoretical and practical levels. These include issues of compatibility of data collected by different researchers, the use of alternative methods or naming conventions, and the challenges of maintaining the most flexible database design to ensure maximum data reliability and usefulness into the future. Here we discuss these and other issues and challenges encountered during development of the HOP-DB, and we present the implemented solutions and discuss the problems that still remain. In particular, we emphasize the need to design a highly modular structure of back-end data relationships such that front-end interfaces and web-applications can easily evolve to meet the needs of current and future users while the continual refinements of scientific data are accommodated smoothly and efficiently. By following this approach, the HOP-DB contains artificial-like intelligence built into its internal structure, increasing the likelihood that this database and its many modular components will remain a reliable and useful source of scientific information for years to come. We highlight some specific examples of uses of the HOP-DB in both research and educational settings.

This work was funded by the National Science Foundation HOMINID program (grant BCS-0218511).

Salivary measures of testosterone and functional innate immunity are directly associated in a sample of young adults.

SEAN PRALL, SHEILA BLANCHARD, DELANIE HURST, ELLEN IRELAND, CARI LEWIS, LEIGH MARTINEZ, ALICIA RICH, EVANNA SINGH, CHARITY TABOAS and MICHAEL MUEHLENBEIN. Department of Anthropology, Indiana University.

Immune-endocrine interactions have been the subject of intense interest by evolutionary biologists due to the important life history trade-offs that are evident in the function of various hormones and immune factors. Testosterone has been considered the quintessential physiological moderator between the immune and endocrine systems. Testosterone may facilitate increased reproductive success but also compromise survivorship, particularly via immune suppression. Because of its pleotrophic actions, testosterone levels may represent an honest signal of phenotypic quality. That is, because maintaining elevated testosterone levels could handicap survivorship, characteristics dependent upon testosterone should be honest indications of quality. Therefore, we hypothesized that healthy adult men and women with excess energy availability (i.e., not constrained by trade-offs between immunity and other functions) should exhibit direct (positive) correlations between testosterone and a measure of innate immune function. Multiple saliva samples were obtained from each of 37 male and 57 female participants. Innate immunity (i.e., complement and lysozyme activity) was measured using a newly developed salivary assay for bactericidal properties against cultured E. coli. Testosterone levels were directly correlated with immune values in both the male (Spearman’s rank order, rho = 0.45, p = 0.007) and female (rho = 0.52, p = 0.000) samples. Those individuals with higher salivary testosterone levels exhibited greater ability to kill pathogenic bacteria. These results suggest that, although testosterone levels may be involved in inverse immune measures in some individuals (particularly during infection/injury), testosterone levels can also be directly associated with other immune measures in healthy individuals with excess energy availability.

Funded by Indiana University-Bloomington.

Fossil water and marsh birds, as paleoenvironmental indicators, at Olduvai Gorge, Tanzania.

KARI ALYSSA PRASSACK. The Center for Human Evolutionary Studies, Department of Anthropology, Rutgers University.

Olduvai has received countless faunal community and environmental reconstructions, but none have adequately addressed the paleoecological implications of its avifauna. Birds may provide information on environments at a finer spatial scale than mammals, especially for Pliocene deposits where many extinct mammals, but primarily extant birds, occur. Here, taxonomic analysis of water and marsh birds excavated by the Olduvai Landscape Paleanthropology Project (OLAPP) is used to help reconstruct Olduvai’s Lowermost Bed II (1.75 Ma) landscapes. Water and marsh birds, which dominate the Olduvai avifaunal assemblage, exhibit especially narrow habitat tolerances related to vegetation structure, diet, water quality and depth. Their presence may therefore provide important paleoenvironmental and -ecological information necessary for interpreting hominin land usage.

Cormorants are most common, with 79 specimens (Phalacrocorax and Microcarbo). Anadrids (ducks, gesees, and swan) are less common but more diverse, with 25 specimens from 8 genera. Rail, grebe, flaminog, pelican, and various ciconiformes (storks, herons, and egrets) are also present in smaller numbers. Most specimens can be ascribed to extant taxa, increasing the fidelity of attributed life history traits. Bird densities and distribution patterns suggest a persistence of wetlands and deep swamps during Lowermost Bed II times, but also the occurrence of tall nesting trees and possible flooded grasslands. In terms of hominin land usage, these birds point to locations where portable water, water plants, safety trees, and bird nests may have occurred. This study supports the inclusion of avifauna in paleoecological research, particularly at the several sites of paleoanthropological significance, in any paleo-environmental or -ecological assessments.

This research is part of a dissertation project that was funded by the Leakey Foundation, the Wenner Gren Foundation, and a NSF DDIG.

SYLVAIN PRIMA1,2,3, RALPH HOLLOWAY1, GÉRARD SUSBOL2, BENOIT COMBES1,2,3, TOM SCHOENEMANN2, JOSE’ BRAGA2 and JANET MONGEO3.

1INSERM, 2INRIA, VisAGE Project-Team, 3University of Rennes I, CNRS, UMR 6074, IRISA, 4Department of Anthropology, Columbia University, 5Laboratory of Computer Science LIRMM, CNRS/University Montpellier 2, 6Department of Anthropology, Indiana University, 7Laboratory of Anthropobiology AMIS, CNRS/University Toulouse Paul Sabatier, 8Department of Anthropology, University of Pennsylvania.

Over these last years, new computerized methods have been proposed to build virtual endocasts from 3D CT images of extant or fossil skulls. This allows analyzing large samples automatically and then obtaining significant statistical results about the shape of the endocast and its correlation relative to other anatomical structures. We assessed two new algorithms to segment and process virtual endocasts. The first tool allows delineating the boundary of the 3D endocranial surface without any manual interaction, even in presence of large holes (such as the foramen magnum). We compared these virtual endocasts with the corresponding plaster endocasts manually casted by one the authors. The second algorithm allows the automated measurement of 3D asymmetry on the virtual endocasts, and the computation of a mean 3D endocranial shape over several individuals on which the mean population asymmetry can be assessed.

To show the potential of such automatic tools, we propose to study the relationship between the shape of the endocast and...
and the external shape of the skull. For this purpose, we selected about twenty dry skulls in the Morton collection. These skulls were selected from population samples which have been considered in the past to evince pronounced exo-cranial secondary-developing superstructures. These samples were CT-scanned and we automatically segmented both the external surface of the skull and the endocast.

We present the first results of our analysis by focusing on the exocranial versus endocranial differences at the level of the neurocranium of each individual. We also assess asymmetry patterns between individuals.

Research supported by the French Institute for Research in Computer Science and Control (3D-MORPHINE Collaborative Research Initiative).

A method for aging Scandinavian medieval sub-adults based on long bone length.

CHARLOTTE PRIMEAU1, LAILA FRII5, BIRGITTE SEJRS5N1 and NIELS LYNNERUP1. 1Laboratory of Biological Anthropology, Department of Forensic Medicine, University of Copenhagen, Denmark. The preferred method for aging archaeological sub-adult skeletons is by dental examination. In cases where no dental records are available age estimation may be performed according to epiphyseal union or diaphyseal lengths. Currently no data has been produced for aging Scandinavian sub-adults from the medieval period based on diaphyseal lengths. The problem with using data on Scandinavian samples which have been derived from a different population is the possibility of skewing the age estimation. In this study 58 sub-adult skeletons from three Danish medieval collections were examined, aged from approximately six years to twenty years. The samples were aged according to the dental method of Haubvikk and Ubelaker acting as control. Regression formulae were then constructed for aging according to their diaphyseal lengths. This study indicated that with the regression formulae developed, estimation of age can be done with reasonable results on Scandinavian sub-adults. The Scandinavian data was then compared to data from a different archaeological sample and a modern sample. It showed that the growth pattern was comparable to that of another archaeological sample with a mean difference of 137. However, there is a difference in growth pattern from the two archaeological samples to that of a modern population. The modern sample showed an underestimation that increased with age until reaching approximately 6 years. This study has shown the importance of using data for age estimation for archaeological material which has been developed specifically for that population and have developed a possible solution for Scandinavian sub-adult material.

Shape analysis of the proximal MT 2 and MT 3 articular surfaces.

DANIEL J. PROCTOR. Department of Anthropology, University of Minnesota, Minneapolis.

The proximal MT 2 and MT 3 articular surfaces were analyzed using geometric morphometrics to test the hypotheses that the human articular surfaces are quantitatively different from those of apes, and that there is no difference in articular shape between shod and unshod humans. Shod and unshod humans are compared to Pan, Gorilla, and Hylobates. The MT 2 fossil specimens include OH 8, Stw 575 (“Little Foot”), Stw 377, Stw 595c, Stw 89, and Stw 247. The MT 3 fossil specimens include OH 8, Stw 387, Stw 388, Stw 435, Stw 477, and Stw 496. Shod and unshod humans are not significantly different from one another, but both human groups are significantly different from the ape groups. The human MT 2 and MT 3 surfaces are relatively narrower in the dorsal area compared to apes, but expanded in the plantar area. The human MT 2 surface tends to be slightly concave overall, whereas in apes the dorsal area is highly curved and has lateral torsion and the plantar area shows medial torsion. The human MT 3 surface is flat, while the ape surface is slightly convex. The MT 2 specimens Stw 247, Stw 89, and Stw 595c group with apes, while Stw 573 and Stw 377 group with humans. The MT 3 specimens Stw 496 and Stw 387 group with humans, while Stw 388, Stw 435, and Stw 477 are intermediate in shape to humans and apes.

New Middle Pleistocene mandibles from the Sima de los Huesos (Sierra de Atapuerca, Spain).

ROLF QUAM1,2,3, IGNACIO MARTÍ-NEZ2,4, YOEL RAK5, BILL HYLANDER6,7, ANA GRACIA2,4 and JUAN LUIS ARSUAGA2,7. 1Department of Anthropology, Binghamton University (SUNY), 2Centro de Investigación UCM-ISCHII sobre la Evolución y Comportamiento Humano, 3Division of Anthropology, American Museum of Natural History, 4Universidad de Alcalá, Dpto. de Geología (Area de Paleontología), 5Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, 6Department of Evolutionary Anthropology, Duke University, 7Universidad Complutense de Madrid, Departamento de Paleontología.

The sample of human fossils from the Sima de los Huesos (SH) includes a large number of mandibular remains. Previous studies of many of these specimens have highlighted numerous similarities between the Atapuerca (SH) mandibles and the later in time Neandertals and have revealed important insights into the evolutionary process in Europe. In particular, a number of derived Neandertal features in both the corpus and ramus are already present in the Atapuerca (SH) mandibles, confirming an early appearance of features related to midfacial prognathism in the Neandertal lineage. The present study provides an update on the inventory of the mandibular sample from the Sima de los Huesos. A number of mandibles are now more complete following recent discoveries and newly recognized associations in many human populations. The more complete mandibles make it possible to confirm many of the details of previous studies made on more fragmentary remains. In addition, the enlarged sample has extended the known range of variation in some features and allows for a reassessment of the variation and stability proposed previously for a number of features. Finally, the recent dating of the site to >530 kya suggests a re-evaluation of the evolutionary significance of the Atapuerca (SH) collection is warranted. At this early age, it appears that features of the face and mandible are some of the first derived Neandertal features to appear in the fossil record and may even be associated with the origin of the Neandertal evolutionary lineage.

ASP and PAX3 contribute to skin pigmentation differences between European and Native American populations.

ELLEN E. QUILLEN1, MARC BAUCHET, MARK STONEKING2 and MARK D. SHRIVER1. 1Department of Anthropology, Pennsylvania State University. 2Max Plank Institute for Evolutionary Anthropology, Leipzig, Germany.

The variation in human skin pigmentation has long been a subject of anthropological interest and has been shown to be among the most rapidly evolving traits in many human populations. However, few studies have attempted to identify pigmentation genes that have undergone selection in Native American populations and contribute to variation in skin pigmentation between Native American and Old World populations. Four tests of selection – Locus-Specific Branch Length (LSBL), Tajima’s D Difference, Cross Population Extended Haplotype Homozygosity (XP-EHH), and Log of the Ratio of Heterozygosities (InRR) – were considered to identify signatures of natural selection. Of 76 pigmentation candidate genes, 14 showed compelling evidence for non-neutral patterns of selection.
evolution in Native American populations and were prioritized as selection nominated candidate genes. These genes were investigated using admixture linkage analysis in persons having mixed European and Native American ancestry from Popayán, Colombia (N = 173) and San Luis Valley, Colorado (N = 180). These analyses indicate the first time that the genes ASIP and PAX5 in addition to SLC24A5 and MAPT (SLC45A2), contribute to the difference in mean constitutive skin pigmentation between European and American populations. These four genes cumulatively account for approximately 17% of the variation in mean constitutive skin between the two parental populations. This study was funded by NSF DDIG 0925976.

Growth characteristics in infancy predict differences in milk composition in adulthood.

ELIZABETH A. QUINN1 and CHRISTOPHER KUZAWA1-2. 1Department of Anthropology, Northwestern University, 2Institute for Policy Research, Northwestern University.

During the immediate postnatal period, mammary growth continues in humans. By the age of two, growth of stem cell populations and the ductal system slows dramatically. Until puberty, mammary growth will keep pace with somatic growth. During this early postnatal period, when evolutionarily most infants would be receiving human milk, metabolic pathways and stem cell populations that will one day produce milk are established. Little is known about the accumulation of differences in human mammary development, but a growing body of evidence from dairy cows has shown that nutrition and growth during the immediate postnatal period can alter the lactogenic potential of the mammary gland. Specifically, in cows, rapid postnatal growth is associated with decreased milk synthesis and lower fat and protein content of milk in adulthood.

Here, we report on breast milk composition in a sample of 102 Filipino women followed longitudinally since their own births in 1983-84. Detailed collection of growth measurements (height, weight), nutrition, and illness frequency during infancy were collected at bimonthly intervals. These data were used to predict milk macronutrient composition for these individuals 25 years later, in adulthood. Infant growth velocity, measured as change in Z scores between critical periods of mammary development, positively predicted more protein and sugar in milk. There was some evidence of a U-shaped relationship with growth velocity, as poorly growing infants later produced more protein as well, possibly reflecting greater synthesis of immunoproteins such as sIgA.

This study was funded by the NSF, DDIG # 0726231, and Cells 2 Society, Institute for Policy Research at Northwestern University.

Identifying the source populations of African ancestry in Yemeni populations.

RYAN L. RAAUM1,2, ALI M. AL-MEERI3, and CONNIE J MULLIGAN4. 1Department of Anthropology, Lehman College & Brooklyn College, CUNY, 2NYCEP, 3Department of Biochemistry, Faculty of Medicine, Sana’a University, Sana’a, Yemen, 4Department of Anthropology, University of Florida.

Approximately 30% of mtDNA lineages in South African samples are African L haplotypes, whose origin has usually been attributed to migration and assimilation of African females into the Arabian population over approximately the last 2,500 years. In contrast, few Y chromosome lineages of clear recent sub-Saharan African origin have been found in Southern Arabian populations. This bias in maternal and paternal lineages has been interpreted with historical accounts of the female bias in the Middle Eastern slave trade. In order to evaluate autosomal African ancestry, we collected high-resolution SNP genotype data from a geographically representative set Yemeni DNA samples. The ancestry of chromosomal segments in the Yemeni population was estimated using a haplotype-based local ancestry estimation method, HAPMIX. We estimated local ancestry in the Yemeni sample with three European-African reference population combinations. There was no significant difference between the average proportion of African ancestry in Yemenis calculated using either of the two Bantu-speaking reference populations: Yoruba (mean 0.062, sd 0.044) and Luhya (mean 0.076, sd 0.049) (p = 0.13). However, the average African ancestry calculated using the Maasai reference population (mean 0.148, sd 0.060) is significantly greater from that calculated using either the Yoruba or Luhya reference populations (p < 0.0001). These data suggest that the source population for the African ancestry of the Yemeni population is more similar to the contemporary Maasai population than either the Luhya or Yoruba, and has implications for the reconstruction of the history of the slave trade between African and the Middle East.

Functional anatomy of forelimb muscles in captive Sumatran orangutans.

KARYNE RABEY, AMBER E. MACKENZIE, SHELBIE MCCORMICK and DAVID R. BEGUN. Department of Anthropology, University of Toronto.

Orangutans from Sumatra have specialized arboreal locomotion and posture and spend all of their time in the forest canopy, travelling in trees. In captivity however, these primates spend the majority of their time on the ground. Although more studies are investigating the dimensions of muscles in hominoids, there is little information regarding muscle-tendon architecture (muscle mass, physiological cross-sectional area, fascicle and tendon length) and its direct relationship with muscle attachment (location, size and shape). Past research reveals the challenges of defining the boundaries of muscle attachment area in a consistent manner. The main goal of this project was to investigate whether muscle markings on the forelimbs reflect muscle size, strength and activity of captive Sumatran orangutans. Three right forelimbs of orangutans (one female and two males) from the Toronto Zoo were dissected. Bones were cleaned and scanned using a NextEngine 3D scanner. During the dissections, careful attention was given to each muscle attachment, and pictures were taken of muscles and musculotendinous junctions, muscles to document attachment contours. This method enabled visual definition of the attachments and reduced error. Results suggest that differences in muscle ratios of muscle attachment size are different between males and females. The two males show a larger absolute muscle mass-to-attachment area than is found in the female. To better quantify this tendency, ratios of muscle attachment size were sampled. In this paper, I seek to reframe the basis for inquiry about the ethics of research in anthropological genetics by focusing not on the specific animal ethics of research in anthropological genetics by focusing not on the specific animal...
of informed consent to a more sophisticated understanding of how technologies of preservation, themselves, serve to powerfully reconfigure social relations along with the relationship between the past, present, and future. This intervention is not meant to displace bioethics but to encourage examination of how challenges facing anthropological geneticists are (or should be) intimately linked to the conduct of bio-specimen-based research in the biomedical sciences more broadly.

Different biomechanical regimes do not affect craniofacial pneumatization in fossil hominins.

TODD C. RAE1, KEVIN KUYKEN-DALL2 and THOMAS KOPPE3.

1Department of Life Sciences, Roehampton University, 2Department of Anatomy, Ernst-Moritz-Arndt University Greifswald.

Paranasal pneumatization has been linked to biomechanical stresses and strains of the facial skeleton, particularly during mastication. A recent 'narrow allometry' test of this hypothesis (Anat Rec 291:1414-1419, 2008) found that closely related species of Cebus with diets of differing hardness show no significant differences in relative sinus size. Congeners, however, may not possess sufficient biomechanical differences to affect pneumatization. To this end, two fossil hominins of different genera (Sts 5, Australopithecus africanus; OH 5, Paranthropus boisei) that differ greatly in inferred diets were examined; as the difference between their masticatory morphology is near or equal to the hominid maximum, this represents a conservative test of the 'biomechanical hypothesis'.

CT scan sets of Sts 5 and OH 5 were examined using Avizo 6. Frontal and maxillary sinus volumes were compared with those from extant large-bodied hominids (Pan, Homo, Pongo, Gorilla), and scaled relative to a measure of craniofacial size. Both fossils fall within the 95% confidence limits of extant hominids. Exact ran- domization analysis indicates that the degree of difference between Sts 5 and OH 5 is regularly found within single extant hominid species. Thus, there seems to be no evidence to support the contention that biomechanical forces affect pneumatic volume. Other factors, such as internal sinus structuring (septa or struts), however, cannot be ruled out as possible responses to masticatory stress.

South from Alaska: an aDNA study of the genetic history of the Alaska peninsula and eastern Aleutians.

JENNIFER RAFF, JUSTIN TACKNEY and DENNIS H. O’ROURKE. Department of Anthropology, University of Utah.

The Aleutian Islands were colonized from the Alaskan mainland. Temporal changes in the relative frequencies of mtDNA haplogroups in prehistoric Aleutian populations have been documented, but little is known about potential source populations for prehistoric Aleut migration. First mtDNA first hypervariable region (HVRI) sequences in samples from two archaeological sites on the Alaska Peninsula (the Hot Springs Site near Port Moller and from a group of sites in the Brooks River area near Katmai National Park and Preserve) and one site from Prince William Sound (Mink Island). The ancient sequences revealed the mtDNA haplogroup A2 typically found in Aleut populations (A2 and D2), but also haplogroups B2 and D1 in the Brooks River samples and haplogroup D3 in one Mink Islander. While mtDNA haplogroup D lineages have been reported in other northern populations, haplogroup B has not. The region V deletion in the Alaska Peninsula samples appears to be unique, being characterized by an 11bp deletion and associated upstream changes. Interestingly, the Brooks River area is located directly across Shelikof Strait from Kodiak Island, where a low frequency of haplogroup B has been reported in a contemporary population. The presence of this haplogroup in samples over 1500 years in age indicates a deeper history of mtDNA haplogroup D lineages in the North Pacific/South Alaska region than generally assumed. These results reveal greater mtDNA diversity in prehistoric populations of south Alaska than previously observed and facilitate reconstruction of prehistoric migration scenarios from the peninsula into the Aleutian archipelago.

This research was supported by NSF grants OPP-0327641 and OPP-0732846.

Exploring the precision of facial reconstruction using cephalographic images from a contemporary South-west United States orthodontic database.

COREY RAGSDALE, ANTHONY KOEHL and HEATHER J.H. EDGAR. University of New Mexico.

Forensic facial recreation is a common yet controversial potential aid of identification in historical and medico-legal contexts. Some reconstruction artists combine artistic methods and mean facial tissue thickness to model faces. This sample used 100 European American females 18 to 29 years of age from the Economides Orthodontic Database housed at the University of New Mexico. This study is a two-part analysis, (1) using ten conventional lateral cephalometric landmarks of the skull to measure soft tissue depth, and (2) using a preferred method of nose projection estimation to reconstruct a two-dimensional facial profile. Measurements were taken directly from cephalograms and drawings based on them. Cephalograms are ideal for this purpose, showing both bone and soft tissue and can be corrected for magnification. Each measurement was taken five times each by two researchers to determine intra- and inter-observer error. Means and standard deviations were computed for each measurement. Past studies have not provided confidence intervals nor included large samples. Means of tissue thicknesses using landmarks of the skull are consistent with other studies involving geographically varied samples, though confidence intervals are highly variable. However, measurements obtained using the preferred method of nose projection resulted in mean measurements inconsistent with visible soft tissue contours and actual facial profiles. This study demonstrates poor precision in facial reconstructions that rely on the use of cephalograms. Levy walks when are random walks an optimal search strategy?

DAVID A. RAICHLN1, BRIAN M. WOOD2, HERMAN PONTZER3, AUDAX Z. P. MABULLA4 and FRANK W. MARLOWE5. 1School of Anthropology, University of Arizona, 2Department of Anthropology, Stanford University, 3Department of Anthropology, Hunter Colleges, 4Archaeology Unit, University of Dar es Salaam, 5Department of Anthropology, Durham University.

Recent work shows that a diverse group of marine and terrestrial animals use Levy walks when foraging. Levy walks describe a class of random walks that are an optimal search strategy when resources are randomly dispersed and animals have incomplete or no knowledge of the resource distribution. In a Levy walk, step lengths (continuous movements in one direction) during foraging come from a probability distribution with a power law tail (i.e., many small steps connected by fewer long steps) and the frequency distribution of step lengths (x) follows the function: f(x) ~ x^-μ, where μ is between 1 and 3. Here we examine whether human hunter gatherers utilize Levy walks during their foraging bouts even though they have more complete knowledge of resource distributions. We attached GPS units to a sample of hunter-gatherers from the Hadza of Northern Tanzania (n = 8) and calculated μ from step lengths during foraging bouts using the maximum likelihood method. A preliminary analysis suggests that Hadza men and women use Levy walks in nearly half of their foraging bouts (μ = 2.08 ± 0.05 when step lengths follow a power-law distribution). Thus, even with more complete knowledge of their surroundings, humans often use random walks...
that are similar to those used by many other mammals. We examine correla-
tions between habitats and search strategies and suggest that patterns of
resource distribution likely drive the use of random walks in humans.
Finally, we explore the implications of our results for reconstructing mobility
patterns in the fossil record.

This study was funded by NSF BCS

Geometric morphometric analysis
of the human innominate showing
shape changes related to body mass.

CHRISTOPHER W. RAINWATER1,2,3
JENNIFER M. VOLLNER4
1Department of Anthropology, Center
for the Study of Human Origins, New
York University, New York, NY, 2Department
of Anthropology, American Museum of Natural
History, New York, NY. 3Center for Evolutionary
Primalogy, Max Planck Institute for
Human Development, Potsdam, Germany.
4Department of Anthropology, University of
Michigan, Ann Arbor, MI.

Morphological, metric, and recent geo-
morphometric analyses have all
demonstrated the high level of sexual
dimorphism in the human pelvis. In-
ferences related to another relevant char-
acter, body mass, have received less
attention especially in isolated innomi-
nates. Three-dimensional (3D) geom-
metric morphometric analyses were
employed to investigate shape changes
in the pelvis that are related to body mass,
controlling for sex. Twenty-three
3D landmarks were digitized from the
innominates of 60 individuals (30 males,
30 females) from the Hamann-Todd Col-
lection. These data were subjected to a
Procrustes fit and subsequent principle
components analysis. Several principle
component scores were significantly cor-
related with body mass suggesting that
certain dimensions of the pelvic change
in relation to body mass. In females,
this was generally expressed through the
relationship of the pubic bone to both
the inferior ischium and superior acetabulum.
In males, the shape change was generally related to the breadth of the
pubic bone and a change in dimen-
sion between the anterior acetabulum
and posterior ilium. Additionally, 253
inter-landmark distances were derived from the 3D data. A forward stepwise
regression model to detect landmarks
distances selected two variables for males
and three variables for females in these
general regions. The level of variance in
body mass explained by these variables
is comparable to current methods sug-
gesting that linear measurements from
an isolated innominate may be useful
for the reconstruction of body mass.

The problematic hypodigm of Homo
heidelbergensis.

YOEL RAK4,1, WILLIAM HYLANDER2,4,
ROLF QUAM3,4, IGNACIO MARTI-
NEZ, ANA GRACIA4,5 AND JUAN LUIS
ARUSAGA2,7 1Department of Anatomy
and Anthropology, Sackler Faculty of Med-
icine, 2Department of Evolutionary Anth-
thropology, Duke University, 3Department
of Anthropology, Binghamton University
(SUNY), 4Centro de Investigaciones CMC
Tecnologicas sobre la Evolucion y Comporta-
mento Humanos, 5Division of Anthropol-
ogy, American Museum of Natural History,
6Universidad de AlcalÌÁ, Dpto. de GeologÌÁ
Área de PaleontologÌÁ, Universidad Com-
plutense de Madrid, Departamento de
PaleontologÌÁ, Facultad de Ciencias Geo-
lÌÁgicas.

Who is Homo heidelbergensis? The
answer is simple—the species represented by
the mandible from Mauer. However,
in recent years, a large number of fossils
have been lumped with the Mauer man-
dible to constitute the hypodigm of H.
heidelbergensis. The problem is that in-
volves the definition of this enigmatic species
increasingly confusing and less convinc-
ing. Indeed, it is not clear whether lump-
ing certain specimens together in this
hypodigm is justifiable. In effect, the
morphology of certain specimens does not
accord with that of the type specimen.
Obviously, the taxonomic identification of
skulls lacking a mandible is problematic,
but even some mandibles give rise to
uncertainty regarding their assignment to the H.
heidelbergensis hypodigm.

In our analysis, the Mauer mandible
stands alone in its morphology, which
appears to be the outcome of a unique
constellation of characters. The
claimed similarities between the char-
acters of the Mauer specimen, on the
one hand, and those of Neandertals and
the Sima de los Huesos mandibles, on the
other, cannot be considered homolo-
gous, and hence, they are not syn-
apomorphies. Although some of the
Mauer characters superficially resem-
bles the ones on the Neandertal and Sima
specimens, the Mauer characters stem from a different morphological
configuration. On the other hand, the
similarities between the Neandertal
characters and those of the Sima man-
dibles are the outcome of identical con-
figurations making these characters true synapomorphies.

Dental growth in Australian
aborigines.

FERNANDO RAMIREZ ROZZI1 and
MARTA M. LAHR2 1UPR 2147 CNRS,
2Duckworth Laboratory, Cambridge
University.

Works on dental growth have charac-
terized tooth formation in hominid species
and have also suggested a large variation of
growth process in modern humans.
However, this variation is not well
defined. Ethnic groups inhabiting a well
defined geographic area, with a known
history and unique somatic features re-
present a good biological model to study
variations of dental growth process in modern humans. We here present prelim-
nary results of dental growth process in
Australian aborigines. Six lower M1 from
archeological specimens were cut through
mesial and distal cusps and thin sections
were obtained. Cusp/crown formation
times was determined by counting cross-
sections in the cuspal area and by
multiplying counts of striae of Retzius
by periodicity to calculate lateral crown
formation. Daily secretion rates were
measured every 100 um in cuspal
enamel in order to estimate possible var-
iation through crown formation. Wilson
bands were used to match the growth of
cusps. Periodicity values in our sample
range from 7 to 10 um in cuspal
value of 8. Range of cusp formation
times is: protocidion 3.17-3.92 yrs, meta-
conid 2.88-3.11 yrs, hypoconid 3.14-3.42,
entoconid 2.74. Daily secretion rates
increase from the enamel–dentine junction
to enamel–dentine junction. In effect, the
temperature of dental growth gives rise to
different daily secretion rates among the
modern human populations. Molars
form through a long period at a high
rate which explains the thick enamel.

Auditory sensitivity of the Philip-
pine tarsier, Tarsius syrichta.

MARISSA A. RAMSIER1, ANDREW J.
CUNNINGHAM2, GILLIAN L. MORITZ3,
CATHY V. WILLIAMS4, PERRY S. ONG5
and NATHANIEL J. DOMINY6 1Department
of Human Evolution, Max Planck
Institute for Evolutionary Anthropology,
2Department of Human Evolutionary
Biology, Harvard University, 3Department
of Ecology and Evolutionary Biology,
Dartmouth College, 4Duke Lemur Center,
5Institute of Biology, University of the
Philippines, 6Department of Anthropology,
Dartmouth College, Hanover.

Tarsiers are central to understanding of
how and why the senses evolved among
primates. They are distinctive among
haplorrhines in their basal phylogenetic
position and as small, solitary, noctur-
nal species that consume insects and
vertebrate prey. Of particular interest is
how tarsiers are able to detect prey at
night given their lack of a tapetum luci-
dum. Low natural population densities
and difficulty of observation make
tarsiers in captivity have not only limited
our knowledge of the sensory ecology of
these primates, but also prevented
the construction of a traditional behavioral
audiogram. Here we report use of the
auditory brainstem response (ABR) method to estimate the auditory sensi-
tivity of wild Philippine tarsiers at
Motorpoll, on the island of Mindanao.
We found the tarsier to be unique in its
sensitivity to ultrasound. We calcu-
lated the high-frequency limit (the high-
est frequency detectable at 60 dB SPL)
at approximately 75 kHz, which is 30
kHz above any other haplorrhine and
American Journal of Physical Anthropology
Mandibular diminution between the Medieval and post-Medieval periods in London: evidence for reduced masticatory function.

CAROLYN RANDO1, SIMON HILLSON2 and DANIEL ANTOINE2. 1Institute of Archaeology, University College London, 2Department of Ancient Egypt and Sudan, The British Museum.

Biomechanical forces, such as those created during mastication, are considered primary stimulating agents in craniofacial growth and development. Due to the direct connection between masticatory muscle strength and craniofacial form, fluctuations in biomechanical force and muscle strength can alter the underlying bone morphology. Proposed by Carlson and Van Gerven in 1977, the Masticatory Functional Hypothesis suggests that decreases in functional stimulation of the masticatory apparatus reduce the amount of force placed on the jaws, causing diminution of masticatory muscle and facial dimensions. The Industrial Revolution of the 18th and 19th century profoundly changed human lifestyle; advancements in food technology dramatically altered what humans ate, with food becoming more processed and softer, requiring little chewing. As suggested by the Masticatory Functional Hypothesis, decreased stimulation on the jaws leads to a reduction in size of the human mandible, but can this hypothesis be applied to the changes in diet observed during the transition to the post-industrialised era? To test this, an assemblage (n=280) of skulls from Medieval and post-Medieval London were selected for full metric analysis and their prey may shed light on selective pressures that resulted in this unique physiology. Such findings have broader relevance to understanding the evolution of ultra-soft diets among primates and across the animal kingdom.

This study was funded by the David and Lucile Packard Foundation and the Department of Anthropology, Dartmouth College.

10 kHz above Galago senegalensis (which previously had the highest known high-frequency limit among primates). In fact, such extreme sensitivity to ultrasounds is found in only a few animal lineages such as bats, rodents, cetaceans and amphibians. Additional studies including other tarsiers species and exploring the ultrasonic acoustic environment and signals and cues produced by tarsiers and their prey may shed light on selective pressures that resulted in this unique physiology. Such findings have broader relevance to understanding the evolution of ultra-soft diets among primates and across the animal kingdom.

The relative contributions of the different internal reaction forces to stresses at the symphysis in primate mandibles is unresolved. These reaction forces arise due to occlusal forces, muscle forces and mandibular geometry. Knowledge of these contributions, in concert with ecological observations, may infer dietary habits of primate ancestors. We determined stresses in mandibular symphysial sections using finite element analysis (FEMA). We used sagittal sections from computed tomographic scans of Gorilla gorilla (3 female, 3 male) and Pongo pygmaeus (6 female, 3 male) mandibles. We determined internal reaction force due to a left premolar occlusal force using free body diagrams, equilibrium, mandibular geometry and assumptions regarding masticatory muscle and joint reaction force lines of action. The internal reaction forces included an axial force and a torque perpendicular to the sagittal plane and transverse shearing forces and bending moments in the superciliary and labiallingual directions. We applied these internal forces to the sections individually and all together and determined principal and maximum shear stresses throughout the sections. Obviously, the greatest stresses occurred when all the loads were applied. For this load case, stresses in the males were about half those in the females for the same occlusal force regardless of species; stresses in the Pongo were about 25% larger than those in the Gorilla. Stresses for the cases of individually applied torques and axial and shear forces were an order of magnitude less than when all loads or just bending moments were applied.

Supported by National Science Foundation BCS-922414, BCS-60017683, BCS-0921770, BCS-0922414 and DUE-0511257.

Oh Grandmother, what big teeth you have!

EMILINNE RASOAZANABARY and LAURIE R. GODFREY. Department of Anthropology, University of Massachusetts at Amherst.

Mouse lemur females have long been recognized as dominant over males—winning the great majority of contests over resources. However, that dominance has never before been linked to strong reverse canine dimorphism. Such canine dimorphism is manifested in Microcebus griseorufus in southwest Madagascar, and it occurs independently in populations inhabiting three forests at Beza Mahafaly (a gallery forest called Parcel 1, spiny forest called Parcel 2, and dry forest called Ihazoara). Females and males at these forests also differ significantly in their feeding and nesting behavior:

Between October 2006 and September 2008 the home ranges and activities of male and female M. griseorufus at the above three forests were recorded using both capture/mark/recapture techniques and focal-individual follows of radiocollared individuals. Canine height, canine morphology, and occlusal forces are important to the reproductive success of females. This research was funded by the International Foundation for Science (IFS), Wildlife Conservation Society (WCS), National Geographic Society (NGS), Primates Conservation Inc. (PCI), and American Society of Primatologists (ASP).

Hydrolyzable tannins in red colobus and mountain gorilla diets.

SAMYUKTA RAVI1, KIMBERLY LUND1, CALEY A. JOHNSON2,3, COLIN A. CHAPMAN4 and JESSICA M. ROTHMAN2,5. 1Department of Anthropology, Hunter College of the City University of New York, 2Department of Anthropology, The Graduate Center of the City University of New York, 3New York Consortium in Evolutionary Primatology (NYCEP), 4Department of Anthropology and Mailman School of Environment, McGill University.

Hydrolyzable tannins (HT) are a class of polyphenols found in plant tissues. The effects of HT are not well-understood, but they may form insoluble complexes with proteins and minerals, thereby diminishing diet quality. While many studies focus on the role of con-
Egyptian body size and proportions: ecogeographic patterns in a mid-latitude population.

MICHELLE H. RAXTER. Department of Anthropology, University of South Florida.

Ecogeographic patterning in body size and proportions can provide important information about adaptation and population movements. This study investigates the relationship between body size and proportions in a mid-latitude population. Ancient Egyptians occupied a middle latitude region at ~31°-21° North. It was predicted that Egyptians would be intermediate between higher and lower latitude populations in body size and limb length ratios. The skeletal sample consisted of 492 males and 535 females, all adults from the Predynastic, Old Kingdom, Middle Kingdom, New Kingdom and Roman-Byzantine periods, a time spanning c. 5500 BCE – 600 CE. Egyptians were analyzed regionally by dividing the sample into northern and southern groups, as well as by comparing to Nubian groups. Egyptians were analyzed regionally by dividing the sample into northern and southern groups, as well as by comparing to Nubian groups. Egyptians were analyzed regionally by dividing the sample into northern and southern groups, as well as by comparing to Nubian groups. Egyptians were analyzed regionally by dividing the sample into northern and southern groups, as well as by comparing to Nubian groups.

This study tests the hypotheses of significant morphological change between specimens of the 3aS and 3aN channel beds of the LQSM and MPPM, as well as between those of the 3aS and 3aN channel beds of the MPPM, by quantifying variation in dental dimensions. Analyses included pair-wise comparisons to assess statistically significant changes in size in individual taxa, as well as tests of multiple comparisons to maximize the included morphological variation in one species. Lastly, models of environmental change were compared using biogeographic analyses, such as predation, were applied to explain significant morphological change. Using a community perspective revealed that species were not evolving in concert, even when compared with the paleoenvironmental shifts occurring at Langebaanweg during deposition, biologically meaningful patterns can be identified. Paleoecological studies of primate and hominin fossil localities can include this type of community-level analysis to better understand not only reconstructed paleoenvironmental contexts, but also more intricate interactions of species co- and microevolution.

This work is funded by a grant from the Palaeontological Scientific Trust.

Getting a grip: dynamic moment arms and potential torque for muscles of the fifth ray in five catarrhine species.

SANDY REECE. Corvallis, OR.

Despite its functional importance in primate hand postures, the fifth finger remains less well studied than other regions of the hand. This study assesses the variation of selected fifth ray musculature-morphological characteristics of catarrhine species within the framework of their differing locomotor/postural modes. Both extrinsic and intrinsic fifth finger muscles are measured for muscle weight and average fiber length. Dynamic moment arms are calculated based on tendon excursion and joint angle during passive joint motion. Muscle weights and fiber lengths are used to calculate physiological cross-sectional area (PCSA) for each muscle, which represents the potential force a muscle can develop. Application of this force to the external world, however, is modified by moment arm length. To estimate how much potential torque a muscle can exert on the external environment, PCSA is multiplied by the dynamic moment. The muscle characteristics examined in this study reveal some interesting patterns related to hand use. Humans are characterized by very low PCSA values, but often equalize potential torque to that of nonhuman primates with longer moment arms, particularly in the Opponens digiti minimi and Flexor digiti minimi (FDM) muscles. Such a configuration achieves strength with less fatigue. Orangutans also have relatively large potential torque values for the FDM and, unexpectedly, for the extrinsic extensor muscles. Among the monkey species tested, baboons show a unique configuration of the Extensor digiti minimi muscle, which leads to its participation in metacarpophalangeal abduction/adduction. The results relating to the extensor muscles warrant further kinematic and behavioral investigations.

This study was funded by the Department of Anthropology at Arizona State University and the Philanthropic Educational Organization.

A new GPS data collection methodology and data schema for integrating multiple project databases: examples from the Akikira Research Project geodatabase.

DENNE REED1, SHANNON MCPHERSON2, W. ANDREW BARN1, ZCHE CfAY N AMESEGD3, RENI BOB4, DENIS GERAADS5 and JONATHAN WYNNS6. 1Department of Anthropology, University of Texas at Austin, 2Max Planck Institute for Evolutionary An-
A large, current data set, scans of living order to continue testing these methods, sagittal suture (Reed et al. 2009). In analysis of the degree of closure of the dry skulls can be used effectively in the shown that computerized tomography of medical sciences. Previous research has continues to be a significant focus of research in the anthropological and bio-

Valley State University.

JAMES CHRISTOPHER REED and
BRIDGET F. B. ALGEE-HEWITT. Biomedical Sciences Department, Grand Valley State University.

The biology of cranial suture closure continues to be a significant focus of research in the anthropological and biomedical sciences. Previous research has shown that computerized tomography of dry skulls can be used effectively in the analysis of the degree of closure of the sagittal suture (Reed et al. 2009). In order to continue testing these methods, a large, current data set, scans of living individuals should be obtained. To test if scans of the crania of living individuals are as useful as dry skulls, thirty existing CT scans kept in data storage were obtained from Saint Mary's Health Care in Grand Rapids, Michigan. These 3m. helical scans were randomly retrieved from data storage by a radiological technician with all personal information removed, except for age and sex (“anonymized”). Using the image analysis software Amira 5.3, the cranium was isolated from soft tissue, with different colors representing different densities of bone in the final image. With these different densities delineated, three separate examinations of the sagittal and coronal sutures for degree of closure were completed, including tests of interobserver error. Analysis was conducted according to previously established methods (Reed et al. 2009). A correlation between the results of the analysis of suture closure and the general age of the individuals in the scans was also calculated. The results show that existing CT scans of living individuals are an effective and readily available large sample source that can be used in the analysis of human cranial suture closure.

This study was funded by a Research Grant-In-Aid from the Center for Scholarly and Creative Excellence, Grand Valley State University.

Early hominins through time and space: local, regional and pan-African habitats and biogeography.

KAYE E. REED and CHRISTOPHER J. CAMPISANO. Institute of Human Origins, School of Evolution and Social Change.

Australopithecus species have been recovered from the Pliocene (~4.2-2.0 Ma) of eastern, southern, and central Africa. Austra
topithecus has a fragmented fossil record. It is known about Australopithecus ecology for specific localities, such as from associated fauna or more multidisciplinary paleo

adget reconstructions, studies investigating the spatial patterning of Australopithecus habitats and the associated fauna at a more continental-scale are still limited. Biogeographical patterns in Africa today demonstrate that species isolation occurs in peripheral regions, and this isolation often occurs in habitats that are either very wet (forests) or dry (shrublands). The primary goal of our research is to determine if the fossil localities bearing Australo

africa species mirror this modern pattern or, alternatively, show either 1) abundant taxonomic interchange between regions, or 2) that each region represented distinct faunal centers with little taxonomic interchange. Our analyses focused on spatial distributions and similarities of fauna from Australopithecus-bearing localities at varying scales. We began with data from the Hadar region to analyze spatial distri-

butions of fauna within Hadar and Ledi-Geraru localities. Similarity indices and cluster analyses were used to determine faunal distribution patterns locally, within an individual African region, and between regions. We also used minimum spanning trees to investigate mammalian similarity both spatially and through time at regional and pan-African scales. Paleobiogeographic patterns demonstrate that, despite changing habitats at the locality level, most faunal communities are more similar at single localities through time than they are similar regionally across space. Faunal communities in southern and central Africa appear to mimic the modern pattern of isolation.

This study funded in part by the Late Lessons in Early History initiative at Arizona State University.

The growth and development of sexual dimorphism using cranial base and post-cranial measurements.

SARAH REEDY. Department of Anthropology, University of Massachusetts, Amherst.

A current problem in skeletal biology is assessing sex in subadult skeletons since they have not undergone the pubertal changes that allow the secondary sexual characteristics to develop. Research in juvenile sexual dimorphism has usually focused on the pelvic and skull bones, which are dimorphic in adults but not juveniles or has been limited by small sample sizes. This research tests the hypothesis that the cranial base will become sexually dimorphic with the peak of brain growth which occurs around five and six years of age and the post-cranial skeleton will become dimorphic at different ages based on the typical patterns of growth and development. Measurements of the long bones and cranial base, as well as analysis of morphological traits of the skull, mandible, and ilium at four distinct phases of growth were performed on the Hamann-Todd Skeletal Collection. T-tests were used to test for dimorphism in each developmental stage. Discriminant function analysis was performed to determine which of these variables best predicted sex in each age group. Results indicate that there is indeed sexual dimorphism of the cranial base and post-cranial skeleton at each stage of development with least 75%-100% accuracy. Each group showed different elements of the cranial base and post-cranial skeleton as dimorphic, which proves that separating individuals by their growth and development is vital in determining sex in juvenile remains. This will help us better understand when and where the skeleton becomes sexually dimorphic so that sex may be determined in individuals of known age.
Behavioral laterality and skeletal directional asymmetry in cottontop tamarins.

NICOLE M. RIEVES1, ADAM D. SYLVESTER2 and BENJAMIN M. AUERBACH1. 1Department of Anthropology, University of Tennessee, 2Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology.

Researchers have indicated behavioral laterality of Saguinus oedipus, although the patterns of right or left preference vary between tasks and contexts. No population-wide handedness has been reported. An examination of directional bilateral asymmetry in S. oedipus long bone dimensions would provide a way to assess differential effects of laterality on bone morphology in a sample lacking population-wide laterality. Maximum lengths, diaphyseal breadths, and articular dimensions were measured for the humeri, radii, ulnae, femora, and tibiae of 45 adult (17 female, 28 male) S. oedipus skeletons. Dimensions with high measurement error (>2%) were removed, and all others were converted to percent directional asymmetry (%DA). Results indicate that there is no population-level directional asymmetry. Therefore, we conclude that no genetic or behavioral predisposition for directional asymmetry exists. Sex differences in %DA were also determined to be non-significant. Magnitudes of directional asymmetry were further investigated among individuals with %DA > 0.5, and %DA magnitudes were ranked by type of dimension. As found in other studies of limb bone asymmetry, maximum lengths are the most symmetrical, followed by articular dimensions, and finally diaphyseal measures. The symmetry of long bone lengths may largely be due to locomotor constraint. These findings may further indicate that bone lengths, in general, are less susceptible to developmental perturbations or mechanical stresses than are diaphyseal or articular dimensions. A larger sample size and pedigree data will be incorporated into this study as it becomes available, which will allow us to further assess the heritability of directional asymmetry.

Evidence for advanced spatial intelligence in gibbons.

ULRICH H. REICHARD1, WHITNEY B. REINER1 and JESSICA M. ROTHMAN1,2. 1Department of Anthropology, Hunter College of the City University of New York, 2The New York Consortium in Evolutionary Primatology (NYCEP).

Monitoring plants’ reproductive cycles and relying on a cognitive map have been suggested effective navigation methods in territorial frugivores, such as forest primates. Environmental landscapes and travel directions may be qualitatively linked to a route-based cognitive map or true metric parameters may be stored in accurate geometric relations. However, even if cognition is involved, it is often unclear to what extent spatial intelligence guides daily movement. We tested spatial intelligence in adults of eleven white-handed gibbon groups (Hylobetes lar) at Khao Yai National Park, Thailand, over a 55 day period (Jul09 – Feb10). Daily travel paths and food sources were recorded with a GPS and plotted in ArcMap. Spatial intelligence was quantified by analyzing where significant changes in gibbon travel direction occurred using the change-point direction test (CPT). Consecutive change-points were beginning and end of travel between out-of-sight resources. We found that travel direction changes occurred overwhelmingly at food sources (78.4% of change points, n = 195) and rarely during travel (6.2% of change points). Sometimes (13.3% change points), food sources at change points had no fruit, and 2% of change points occurred at intergroup encounter sites. Distances between consecutive change-points (x = 165m) were far beyond gibbons’ visibility radius. Finally, gibbon movement was more efficient at detecting important food sources than a random travel model predicted. We conclude that gibbons have excellent large-scale knowledge of the spatio-temporal availability of resources and that they plan daily travel with the goal to end segments at a next important food source.

This study was funded by a Postdoc Fellowship of Mahidol University, Thailand (NA), and from S.B. Leakey Foundation, U.S.A. (UHR).

Fatty acids in mountain gorilla diets: implications for primate nutrition and human health.

Laurie J. Reitsema1 and Tomasz Koziowskii. 1Department of Anthropology, The Ohio State University, 2Department of Anthropology, Nicolaus Copernicus University, Torun.

We investigate diet of a 2nd c. Wielbark population from Rogowo (Pomerania area, Central Poland) using stable carbon and nitrogen isotopes. Our primary goal is to complement a growing body of research concerning Roman-era diet in Western Europe, facilitating a better understanding of the impacts of Germanic, Mediterranean and Slavic cultural heritage and geography on human diet in early history. We also investigate effects of different sociopolitical systems on diet by considering our results in relation to other time periods (Neolithic and medieval) in Poland.

Bone collagen of 30 individuals from the biracial cemetery at Rogowo was prepared for isotope analysis, along with 2 Neolithic individuals for comparison. Diet at Rogowo was primarily terrestrial, with mean δ13C and δ15N values of −17.9% and 9.7% respectively. The δ13C values exhibit a broad range and are higher than expected for a diet based on C3 plants alone, suggesting consumption of millet. The δ15N values of women and men differ significantly, with women exhibiting higher values than men (<17.5 %. Mann Whitney U p = 0.016). Sex-based differences in δ15N values are not significant in the sample (Mann Whitney U p = 0.109).

These observations differentiate Rogowo from our comparative medieval and Neolithic Polish samples, and from
conemporary populations elsewhere in Europe. We conclude that neither cultural affinities with Slavs nor socioeconomically linked to the rest of the continent per se account for diet at this Romano- Germanic local site, and food production technologies appear to have had a significant impact on subsistence strategies at Rogowo.

This research was funded by a Graduate Research Grant from The Ohio State University's Office of International Affairs and a Coca-Cola Critical Difference for Women Grant for Research on Women, Gender and Gender Equity.

Declines in primate abundance in logged forests: differentiating the impacts of guns versus logging

MELISSA J. REMIS and CAROLYN A. JOST ROBINSON Department of Anthropology, Purdue University.

This paper explores the effects of logging and increased gun hunting on primates at Dzanga-Sangha Reserve (RDS), Central African Republic. RDS was selectively logged in the 1970s and in 2002. Human migration along with greater accessibility of areas has led to increased hunting and trade of arboreal primates. We conducted line transect sampling for Cercocetus, Cercopithecus sp., Colobus, Pan and Gorilla in 2002 (n=420km) and 2009 (n=100km). Monkey presence on transects has decreased from 2002 to 2009 (t=3.88, p<0.000). To discriminate monkey presence versus cryptic behavior we compared calls and observation rates in park and reserve. Monkeys have become quiet in hunted areas, suggesting behavioral changes in response to increasing human activity in the reserve. To differentiate hunting from logging impacts, we compared primate presence on transects close to and far from secondary logging roads. Monkeys’ presence in logged sites and a higher use of roadside transects in 2002 (G = 10.199, p <0.001) suggests they were not negatively impacted by logging itself and were preferentially selecting logged habitats relative to their availability (G = 22.13, p = 0.004). Recent declines in primate encounters on roads increasingly used by hunters, and in logged zones after 2002, suggest hunting rather than fragmentation might be responsible. At RDS, many primates are flexible in their ability to use logged forest and make behavioral adaptations to reduce their vulnerability to hunting, yet it is unlikely these changes can keep pace with large scale encroachment of arms and people into Central African forests.

This study was funded by National Geographic Society, World Wildlife Fund Ecoregion Grants, Primate Conservation, International Society of Primatology, American Society of Primatologists, Explorers Club and Purdue University.

AAPA ABSTRACTS

Human-specific loss of an androgen receptor enhancer is associated with the loss of vibrissae and penile spines.

PHILIP L. RENO1, CORY Y. McLEAN2, ALEX A. POLLEN3, GILL BEJERANO1,2 and DAVID M. KINGSLEY3. 1Department of Developmental Biology, Stanford University School of Medicine, 2Department of Computer Science, Stanford University, 3Howard Hughes Medical Institute, Stanford University School of Medicine.

Humans show numerous anatomical and physiological specializations compared to other animals, but the genotypic basis of most human-specific traits is still unknown. It has been long proposed that the striking phenotypic differences between humans and other apes may be due to regulatory changes in the human genome. To survey for likely regulatory mutations specific to the human lineage, we carried out a genome-wide search for sequences that are highly conserved between chimpanzees and other species, but are missing from the human genome. We detect 583 such human-specific deletions and confirm their presence in multiple human populations. The vast majority of the human-specific deletions fall within intergenic and intronic regions. One of the deletions resides in proximity to the ANDROGEN RECEPTOR gene and removes a ~5 kb region containing highly conserved non-coding sequences. To determine the possible function of loss of this region we tested the capacity of the homologous chimpanzee and mouse sequences to drive expression of an hsp68 basal promoter-lacZ reporter gene during normal mouse development. Both the chimpanzee and mouse constructs drove expression in facial vibrissae and the genital tubercle of multiple transgenic embryos. We also established four stable lines that express the enhancer activity of the mouse sequence that showed expression in the superficial tissue underlying epidermal spines of the mouse penis. Thus, we demonstrate that the loss of this AR enhancer is correlated with the anatomical loss of androgen-dependent sensory vibrissae and penile spines in the human lineage.

This study was supported by an NIH Ruth L. Kirschstein NRSA post-doctoral fellowship (1 F32 HD02137-01) to P.L.R.

Morphological variation between Oldowian assemblages from Olduvai Gorge, Tanzania and Koobi Fora, Kenya and implications for Behavioral Lithic Analysis.

JAY S. RETI. Department of Anthropology, Rutgers University.

Lithic analysis, as an archaeological tool, has the potential to reconstruct specific production behaviors among stone tool producers. This research presents a methodology called Behavioral Lithic Analysis (BLA) that uses size-independent, quantitative morphological markers to identify specific stone tool production behaviors. BLA relies on a small set of tests between archaeological material and experimentally-derived whole flake assemblages. The research presented here represents the archaeological stage of BLA development for Oldowian technology. If morphological markers that identify the method in which particular stone tools were created can be determined, then direct comparisons of production behaviors between archaeological sites is possible. To identify possible morphological markers, measurements that represent potentially controllable aspects of flake morphology must first be determined. Twelve such features are measured on whole flakes from Olduvai Gorge, Tanzania and Koobi Fora, Kenya. Statistical results suggest that there is significant morphological overlap between assemblages from these two localities but that there are groups of flakes that are both that are unexpected outliers given the assemblage variation (MANOVA d=1, p<0.01, df=517). The identification of specific morphological features that vary from assemblage expectations warrants further experimental investigation. Large-scale replication experiments (N=6000 whole flakes) using native East African raw materials will allow for empirical identification of morphological variation among Oldowian assemblages. The implications of identifying specific production behaviors within the Oldowan are numerous and include 1) comparisons of site usage across landscapes and over time, 2) conclusions of cultural differences, and 3) raw material preference and differential use.

This study was generously funded by the National Science Foundation, Grant Number 1052006, The Wenner-Gren Foundation, and the Center for Human Evolutionary Studies.

Quantification of sub-condylar constriction of the tibia.

ALICIA RICH1, KEVIN HUNT1, DAVID POLLY2 and DELLA COLLINS COOK1. 1Department of Anthropology, Indiana University, Bloomington, 2Department of Geosciences, Indiana University, Bloomington.

One (A.R.) measured the rate of sub-condylar constriction of the tibia in Homo, Pan, and Pongo. The tibia of twenty-six captive-born adult individuals were measured; nine chimpanzees, and seven orangutans were selected at random from the W.R. Adams Primate Skeletal Collection and ten humans from Della Cook’s lab. Each tibia was marked at five theoretical cross-sections, the first being at the widest part of the plateau. Subsequent cross sections were marked as a fraction of tibial
AAPA ABSTRACTS

New fossils from Ileret, Kenya, and the evolution of hominin hand function.

BRIAN G. RICHMOND, DAVID J. GREEN, DAVID R. BLAUN, EMMA MBUA, NICOLE L. GRIFFIN, HABIBA CHIRCHIR and JOHN W.K. HARRIS. Center for the Advanced Study of Hominid Paleobiology, Department of Anthropology, The George Washington University,Human Origins Program, National Museum of Natural History, Smithsonian Institution, Archaeology Department, University of Cape Town, Department of Palaeontology, National Museums of Kenya, Department of Evolutionary Anthropology, Duke University, Hominid Paleobiology Doctoral Program, Department of Anthropology, The George Washington University, Anthropology Department, Rutgers University.

Understanding the origins of hominin adaptations for manual dexterity and tool use requires a combination of functional analyses of the hand and evidence from the fossil record about the pattern and timing of morphological changes. In this paper, we analyze the anatomy of new elements of KNM-ER 47000, an associated fossil hominin upper left arm, and the fossiliferous Fwm14E1 in Area 1A of the Koobi Fora Fm. The fossil-bearing sediments date to approximately 1.52 Ma and make it broadly contemporaneous with KNM-WT 15000. KNM-ER 47000 consists of a trapezium, several metacarpals and proximal phalanges, and large fragments of the scapula, humerus, and ulna, all from the right upper limb. We compare measurements of KNM-ER 47000 to relevant elements of Plio-Pleistocene hominin fossils, modern humans, and great apes to test hypotheses about the evolution of hominin hand function.

Our analyses show that the levels of gracility of the KNM-ER 47000 first metacarpal and robusticity of the humerus differ significantly from those of KNM-WT 15000, suggesting that KNM-ER 47000 is not attributable to early Homo erectus. The KNM-ER 47000 hand generally resembles those of Ph. Australopithecus in possessing a narrow first metacarpal, pronounced phalangeal flexor sheath attachments, and fairly human-like thumb:finger length proportions. However, the trapezium is derived in having a relatively flattened trapeziometacarpal (saddle) joint, suggesting that this feature is not necessarily functionally or developmentally linked with increased thumb robusticity. Hypotheses treating these features as a functional complex for forceful precision and power grips may warrant reconsideration.

This study was funded by NSF BCS-0924476, NSF DGE-9987590, GWU UFF fund, Koobi Fora Research and Training Program, Center for Human Evolutionary Studies, Cotlow Fund, Lewis & Clark Fund.

Preferred or fallback?...it depends: exploring the link between anthropogenic habitat disturbance and food choice among Sulawesi Tonkean macaques.

ERIN P. RILEY, JEFFREY V. PETERSON and BARBARA TOLBERT. Department of Anthropology, San Diego State University.

We examined the nutritional value of 13 fruit species known to be consumed by Tonkean macaques (Macaca tonkeana). We related these results to previously collected data on the diet, fruit availability, and habitat structure of two macaque groups living in differentially disturbed habitats in Lore Lindu National Park, Sulawesi, Indonesia to better understand how anthropogenic habitat disturbance affects food choice among primates. For both groups, food choice was independent of the frequency of plant species in the habitat, indicating that Tonkean macaques are selective feeders. The two groups differed, however, in a number of ways: 1. Fruit choice was positively linked to protein levels for the undisturbed group and negatively related to fiber levels (NDF) for the anthropogenic group; 2. The undisturbed group consumed a greater percentage (30%) of highly preferred foods (selection index > 10) than the anthropogenic group (8%); 3. While multiple fig species constituted approximately 50% of the total feeding records of the undisturbed group, just one species, Arenga pinnata, comprised the same percentage for the anthropogenic group. Aren palm fruit was also overselected (relative to its abundance in the habitat) by the anthropogenic group, indicating that it is a preferred food. At the same time, Aren fruit fits the description of a filler fallback food: available year-round and eaten throughout the year, but never constituting 100% of the diet. These results suggest that anthropogenic habitat disturbance should be an important factor to consider when defining and evaluating the significance of preferred and fallback foods for primates.
Ethnicity does not affect reproductive outcomes in Limon, Costa Rica.

ANNA RIVARA and LORENA MADRIGAL, Department of Anthropology, University of South Florida, Tampa, FL.

The effect of ethnicity on reproductive outcomes in some cultural settings is well established. For example, it has been demonstrated that in the United States African American women have greater propensity to deliver low-birth weight babies, who have higher neonatal mortality (Bell et al. 2006; Braillon and Belay 2010; Collins and David 2009; Muglia and Katz 2010). In this paper we ask if a similar effect of ethnicity on reproductive outcomes is present in Limon Costa Rica. Our data consist of the age at menarche and at first pregnancy, the number of live births, number of pregnancies, number of miscarriages, and number of surviving children at the time of interview in 245 Limon women (149 belonging to the Afro-limonense -AL- ethnic group and 92 belonging to the Hispanic-limonense -HL- ethnic group). Our data show that the groups do not differ for the number of pregnancies, life births, miscarriages and surviving children at the time of interview. The groups did differ in their mean age at time of interview ($X_{AL} = 53.50$, $X_{HL} = 56.76$; $t=2.12$, $p=0.0351$), which probably explains their significantly different mean age at menarche ($X_{AL} = 13.56$, $X_{HL} = 14.12$; $t=2.20$, $p=0.029$).

Although the Limonense community is certainly ethnically-stratified (Madrigal 2006; Purcell 192), the reproductive outcomes of women of both ethnic groups do not differ. Public Health officials in other settings should investigate the socio-economic and cultural reasons for the health disparity of women of different ethnic groups.

The effect of humeral torsion on shoulder range-of-motion and throwing performance.

NEIL THOMAS ROACH1, DANIEL E. LIEBERMAN1, THOMAS J. GILL1, IV,2,3 THOMAS J. GILL, III2,3 and WILLIAM E. PALMER4,5, 1Department of Human Evolutionary Biology, Harvard University, 2Sports Medicine Service, Massachusetts General Hospital, 3Harvard Medical School, 4Musculoskeletal Imaging & Intervention Division, Massachusetts General Hospital.

Throwing with power and accuracy is a uniquely human behavior and has been proposed as a potential mode of early hunting. However, very little is known about how anatomical shifts in the upper body known to occur during human evolution affect throwing performance. A clear example of this is humeral torsion, defined as the angular difference between the orientation of the humeral head and the axis of the elbow at the distal humerus. Previous studies have shown this angle is highly variable and tends to be smaller in the dominant arm of throwing athletes, but have failed to link torsion conclusively to range-of-motion at the shoulder. We currently lack good published mechanistic explanations for the role of humeral torsion in throwing performance.

This study examines the relationship between humeral torsion and shoulder range-of-motion and proposes a biomechanical explanation for the importance of torsion in the throwing action. Humeral torsion angles were calculated from computed tomography scans collected from 25 male subjects. These values were compared to predicted torsion values for the same subjects calculated from both kinematic and goniometric range-of-motion data using a method specifically developed for this study. Results show a significant and predictive relationship between shoulder range-of-motion and humeral torsion. These data lead us to propose a biomechanical model of the role of torsion in throwing performance, which we test with experimental data. These data are especially relevant to interpreting the low humeral torsion found in australopith and early Homo humeri and their implications for early hunting behavior.

This study was generously funded by: National Science Foundation, BCS - 0961943 (Roach & Lieberman).

Bornean loris and tarsier (Nycticebus menagensis and Tarsius bancanus borneanus) abundance and micro-habitat divergences in a degraded forest in Sabah, Malaysian Borneo.

NICHOLLE ROACH1, RACHEL A. MUNDS2, RIDZWAN ALI3,4, VINCENT NUMAN2, K. A. I. NEKARIS3 and BENOT GUILLAUME, 1Department of Anthropology, Texas A&M University, 2School of Social Science and Law, Department of Anthropology and Geography, Nocturnal Primate Research Group, Oxford Brookes University, 3Danau Girang Field Centre, Sabah Wildlife Department, centre for Primate Studies Borneo, Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, 4Cardiff School of Biosciences, Cardiff University.

A dramatic loss of habitat and the illegal wildlife trade affect the survival of the Bornean slow lorises (Nycticebus menagensis) and tarsiers (Tarsius bancanus borneanus). As habitats dwindle, competition for diminishing resources may increase between these sympatric fauna. An understanding of how they are coping with anthropogenic pressures and interspecific competition is needed to conserve them. For six months line transect surveys were done to estimate density in the Danau Girang Field Center, Sabah, Malaysian Borneo. We surveyed a distance of 68.56 km but found only 8 lorises and 5 tarsiers (5.05 lorises/km²; 2.75 tarsiers/km²). For the Bornean loris the results coincide with past studies of other Nycticebus spp. Results compared to other Tarsius spp. Densities are low. Micro-habitats were examined to determine niches exploited by the species. Through analysis of vegetation plots laid around species localities, we found tree heights and diameter at breast height (DBH) significantly differed between the species (median heights: loris 6.8 m; tarsier 3.6 m; median DBH: loris 17.8 cm; tarsier 6.2 cm), suggesting they occupy different niches. Tarsiers occur in the undergrowth on trees and stems less than 5 m: similar to other tarsier species. Lorises were found almost exclusively above 5 m. This result differed significantly above 5 m. This result differed significantly. Further studies are required to clarify such claims.

This study was funded by the Primate Society of Great Britain, Primate Action Fund, Primate Conservation Inc., Columbus Zoo and Aquarium, Cleveland Zoo, and The Margot Marsh Biodiversity Grant. This study adhered to animal handling and observing protocols set out by the American Society of Mammalogists.

Assessing the taxonomic affinities of the Sangiran 7 Homo erectus molars; are they all hominins?

CHRIS ROBINSON1, JEREMY TACKSCH2 and WHITNEY B. REINEL3, 1Department of Biology, Bronx Community College, CUNY, 2Department of Paleontology, Senckenberg Research Institute, 3Department of Anthropology, Hunter College, CUNY.

Due to a lack of quantitative work on this sample, taxonomic placement of the Sangiran 7 Homo erectus molars remains uncertain. Debate exists as to whether several of the specimens represent Pongo sp. rather than H. erectus (Grine & Franzen, 1994). This issue requires further analysis since smaller, worn Pongo molars have been misidentified as Homo and differences between molars of the two genera have been described as 'minor' and 'less pronounced with wear' (Ciochon et al., 1996). To address this issue, we analyzed three-dimensional shape differences among these taxa using geometric morphometrics to determine whether the Sangiran specimens could be identified to genus. We compared Sangiran lower molars (n=7) to those of fossil and extant orangutans (n=15) and modern humans (n=10) and Gigantopithecus (n=3) to determine whether any of the Sangiran specimens could be excluded from the hominin sample. We used a laser scan-
Unhealthy in different ways? Comparing 4 sub-populations of Greek children to assess the different pathways that can lead to obesity.

MARIA RODITIS Department of Anthropology, Indiana University, Bloomington.

Children in different countries and even sub-populations of children in the same country may differ in their rates of malnutrition. Proximate causes of weight and obesity include eating too much and exercising too little, but the social and cultural pathways that facilitate this need to be evaluated. To examine how sub-populations within a single country can differ in rates of overweight and obesity as well as in the driving forces behind those rates, 1000 children aged 7-11 in 4 different Greek populations were measured between 2008 and 2009. The samples come from 17 schools in western, eastern, and central Thessaloniki, and the island communities of Ikaria and Fourni. This study utilized anthropometric measurements of height, weight, and waist circumference along with skinfold measures; although only data on waist circumference, height-for-age, weight-for-age, and BMI-for-age z-scores, will be presented here. Additionally, survey data from parents and food frequency questionnaires from a subsample of children were collected. ANOVA used to assess statistical differences in measurements of children by sex, location, and age indicated that while no overarching trend existed for differences in nutritional status by location, there were differences in nutritional status between locations at different ages. Correlations and regression statistics suggest that different demographic and social factors, such as foods available at school, were differentially associated with overweight and obesity in the sub-populations of Greek children. This paper reaffirms that overweight and obesity is a continuing concern in Greek populations, and that different lifestyles can be unhealthy in different ways.

This study was funded by the Fulbright Foundation.

The Beza winter itch: ticks parasitizing Microcebus griseorufus at Beza Mahafaly Special Reserve, Madagascar.

IDALIA A. RODRIGUEZ, EMILJENNE RASOAZANABARY AND LAURIE R. GODFREY Department of Anthropology, University of Massachusetts at Amherst.

In the region of the Beza Mahafaly Special Reserve (BMSR) in southwest Madagascar, Microcebus griseorufus are host to at least two haemaphysaline tick species, H. lemuris and a second species not yet identified. M. griseorufus appear to be hosts to only the immature stages of both tick species, and are likely accidental hosts to the unidentified tick species.

At BMSR, larval and nymphal ticks, and few adults, are present on mouse lemurs only during the months of May through October, corresponding to the austral dry season. Male mouse lemurs have higher infestation rates than females, possibly due to a greater amount of time spent traveling and foraging on the ground. Infestation rates at the gallery forest well exceed infestation rates at two nearby forests. We relate these differences to the greater density at the gallery forest of ground cover and to higher population densities of lemurs and other, more terrestrial, mammalian species. We present evidence that the adults of these haemaphysaline special path weed on ordered lemur hosts. We also infer that these ticks have a non-continuous life cycle, likely influenced by the strong seasonality at Beza.

Finally, we relate the variation in tick infestation rates to the population dynamics of associated species, both endemic and introduced (e.g., rats and terrecs), known to carry ticks at Beza. Human encroachment has resulted in drastic changes in the habitats and mammalian communities in which lemur live, and these changes may have affected avenues for the transmission of ticks and tick-borne pathogens.

This research was funded by the International Foundation for Science (IFS), Wildlife Conservation Society (WCS), National Geographic Society (NGS), Primate Conservation Inc. (PCI), and American Society of Primatologists (ASP).

Using the life history model to set the stage(s) of growth and senescence in paleodemography.

MIRJANA ROKSANDIC1 and STEPHANIE ARMSTRONG2. 1University of Winnipeg, 2University of Manitoba.

Paleodemography, the study of demographic parameters of past human populations, relies on assumptions including biological uniformitarianism, stationary populations and the ability to determine point age estimates from skeletal material. These assumptions have been widely criticized in the literature and many solutions have been proposed. The majority of these solutions rely on statistical methods, and have not been widespread application, resulting in a rift between theoretical paleodemography and bioarchaeology. We suggest that since our ability to assess age is inherently limited, we should concentrate on the type of age information accessible from the skeletal material which uses life stages, rather than point age estimates. The stages we propose are based in the human life history patterns, and their skeletal markers are
Assessing manual proportions in Australopithecus afarensis using Monte Carlo resampling.

CAMPBELL ROLIAN, ADAM D. GORDON and BENEDIKT HALLGRIMSSON.

1Department of Anatomy and Cell Biology, University of Calgary; 2Department of Anthropology, State University of New York – Albany.

Recent analyses of hand morphology in Australopithecus afarensis have concluded that this taxon had Homo-like manual proportions, with relatively long fingers and short thumbs. However, it is uncertain whether these conclusions are based on the AL333 composite fossil assemblage from Hadar, and premises on the ability to assign phalanges not only to a single individual, but also to the correct digit within that individual. Neither of these assignments is secure, however, given the taphonomy and sample composition at AL333. Instead, an approach that takes into account the entire assemblage of complete hand elements at AL333, as well as the uncertainty in identifying phalanges by individual, size and digit number, provides the most conservative estimate of hand proportions in A. afarensis. Here, we use a Monte Carlo approach to resample hand bone lengths in A. afarensis and extant hominoids, and obtain confidence limits for the distributions of manual proportions. Results show that in most indices of hand morphology, A. afarensis is similar to Pan and Pongo. However, its metacarpophalangeal and phalangeal proportions often fall beyond the statistical range of proportions in Homo, and within the confidence limits of the distributions of proportions in Gorilla. We conclude that manual proportions in A. afarensis are not Homo-like, but rather intermediate between gorillas and modern humans, with metacarpal proportions closer to the human range of variation, but phalangeal proportions that remain within the African ape range of variation. Implications for manipulative ability in A. afarensis are discussed.

This study was funded by an NSF DDIG (BCS 0647624) and Alberta Children’s Hospital CIHR Training Grant to CR.

Molar crown size in African Pygmy hunters, herders and Bantu-speaking farmers.

ALEJANDRO ROMERO, FERNANDO V. RAMIREZ ROZZI and ROBERTO DE LA TORRE.

Department of Biototechnology, University of Alicante (Spain); 2UPR 2147 CNRS, Dynamique de l'évolution humaine, 3IRD UMR 268, 4Departement de l'Homme, 5Department of Animal Biology, University of Barcelona (Spain).

African pygmies and Bantu farmers living in close relationship differ quite clearly in genetic and in morphology. Previous works based on linear dimensions have shown that teeth are enlarged in dwarfed populations in relation to skull dimensions, but no differences were found in absolute dimensions neither in tooth scaling between pygmies and non-pygmies. Nevertheless, few studies have looked at specific morphological traits of the Pygmy’s dentition. The crown base area (CBA) and buccal fossa (trigon-TR and hypocone or talon-TL) of the upper M1 were analyzed in a sample of Western pygmies (WPYG) (Baka, BaBinga and BaBongo, n=28), Eastern pygmies (E PYG) (Bateke, Batwa and Efie, n=7) and Bantu speakers (Bateke-Balali, Pahouin and Yakoma, n=30) inhabiting the rain-forest of equatorial Africa. Univariate (ANOVA and post-hoc Tukey’s HSD test) and Canonical discriminant functions analyses, were used to plot differences between groups. Results indicate that CBA, TR and TL are significant larger in Pygmies (W & E) than in Bantu, these differences can explain in themselves a negative allometry in tooth size related to cranial dimension in dwarfed populations. When WPYG and E PYG are considered separately, only WPYG show differences with Bantu in CBA and TL. Analysis of tooth scaling reveal strong allometric pattern in each group. Finally, the discriminant analysis shows greater variability among Pygmies due to important changes in the trigon. Our results, based on one morphological show similar results to those based on DNA analyses.

This study was funded by Spanish GV and MEC, grant numbers BEST2009/ 255, CGL2007-60802 and Wenner-Gren Foundation, grant number Gr.7819.

Skulls in the roof: A case of probable Fremont trophy heads.

RONALD ROOD, DERINNA KOPPI and DEBORAH GRAHAM.

1Antiquities Section, Utah Division of State History; 2Department of Anthropology, University of Utah.

During the construction of a house in Richfield, UT the remains of Fremont pit house were discovered. Subsequent archaeological excavation by the State of Utah Antiquities Section revealed the structure had been destroyed by fire and collapsed in on itself. Three human skulls were discovered in the roof fall of the structure but no other human remains were found during the excavation of the pit house and surrounding area. The skulls and first several cervical vertebrae of two children aged 3 to 5 years and 9 to 11 years, and that of a female aged 20-24 years were recovered and analyzed under Utah State NAG-PRA for repatriation. All three skulls exhibited perimortem trauma associated with decapitation and scalping including cut marks, perimortem fracturing and peeling on the cranial, mandibles and vertebræ. The type and location of the trauma suggests the skulls were likely trophy skulls. While this appears to be one of the first instances of trophy skulls found among the Fremont and in this region, several rock art panels in nearby canyons depict anthropomorphic individuals holding decapitated heads.

Additionally, recent osteological analyses of several nearby Fremont sites have identified some cranial and other articulated remains of other trophy heads and it refutes the hypotheses explanation for increased interpersonal violence among the Fremont.

Defining patterns in human bone microstructure through the application of geographic information system (GIS) software.

DAVID ROSE, TIM GOCHA, AMANDA M. AGNEW and SAM D. STOUT.

Department of Anthropology, The Ohio State University.

Geographic information system (GIS) software is typically used for mapping projects, however it has other constructive applications for physical anthropologists. The objective of this study was to assess the ability of GIS software to analyze patterns in the spatial distribution of histomorphological features in the human bone. Overlapping images of the entire cross-section of a first metatarsal, taken at 100x magnification under polarized light, were assembled into a single composite image in Adobe Photosop and imported into ArcGIS software. All remodelling points and osteon morphotypes were manually identified, and osteon area and circularity were measured by the user. The spatial distribution of these features was demonstrated with directional distribution, hotspot, and cluster/outlier analyses. Bending axes were identified using ImageJ software (NIH) and near analyses within ArcGIS was used to measure the distance of all remodelling points to bending axes. Distribution of these points was consistent with an expected pattern based on force distribution during loading. The uses for a histomorphometric application of ArcGIS stretch beyond the strategy discussed above. For example, after manual annotation of complete and fragmentary osteons on a composite image, OPD can be calcu-
Costovertebral morphology, thoracic vertebral number and last rib length in Australopithecus afarensis.

BURT A. ROSENMAN¹ and CAROL V. WARD². ¹Department of Physical and Biological Sciences, Western New England College; ²Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine.

Unlike the lumbar vertebral column, for which there are data, the assessment of thoracic vertebral number in Australopithecus afarensis is limited, given the paucity of sufficiently preserved specimens. Furthermore, its last rib length and pattern of articulation with the transverse processes is unknown. Here we analyze the vertebral columns Sts 14, Stw 431, and Stw H8/41, from Sterkfontein and traditionally assigned to Australopithecus afarensis.

Our comparative sample included H. sapiens, P. troglodytes, and G. gorilla. We scored or measured: 1) relative last rib length, 2) thoracic vertebral number, 3) transitional vertebral position, 4) presence/absence of the tubercular facets on the five caudalmost thoracic transverse processes, and 5) relative cranio-caudal position of capitular (demi) facets on the five caudalmost thoracic vertebral bodies.

Relative (demi) facet position differs significantly among all three taxa. H. sapiens transitions from demifacets to single facets more cranially upon the spine than P. troglodytes, which makes the transition more cranially than G. gorilla. A more gradual change in (demi)-facet position is positively correlated with the presence of tubercular facets, longer last ribs, and increased thoracic vertebral number. Sts 14, Stw 431, and Stw H8/41 have (demi)facet scores more like the African apes and less like humans, possibly indicating a longer last rib and the presence of more rib-bearing vertebrae than in H. sapiens. These morphologies also may be related to a higher transitional vertebral and longer functional lumbar column in A. afarensis than typical for modern humans, and perhaps represents a unique pattern among hominoids.

This study was funded in part by the National Science, Wenner Gren and Ford Foundations.

Applying spatial partitioning and k-means clustering to habitat occupation in Propithecus perrieri.

ABIGAIL C. ROSS and SHAWN M. LEHMAN. Department of Anthropology, University of Toronto, Toronto.

Ecological data frequently violate the statistical assumptions of parametric tests, wherein the presence of spatial autocorrelation leads to an increased incidence of type I (false positive) errors. Positive spatial autocorrelation is the lack of statistical independence between observations resulting from proximity in ecological space. A multitude of landscape ecology models control for the presence of spatial autocorrelation, however, evaluating the ecological effects of spatial processes on a local scale is uncommon in primatological field studies. The purpose of our study was to consider the influence of spatial autocorrelation on behavior and habitat occupation in Perrier’s sifaka (Propithecus perrieri). P. perrieri is a critically endangered lemur found exclusively in highly fragmented dry deciduous forests in northern Madagascar. Behavioral data were collected using 5-minute focal animal instantaneous sampling from P. perrieri in Analamera Special Reserve, Madagascar. Spatial partitioning and k-means clustering statistical methods and spatial methodologies were used to determine the relationship between observed behaviors and habitat occupation. Disturbance level is the most significant spatial partition and considerable interindividual variation in canopy height occupation is present. Identifying differences in habitat occupation, while simultaneously considering the effects of ecological space, captures individual responses to ecological conditions. Spatial partitioning and k-means clustering are effective spatial methodologies to independently measure interindividual socioecological variation in P. perrieri.

Nutritional geometry: protein and energy in mountain gorilla diets.

JESSICA M. ROTHMAN¹, DAVID RAUBENHEIMER² and COLIN A. CHAPMAN³. ¹Department of Anthropology, Hunter College of the City University of New York; ²Institute of Natural Resources, Massey University; ³Department of Anthropology and McGill School of Environment, McGill University.

Numerous studies have investigated the dietary ecology of wild primates in relation to nutrients, but little is known about the underlying motivations for choosing mixtures of dietary items. Previous studies suggest that folivorous primates, including mountain gorillas (Gorilla beringei), select high-protein foods, but this is puzzling because their main dietary items, terrestrial herbaceous vegetation, contains protein that greatly exceeds estimated protein requirements and the protein composition of gorilla milk. To unravel this issue, we quantified nutrient intake in mountain gorillas in Bwindi Impenetrable National Park, Uganda over one year by conducting behavioral observa-
Nutritional incompetence and diet breadth in subadults from the Wister Valley of Southeastern Oklahoma during the Fourche Maline.

SIMONE ROWE. Department of Anthropology, University of Oklahoma.

Although a plethora of Fourche Maline (Woodland) sites have been excavated and analyzed, subsistence patterns, dietary patterns and how agriculture was introduced into the region, remain unclear. With permission from The Caddo Nation and The Wichita and Affiliated Tribes, thirty-three subadult burials from the Akers site (34LF3) in southeastern Oklahoma were assessed for paleopathology. Examination of subadult paleopathological lesions revealed an unusual pattern consisting of high rates of cribra orbitalia, low rates of porotic hyperostosis, and moderate rates of periosteal lesions. This suggests nutritional stress, particularly Vitamin C deficiency, iron deficiency anemia, and possibly folic acid deficiency. The distribution of the skeletal lesions by age range further suggests that these deficiencies are related to a limited early childhood diet. Strong ethnographic and archaeological evidence for a diet that relied heavily on hickory nuts supports these conclusions. A diet dominated by hickory nuts would have provided good amounts of carbohydrates, fat, and protein, but very little iron and almost no Vitamin C or folic acid. It is proposed that a weaning diet that relied on hickory nut mush produced a transient nutritional incompetence in many subadults, resulting in the pattern of paleopathological lesions observed in the subadults from the Akers site. Research currently underway on adult paleopathology will hopefully further elucidate patterns of nutritional stress.

Genome-wide investigation into variation of common infections among Mexican Americans.

ROHINA RUBICZ1, ROBERT YOLKEN2, LARA BAUMAN3, EUGENE I. DRIGALENKO4, THOMAS D. DYER1, JACK KENT JR.1, MELANIE CARLESS1, JOANNE CURRAN1, MATT JOHNSON1, SHELLEY A. COLE1, LAURA ALMASY1, ERIC K. MOSES5, JOHN BLANGER6, ELLEN KRAIG3, NIHIL V. DURAND-HAR4, CHARLES T. LEACH8 and HARALD H. H. GÖRING9. 1Department of Genetics, Southwest Foundation for Biomedical Research, 2Department of Pediatrics, John B. Chaffee School of Medicine, 3Department of Cellular and Structural Anatomy, Louisiana State University System, 4Department of Pediatrics, University of Texas Health Science Center at San Antonio, 5Pennington Biomedical Research Center, Louisiana State University System, 6Department of Pediatrics, University of Texas Health Science Center at San Antonio.

Populations and individuals differ in susceptibility to infectious disease due to numerous factors, including genetic variation. We previously demonstrated that differences in antibody titer, which reflect infection history, are significantly heritable. Here we investigate whether it is possible to identify genetic factors influencing variation in these serological phenotypes. Blood samples from >1300 Mexican Americans were quantified for antibody titer to 13 common infections: Chlamydia pneumoniae; Helicobacter pylori; Toxoplasma gondii; cytomegalovirus; Epstein-Barr virus (EBV); herpes simplex I virus; herpes simplex II virus; human herpesvirus 6; varicella zoster virus; adenovirus 36 (Ad-36); hepatitis A; influenza A; and influenza B. The quantitative antibody titer and discrete (seropositive/seronegative) phenotypes were analyzed for each pathogen. Genome-wide variance components linkage and measured genotype association analyses (using >500,000 SNPs) were performed with SOLAR software. Linkage analysis yielded LOD scores >3.0 for EBV (on chromosome 6), influenza A (on chromosome 6), and Ad-36 (on chromosome 18). Joint linkage and association analyses produced genome-wide significant results for C. pneumoniae discrete trait (p=2.2x10^-10) and EBV (p=3.5x10^-4 and p=3.5x10^-11, for quantitative and discrete traits, respectively). Gene expression data (from >16,000 transcripts, generated from peripheral blood lymphocytes) were also analyzed, and significantly correlated transcripts were identified for approximately half the pathogens. Further investigation of EBV indicates this trait is influenced by multiple genetic factors within the human leukocyte antigen (HLA) complex, which are specific to EBV and not infection in general. Our study shows that individual loci regulating the above serological measures exist and can be localized by statistical gene mapping approaches. This study was funded in part by NIH, HL080149, the National Heart Lung and Blood Institute, HL045522, the Azar and Shepperd families, and the Stanley Medical Research Institute.

Osteological evidence of trauma and intergroup hostility at the Aztalan site, (47JE1), Jefferson County, Wisconsin.

KATIE Z. RUDOLPH. Department of Anthropology, Indiana University.

The Aztalan site is a nine hectare, pali-saded Late Woodland/ Middle Mississippian (A.D. 1000-1200) archaeological site located on the west bank of the Crawfish River in Jefferson County, Wisconsin. Human remains at Aztalan are classified into two burial categories. Formal burial includes primary, in-flesh inhumations, secondary bundle burials and charnel structure cremations. Informal burial desiccates the over 2,500 scattered, isolated and processed specimens recovered from refuse pits, fire pits, along the palisade and strewn across the habitation area. Interpretation of informal burial at Aztalan has been cannibalism, secondary processing related to mortuary ritual and intergroup hostility. Intergroup hostility had not been formally investigated prior to this research.

Taphonomic methods were used to examine perimortem and postmortem modification to the Aztalan human remains as a means to identify what processes affected the remains and to characterize the Aztalan skeletal assemblage. Cutmarks, chopmarks and perimortem fracturing are distinguished from other forms of observed taphonomy as the three most frequent forms of cultural taphonomic modification present. Perimortem processing associated with these modifications is recorded on men, women and children of all ages. Patterns of perimortem processing on the crania suggest that scalping, decapitation and ear removal took place. Postcrania, long bones are fractured at the superior and inferior one-quarter of the diaphysis and at midshaft. Furthermore, postcranial elements show evidence of in-flesh burning. Combined with archaeological correlates of intergroup hostility and the social milieu present at Aztalan, the cultural taphonomy of human remains supports an interpretation of violent interaction at the site.

Interpreting skeletal growth in the past within a functional and physiological perspective.

CHRISTOPHER B. RUFF. Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore.

Studies of skeletal growth and development in past populations have tended to focus on a few easily quantified traits,
such as long bone lengths, and have generally deemphasized variability in growth between different skeletal regions or in more complex morphological characteristics. However, growth is not monophasic or consistent throughout the skeleton, and may reflect environmental and genetic influences that vary depending on the type of feature and its functional and physiological constraints. These factors must be considered when interpreting variation in skeletal growth patterns.

Several examples of such an approach from both paleoanthropological and bioarchaeological contexts are presented. Skeletal contrasts considered include limb bone strength versus length, diaphyseal vs. articular size, and periosteal vs. endosteal dimensions. In each case, different patterns of growth are often noted or consistent throughout the skeleton in the same direction. For example, nutritional stress, nutritional level - have different effects on different skeletal features and are in part age-dependent as well. Thus, in order to correctly interpret variability in skeletal growth patterns as well as final adult morphology, it is necessary to understand both the constraints on normal growth trajectories and their degree of environmental sensitivity across the entire pre-adult age range. Evaluation of a variety of different skeletal features can give important insights into these processes that are not apparent from more traditional analyses of a few limited traits.

Fiber length determination and methodology in Galago moholi (Lorisiformes: Primates).

JOSEPH RUNDE and JONATHAN PERRY. Department of Anatomy, Midwestern University.

Knowing fiber length is crucial to understanding variation in muscle strength and excursion capacity. However, a key methodological difference splits the available data sets, complicating comparison among studies. Our study focuses on the right and left masseter muscles of three Galago moholi specimens. One masseter from each specimen was selected for chemical treatment in ten percent sulfuric acid at 60°C for 1-2 hours allowing connective tissue to be dissolved and the fibers to be gently teased apart and subsequently measured. In the remaining masseter, three sampling sites were chosen for sectioning along fiber orientation. Fascicles distributed evenly across the entire sectioned surface were then selected for measurement in order to properly represent variation in that part of the muscle. In all cases, measurements of fiber length gathered from chemical treatment were greater than those taken in sectioned muscle. This suggests that fibers are likely damaged during sectioning due to imperfect sectioning technique and variation in fiber orientation within the muscle. Thus, direct comparisons between data obtained via these different methods would benefit from the use of a correction factor.

This study was funded by the Kenneth A. Suarez Summer Research Program, Chicago College of Osteopathic Medicine.

To clone or not to clone: method analysis for retrieving consensus sequences in ancient DNA samples.

SARAH RUNNELL'S1, JODI LYNN BARTA2,3, CARA MONROE1,2,3, and BRIAN M. KEMP1,2,3,1 School of Biological Sciences, Washington State University, 1Department of Anthropology, Washington State University, 2Department of Anthropology, University of California-Santa Barbara.

The strength of ancient DNA (aDNA) evidence in the study of evolution is tempered by its challenging retrieval and authentication, principally because of post-mortem damage to the molecules. As a result, aDNA studies are particularly prone to contamination from “modern” DNA sources. These unique characteristics of aDNA have led many researchers to adopt the recommendations for authentication provided by Cooper and Poinar in 2000. One of their recommendations, sequencing clones of aDNA amplicons (i.e. “Cloning”), has become a gold standard in the field. However, beyond the recommendation to “clone” there is no standardization as to the number of clones that need to be sequenced and/or how the results should be reported in the literature. Researchers use variable approaches in deriving a consensus from such data. There has been no systematic demonstration that directly sequencing aDNA would provide a different sequence than one determined from a consensus of clones.

We extracted DNA from the remains of five ancient northern fur seal (Callorhinus ursinus) ribs. Results from direct sequencing and cloning of a portion of the mitochondrial cytochrome B gene were compared. In total we observed damage at 25 of the 139 base pairs sequenced from clones. However, in no case did the consensus of clones differ from the direct sequence. Our study questions the notion that aDNA results necessarily need to be cloned and sequenced in all cases, especially when this practice adds time and cost to studies where it may be superfluous.

This work was supported by a National Institute of Justice Forensic DNA Research and Development Grant 2008-DN-BX-K008 to Brian M. Kemp. Support for Sarah Runnells was provided by the Interdisciplinary Training for Undergraduates in Biological and Mathematical Sciences (UBM) grant EF-0531870.

Sex estimation using anterior sacral curvature: a geometric morphometric approach.

KATELYN RUSK and STEPHEN D. OUSLEY. Department of Applied Forensic Sciences, Mercyhurst College.

Biological anthropologists have often utilized the sacrum in sex estimation because of its perceived sexual dimorphism. Historically, this was accomplished through standardized measurements and indices to represent its overall shape and size (Trotter, 1926; Flander, 1978). However, the anterior curvature of the sacrum, which is a commonly used sex indicator, is poorly represented by these measurements. Furthermore, the use of sacral curvature for sex estimation is often qualitatively expressed as either “more” or “less” curved without any quantifiable measure of certainty (Bass, 1965).

To examine and quantify the relationship between anterior sacral curvature and sex, six landmarks on the midline of the sacrum were digitized from 197 individuals of known sex and ancestry at the Hamann-Todd Osteological Collection. Using MorphoJ (Klingenberg, 2008), Geometric Morphometric (GM) methods were used to assess shape differences between male and female curvature. Interlandmark distances (ILDs) were also calculated to examine differences in size and shape. Discriminant function analysis (DFA) of the Procrustes Coordinates and the ILDs was performed using FORDISC 3.0 (Jantz and Ousley, 2005). Classification accuracy rates ranged from 63 to 77.3% cross-validated, depending on the variables and groups included in each analysis.

These results demonstrate that sacral curvature is of limited utility for sex estimation, in contrast to previous assertions. However, differences in curvature were more pronounced in American blacks than American whites in the sample, whereas American whites displayed more size dimorphism than American blacks.

Ontogeny of caudal vertebral structure in capuchin monkeys (Cebus albifrons and C. apella).

GABRIELLE A. RUSSO1, JESSE W. YOUNG2 and LUKE J. MATTHEWS3, 1Department of Anthropology, The University of Texas at Austin, 2Department of Anatomy and Neurobiology, Northeastern Ohio Universities College of Medicine, 3Department of Human Evolutionary Biology, Harvard University.

Ontogenetic studies of long bone cross-sectional properties in capuchins demonstrate that juveniles have relatively strong limbs for their body size. Here,
we investigate this ontogenetic trend in another region of the capuchin locomotor skeleton: the tail. We hypothesized that young capuchins would have relatively robust caudal vertebrae, predicting that measures of caudal vertebral bending strength (polar section modulus, Zp) would scale with positive allometry. Linear measurements on three caudal vertebrae (transitional[TV], longest[LV], and mid-distal[MdV]) were obtained from 336 radiographs of 13 individuals (C. albifrons = 12; C. apella = 1). TV Zp, LV Zp and MdV Zp, regressed against body mass, scale with negative allometry; TV, LV and MdV cranio-caudal lengths scale to body mass with positive allometry; and TV Zp, LV Zp and MdV Zp, regressed against the product of body mass and bone length (a proxy for bending moments), scale with negative allometry. Caudal vertebrae thus share a scaling pattern with limb bones. However, caudal vertebral bending strength scales with stronger negative allometry than those observed for humeri or femora. Behavioral studies show that juvenile capuchins employ their tails significantly more often than adults, perhaps as an added safety measure during refinement of adulthood positional behaviors. Tail growth in capuchins may therefore reflect an ontogenetic pattern present throughout the skeleton, the functional demands of greater prehensile tail use early in life, or a combination of both. Further paleontological and behavioral data on taxa that differ in prehensile tail use during ontogeny will be required to test these non-mutually exclusive hypotheses.

Orangutan fishing and the evolution of human diets.

ANNE RUSSON. Psychology Department, Glendon College of York University.

This paper reports orangutan innovations for fish eating and catching and their implications for questions of when and how ancestral hominins incorporated fish and other aquatic foods into their diets. These questions are significant given the established view that early hominins were mainly carnivorous, because aquatic foods are the most highly enriched hominid brain and cognitive enhancements. Evidence on orangutan fish eating and catching derives from 2 years focal and event-based observations on orangutan fish eating and/or catching. This paper describes the fishing methods used, fishing contexts (ecological, seasonal, social) and fish species eaten, and then uses the chronology of the methods and contexts observed to suggest how these orangutans discovered and elaborated fish eating/catching. The fishing patterns identified in these orangutans closely mirror those hypothesized in ancestral hominins, including the ecological conditions in which fish eating and catching originated, the fish species caught and eaten, and the manual and simple tool techniques used. These orangutan findings add credence to models of the conditions that enabled fishing to originate in ancestral hominins. They also show that great ape brains are powerful enough to innovate simple technology-based forms of fishing. This orangutan evidence then suggests that aquatic foods could have been included in diets before the hominins diverged.

Data reported in this paper were collected for studies funded by grants from NSERC (Natural Sciences and Engineering Research Council, Canada, 2004-2009) and the L.S.B. Leakey Foundation (USA, 2004-06).

Energetics and life history plasticity in callitrichine primates: a view within and across generations.

JULIENNE RUTHERFORD1, CORINNA ROSS2 and SUZETTE TARDIF2. 1University of Illinois at Chicago, 2University of Texas Health Science Center, San Antonio.

Life history characteristics have deep roots in developmental processes, particularly those related to maternal ecology. The marmosets and tamarins are energetically flexible reproducers such that maternal mass is the best predictor of ovulation number and litter size. Using demographic data from hundreds of captive common marmosets from the Southwest National Primate Research Center, we examine the long term life history consequences of litter size at birth. We specifically address whether triplets, which have lower birth weights than twins, exhibit a) a faster life history pace and or b) evidence of higher reproductive quality, which could trade off the assumed maternal energetic cost of producing larger litters. Compared to twins, triplets do grow at a rate that is 10.3% faster (p = 0.0006) and are marginally larger at maturity, indicative of an accelerated life history. However, the reproductive outcomes for individuals based on birth condition are stark: while triplets and twins do not differ in the total number of offspring produced in a lifetime (9 v. 10.23, p = 0.53), triplets produce a significantly higher proportion of stillborn offspring (24.9% v. 10.7%, p = 0.02). If a female were to bear only triplet litters she could reduce at least one aspect of fitness – number of grandoffspring; however, even in captivity females exhibit "local" flexibility in litter size. The benefit of a system that produces triplet litters in flush ecological contexts in the wild is potentially the speeding up of offspring life history timing, in an environment where the threat of predation and sudden energetic shortfalls is prevalent.

How do differences in dietary composition affect diet nutrient concentrations? A test with colobus monkeys in Kibale National Park, Uganda.

AMY RYAN1, COLIN A. CHAPMAN2 and JESSICA M. ROTHMAN3,4. 1Department of Psychology, Hunter College of the City University of New York, 2Department of Anthropology and McGill School of Environment, McGill University, 3Department of Anthropology and 4McGill University, Hunter College of the City University of New York, New York Consortium in Evolutionary Primatology (NYCEP).

Within a primate species diet can be highly variable in composition, even at small scales within the same forest, or seasonally, suggesting that monkeys use different plant species and parts to meet similar nutritional needs. To test whether differences in dietary composition affects the nutrient concentrations ingested by primates, we studied the diets of two groups of black-and-white colobus monkeys (Colobus guereza; N = 6, N = 9), and two groups of red colobus monkeys (Procolobus rufomitratus; N = 48, N = 24) in Kibale National Park, Uganda. Based on 3,284 scans of red colobus and 2,281 scans of black-and-white colobus over 10 months, these monkeys consume many of the same plant species, but spend different amounts of time feeding on them. The majority of colobine diets were comprised of young leaves; however, they also ate mature leaves and leaf petioles. Since protein and fiber are important determinants of colobine food choice, multiple samples of 18 food species were analyzed for protein (CP) and fiber (ADF). Protein and fiber concentrations in the two different black-and-white colobus groups were both 22% CP, and 23% 26% ADF respectively. Red colobus groups ate similar diets of ADF (27%, 25% ADF, respectively), although concentrations of CP were different (20%, 16% respectively). This difference between groups in red colobus diets may be a result of the difference in group size since bigger groups may win contests over better food resources. Our results suggest that monkeys eating diets with differing amounts of species and parts may ultimately receive similar concentrations of nutrients. This material is based upon work supported by the National Science Foundation under Grant No. 0922709.

The relationship between the mechanical and microstructural properties of trabecular bone in the anthropoid femur and humerus.

TIMOTHY M. RYAN1,2, ANIA K. SWIATONIOWSKI1 and COLLIN N. SHAW1,2. 1Department of Anthropology, 2Department of Psychology, Hunter College, New York City.

This paper investigates the mechanical and microstructural properties of trabecular bone of the human femur and humerus, and compares these to those of a variety of anthropoid taxa. A comprehensive suite of techniques, including histomorphometry, micro-CT, QEM, and nano-indentation, was applied to femora and humeri of 25 anthropoids, representing 12 species and 6 clades. The mechanical and microstructural properties of trabecular bone in the anthropoid femur and humerus were compared to those of Homo sapiens and examined for patterns of convergence and divergence with other anthropoids. A key result was the finding of high proportions of low- and high-modulus fibers in anthropoid femora, which suggests a functional role for these fibers in optimizing bone performance. The results of this study provide new insights into the mechanical and microstructural properties of trabecular bone in anthropoid taxa, and have implications for understanding the evolution of bone function in the human lineage.
Pennsylvania State University. 2Center for Quantitative Imaging, Pennsylvania State University.

Analyses of trabecular bone in primates assume a close correspondence between microarchitecture and bone elastic properties. The purpose of this study is to assess the relative contributions of trabecular bone structure to the variation in the Young’s modulus in the femur and humerus of anthropoid primates. High-resolution CT scans were collected for the proximal femur and humerus of five primate taxa including Homo sapiens, Pan troglodytes, Papio sp., Pongo pygmaeus, and Symphalangus syndactylus. Five cubic volumes of interest (VOI) located within the femoral and humeral heads were extracted from each individual and the bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular spacing (Tb.Sp), trabecular number (Tb.N), structure model index (SMI), connectivity density (Conn.D), degree of anisotropy (DA), and bone surface density (BS/BV) were measured. Stiffness-based micromechanical finite element models were run for each VOI (n=630) to calculate orthotrophic stiffness constants. Multiple regression analyses demonstrate that in the humerus BV/TV accounts for most of the variation in Young’s modulus ($r^2=0.894$, $p<0.0001$) and that adding DA and Tb.Sp can account for up to 96% of the variation in Young’s modulus ($r^2=0.966$, $p<0.0001$). In the femur, SMI, a measure of the relative proportion of plates and rods, accounts for 87% of the variation in Young’s modulus ($r^2=0.872$, $p<0.0001$); the addition of BV/TV, DA, and Tb.N increases the r^2 to 0.937 ($p<0.0001$). These results suggest that BV/TV and SMI contribute significantly to trabecular bone stiffness but that there are site-specific differences in the structural composition of trabecular bone in the primate skeleton.

Grant Sponsors: National Science Foundation; Grant number: BCS-0617097.

Social dynamics and labor at Neo-lithic Çatalhöyük: inferring workload and activity patterns from degenerative joint disease.

JOSHUA W. SADVARI and CLARK SPENCER LARSEN. Department of Anthropology, The Ohio State University.

Çatalhöyük (7400-6000 BCE) is a Neolithic settlement in Turkey recognized for its importance in understanding densely-populated early farming communities. A key research focus for such sites is labor distribution throughout the population. Degenerative joint disease (DJD) is well-suited to address hypotheses regarding workload and its impact on life quality. Although multifactorial in etiology, DJD is primarily influenced by cumulative mechanical “wear-and-tear” on the major articular joints. The prevalence and severity of DJD in 154 adults are scored using a four-point ordinal scale to address the null hypothesis that no difference in DJD patterns based on age, sex, stratigraphic level, and house type exists in this setting. Results indicate the expected trend of heightened DJD prevalence and severity with increasing age. Contrary to the nearly universal pattern of higher DJD in males, no major differences emerge between the sexes, as would be expected if a marked sexual division of labor allocated a heavier workload or more strenuous activities to males. Temporal changes in DJD patterns are observed but not to the extent expected if population growth drastically increased individual labor efforts in resource procurement. Certain houses at Çatalhöyük display a special significance in number of burials or rebuilding cycles. No differences in DJD patterns exist between individuals interred in special houses compared to other houses, suggesting that the relative social standing of these individuals did not significantly lessen their workload. Analyses of degenerative joint disease remain an invaluable tool for assessing the social dynamics influencing labor and activity in past populations.

This study was funded in part by a grant from the National Geographic Society (Larsen).

Vocal repertoire of wild western gorillas (Gorilla gorilla) at Mondika Research Center, Republic of Congo.

ROBERTA SALMI1 and DIANE M. DORAN-SHEEHY2, 1Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, 2Department of Anthropology, Stony Brook University.

Group-living animals use vocal signals as social communication, regulating social interactions and maintaining group cohesion and coordination. Little is known about how closely-related primates living in differing habitats adapt their vocal repertoire to differing needs of communication. Western and mountain gorillas live in different habitats and differ in diet, daily travel, and group composition and spread. To examine how these factors influence vocal communication, we provide the first behavioral and acoustic description of the vocal repertoire of ten wild western gorillas to compare with previously published data on mountain gorillas. Data include 1613 hours of continuous focal animal sampling of vocal behavior (and context) and digital recording of (> 1500) vocalizations. For each call we measured 10-25 acoustic parameters. Behavioral coding of vocalizations was based on previous mountain gorilla call descriptions of calls and verified through standard acoustic analysis. Close calls, used for within-group communication at short distances, included some calls that are produced only in specific contexts (e.g. aggression/cough-grunt) and other used in a variety of contexts (e.g. grunts). Results indicate that many western and mountain gorilla close calls are acoustically similar and used in similar contexts (e.g. cough grunts, play chuckle). One long call (i.e. hoot series +/- chest beat) is used by males of both species during between-group male-male competition. However, in western gorillas both sexes also use it to coordinate group movement when a new territory spread is large. This suggests that species may adapt to differing communication needs by using existing vocalizations in novel contexts.

This study was funded by The Leakey Foundation, Primate Conservation Inc., Conservation International Primate Action Fund, Richard Leakey and Wildlife Direct, Stony Brook University.

Paleogenomics, diet, and immune function.

AARON SAMS and JOHN HAWKS. Department of Anthropology, University of Wisconsin-Madison.

Dietary conditions such as celiac disease (CD) are prevalent in some populations despite calculable consequences for morbidity. HLA (human leukocyte antigen) and other polymorphisms associated with immune functions have recently been linked to CD. Much evidence supports the adaptive evolution of HLA genes for immune function, and any links between immune and diet related genotypes and phenotypes may suggest further connections between immune and diet pathways. We employed an evolutionary perspective on this question to identify populations with contrasting diet and disease histories, examining the relationship between HLA, genome-wide variation, and diet history. Paleogenomic evidence from an ancient Greenland native and Neandertals represented pre-agricultural populations, along with samples representing contemporary hunter-gatherers and populations with a long (5000-year) history of agriculture. We tested the null hypothesis that adaptive polymorphisms in HLA genes do not vary significantly between closely related populations with different dietary histories. Preliminary results show a subset of HLA polymorphisms vary according to dietary history, suggesting evolutionary links between diet and immune pathways in recent human populations. This study was funded by the Robert Wood Johnson Population Health Dissertation Grant from the University of Wisconsin-Madison Department of Population Health.

The canopy effect: new carbon isotope data from an eastern lowland rainforest in Madagascar and implications for assessing primate niche partitioning.

PAUL SANDBERG, EMILY MERTZ and MATT SPONHEIMER. Department of Anthropology, University of Colorado at Boulder.

The carbon isotope compositions of plants that follow the C₃ photosynthetic pathway vary according to the degree of
canopy cover in the environment, due largely to the combined effects of lower light levels and 13C-depleted, soil-respired CO2 under closed canopies. This canopy effect is reflected in the tissues of consumers and has been shown to reveal gross-level differences in primate ecology across taxa from the Americas, Africa, and Madagascar. The canopy effect is also evident within closed canopy forests such that leaves growing near the base of the forest have more negative carbon isotope (δ13C) values than leaves growing near the canopy top, providing the possibility that primate feeding height is recorded by carbon isotope ratio. We report carbon-isotope data for leaves growing at various heights within Betapamona Natural Reserve (BNR), an eastern lowland rainforest in Madagascar, in order to quantify the strength and magnitude of the canopy effects in this forest, and to assess the utility of carbon isotope data in investigating niche partitioning within single closed canopy forests. Results show a wide range of δ13C values (−10.5%, a strong positive correlation between plant δ13C and sampling height (R2 = 0.49, p < 0.001), and a mean difference of ~6% between forest floor and canopy top growth, independent of the height of the canopy at each sampling location. These results, along with carbon isotope data from five sympatric primate taxa at BNR, suggest that it is possible to assess niche partitioning by feeding height within single closed canopy forests using carbon isotopes.

This study was funded by The St. Louis Zoo WildCare Institute Field Research for Conservation Grant.

Forensic and ethnohistoric review of human remains from New Zealand

KAITLYN SANDERS and GARY P. ARONSEN. Department of Anthropology, Yale University.

As part of a request by the Yale Peabody Museum of Natural History, we examined fifteen catalogued sets of human remains to verify provenience and provide descriptive and metric evaluations of the remains. Museum records for some of the remains suggest that they were associated with extinct Diornis sp., while other remains have almost no associated archival documents. As the museum records provided limited information, our goal was to provide additional data and documentation. Nonmetric characteristics such as the presence of “rocker jaw,” cranial shape and structure, and unique “forn root” dental wear on some individuals are strong indicators of heritage/provenience, and other anthroposcopic variables support the available documentation. Metric analyses of the more complete crania using FORDISC were not as conclusive, with individuals being identified with multiple different groups outside of New Zealand/Oceania populations. Individual variation and robusticity may have been contributing factors, as well as the software itself. Evaluation of taphonomic indicators (i.e., exposure, weathering) provides additional information relating to ethnohistorical data on New Zealand mortuary practices. A detailed forensic/ethnohistoric review of human remains provides valuable details that augment, support, and in some cases go beyond the archival data from museum collections. In this case, the analysis provides a better understanding of individual life history and occupational/other stresses. This work was supported by the Department of Anthropology, Yale University.

Systematic implications of metacarpal grooves in Sterkfontein Australopithecus

E. E. SARMIENTO. Human Evolution Foundation.

Despite two genera and four or more species of apes presently inhabiting Africa, its Plio-Pleistocene deposits have yet to yield their ancestors and/or any ape lineages predating human divergence. This absence may be a classificatory artifact and explained by the practice of using non-projecting canines, and non-sectorial p3s as diagnostic of hominids (in the classical sense). Because apes (e.g. Oreopithecus, and Ramapithecus) predating the Human/African ape divergence have non-projecting canines and non-sectorial p3s, use of these characters to diagnose hominids is likely to misclassify all African apes fossils as hominids, including those predating human divergence. Although during the Plio-Pleistocene the exclusive human, gorilla and chimpanzee lineages may be too young to have developed complex characters that can unequivocally diagnose fossils to anyone. Because the common human African ape lineage is older and has developed such diagnostic characters. Cadaver dissections and skeletal examination show that a large middle meningeal artery arising from the middle phalanx of the external carotid is a complex diagnostic character shared by humans and all African ape species. In Asian apes and non-hominoid catarrhines, the internal carotid supplies the meninges through the recurrent lacrimal branch of the ophthalmic artery. Because the meningeal vessels groove the skull and may pass through distinct foramina they leave a skeletal record of the condition of this character. Examination of Sterkfontein Australopithecus skulls reveals that not all individuals show the human/African ape condition, suggesting some predate human/African ape divergence, and australopithecines as a group are not all hominids.

Metacarpal curvature during ontogeny in wild apes

LAUREN A. SARRINGHAUS. Department of Anthropology, University of Michigan.

Diaphyseal curvature of long bone shafts has been found to respond to the loading environment (Currey 1968; Lan-
noted but not systematically assessed. We collected data on the number and type of potential predators utilizing the reserve, identified areas where lemurs appear most vulnerable to such predation, and assessed the range of animals being preyed upon by endemic and introduced mammals. From June 2008 to July 2009 we used camera-traps, collected predator scat, and documented patterns of lemur predation to assess this. The endemic carnivore Cryptoprocta ferox (fossa) is confirmed as present in the same adult were recovered. The team in 2010. Human skeletal remains from at least three individuals. The site was test excavated in 2002 by Pamela Willoughby. Additional excavations from at least two of the skeletons could be housed at the National Museum of Tanzania. This study was funded by the Social Sciences and Humanities Research Council of Canada (by a Joseph Armand Bombardier MA scholarship – #766-2009-0072 to Sawchuk and by a Standard Research Grant #410-2008-0061 to Willoughby).

Experimental analyses of intergroup encounters among tufted capuchin monkeys: effects of resource quality and female sexual behavior.

CLARA J. SCARRY. Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University.

In many species, the function of aggressive intergroup encounters (IGE) remains unclear, although between-group relations play a pivotal role in socioecological models. Game theory suggests that individuals are more likely to initiate aggression as the benefits of winning increase, providing a framework for identifying the contested resource. To test whether tufted capuchins (Cebus apella nigrinotus) at Iguazu, Argentina, engage in intergroup aggression primarily to defend access to food resources, they can afford to grow slower than species relying of foliage. As gums, like foliage, are generally available year-round, the risk aversion hypothesis posits that gummivorous galagos will grow faster than frugivorous galagos. This hypothesis was tested with ontogenetic data by comparing the growth rate of Galago senegalensis, a gummivore, with the growth rate of Otolemur garnettii, a frugivore. There are no significant differences between G. senegalensis males and O. garnettii males. G. senegalensis females have a lower relative growth rate compared to O. garnettii females; therefore, the starvation risk aversion hypothesis is not supported. O. garnettii females growing the dry season while G. senegalensis are weaned during the wet season when food is abundant. As G. senegalensis females experience low feeding competition both at weaning and, presumably during adulthood due to their more reliable gum resources, they can afford to grow slowly and cease growing at a relatively smaller size. O. garnettii females face greater competition for food while growing the dry season and as adults relying on a more seasonal fruit resource; selection for rapid growth to attain larger size at weaning could be advantageous for O. garnettii.

A comparison of methods used to estimate age-at-death in human mummies from South America and Europe.

JAMES SCHANANDORE1, HEATHER GILL-FRERKING2, WILFRED ROSENDAHL3 and WILLIAM BLEIER1.

This study compares the relative growth rates of Galago senegalensis and Otolemur garnettii as a test of the Risk Aversion Hypothesis (RAH). RAH suggests that the low growth rate in primates is an adaptation offsetting starvation risk that is associated with seasonal food shortages. Since fruit is more seasonal in availability compared foliage, species relying of fruit should grow slower than species relying of foliage. As gums, like foliage, are generally available year-round, the risk aversion hypothesis posits that gummivorous galagos will grow faster than frugivorous galagos. This hypothesis was tested with ontogenetic data by comparing the growth rate of Galago senegalensis, a gummivore, with the growth rate of Otolemur garnettii, a frugivore. There are no significant differences between G. senegalensis males and O. garnettii males. G. senegalensis females have a lower relative growth rate compared to O. garnettii females; therefore, the starvation risk aversion hypothesis is not supported. O. garnettii females growing the dry season while G. senegalensis are weaned during the wet season when food is abundant. As G. senegalensis females experience low feeding competition both at weaning and, presumably during adulthood due to their more reliable gum resources, they can afford to grow slowly and cease growing at a relatively smaller size. O. garnettii females face greater competition for food both during weaning during the dry season and as adults relying on a more seasonal fruit resource; selection for rapid growth to attain larger size at weaning could be advantageous for O. garnettii.
Mummy Project, Reiss-Engelhorn Museum.

The unique nature of both natural and anthropogenic mumification processes causes problems when trying to provide an accurate age-at-death estimation for a particular mummy. Published case studies about mummies appear in a wide range of anthropological, medical, and other scholarly journals. Articles often provide an assessment of age, but often fail to specify the methods used to calculate the estimated age. This study assembled data about age-of-death estimation from more than 100 published case studies of mummies, in order to determine which methods were used. Each method listed in the publications was then applied to a small group of mummies that included naturally-processed South Americans, northern European bog bodies, and German crypt mummies. The results of the study showed that methods used for age estimation are rarely specified in published reports and that some standard methods of age estimation could not be applied to all types of mummies. Modifications to traditional osteological approaches for age estimation were sometimes necessary due to the presence of soft tissue and post-mortem changes to the body. Although methods of age estimation for human skeletal remains are standardized, this research clearly demonstrated that appropriate methods for the assessment of age-at-death in human mummies should be considered on an individual basis, and that the methodology used must be provided in published reports of mummy studies.

Anthropological usefulness of 15 X chromosome STR loci across four linkage groups.

MOSES S. SCHANFIELD1, MICHAEL COBLE2 and TONI DIEGOLI2. 1Department of Anthropology, George Washington University, Washington, DC, 2Armed Forces DNA Identification Laboratory (AFDIL), Rockville, MD.

Population genetic and anthropological studies were included in a larger study of X chromosome STR markers looking at mutation rates and linkage relationships in multiple populations. A total of over 750 meiosis from mothers, children and father of non-excluded parentage cases from US European, African Americans and SW Hispanics were tested for 15 X chromosome STR loci (DXS8378, DXS9902, DXS6795 [LG1], DXS7132, DXS6803, DXS6789, DXS7424, DXS101, GATA172D05, DXS7130, GATA165B12 [LG2], HPRTB [LG3], GA111E08, DXS10147 and DXS7423 [LG4]), yielding 137 alleles using two multiplexes developed at AFDIL for forensic purposes. The loci were individually analyzed by FST analysis across the three populations, and aggregately analyzed using PCA followed by hierarchical cluster analysis. Linkage Disequilibrium (LD) was tested only on European segregating chromosomes to minimize confounding effects. All probability values were corrected for multiple tests using the Bonferroni correction. The results of the FST analysis indicated that 9/15 loci had significant FST values at the \(\alpha = 0.05 \) level, however only 4/15 were significant after Bonferroni correction. PCA analysis yielded two Eigen vectors which accounted for 100% of the variance, and generated highly discriminating factor scores for the three populations. LD analysis did not detect any significant LD for the pairs of closely linked loci in LD1, LD2 and LD4. Additional studies are planned to include Ghanaians, Ethiopians, South and North Indians and Amerindian samples, to further test the usefulness of these X STR markers. These markers appear to be highly useful in the study of human population variation, migration and ancestry.

Disclaimer: The opinions and assertions contained herein are solely those of the authors and are not to be construed as official views of the United States Department of Defense or the United States Department of the Army. This research was supported by grants from the Columbia College of Arts and Science (GWU) and the AFDIL (USDOJ).

Human sacrifice as royal mortuary ritual at the Classic Maya site of El Zotz, Guatemala.

ANDREW K. SCHERER1, CHELSEA GARRETT2, STEPHEN D. HOUSTON3, EDWIN ROMÁN4, THOMAS GARRISON4 and SARAH NEWMAN3. 1Department of Anthropology, Brown University, 2Department of Anthropology, Forensics, and Archaeology, Baylor University, 3Lozano Long Institute of Latin American Studies, The University of Texas at Austin, 4Umeå University.

In 2010, the Proyecto Arqueológico El Zotz excavated an intact royal tomb, Burial 9, at the Classic Maya site of El Zotz, Guatemala. Architectural chronology and analysis of ceramic vessels from within the tomb indicate that the deposit dates between AD 350 and 400. Seven individuals were identified within the tomb, and at least two other individuals are represented by human elements recovered in deposits outside of the tomb. By integrating archaeological information from the field and human osteological data obtained in the laboratory, the original position of each of the seven bodies was identified and the mortuary ritual was reconstructed. This rite involved the sacrifice of six children within the tomb, each of whom was briefly exposed to fire. The seventh individual, the primary tomb occupant, was painted with both specular hematite and cinnabar, wrapped in a burial covering, and placed upon a bier. Outside of the tomb, another child was sacrificed and burned, and fingers from at least one adult individual were cut off and placed within ceramic vessels. Dental morphology suggests a lack of a close genetic relationship among the tomb occupants. Analysis of human remains recovered from a series of looted tombs at El Zotz reveals that similar rites of child sacrifice, body painting, and exposure to fire were performed in other contexts at the site. Comparison of El Zotz Burial 9 with funerary deposits at other Maya sites shows both continuities and dissimilarities in royal mortuary rites of the Early Classic period (AD 250-600).

Research at El Zotz was funded by the National Science Foundation (BCS-0848607) and the German Research Foundation (DFG, MOSES S. SCHANFIELD). The authors would like to thank the Ministry of Culture of Guatemala and the Instituto Nacional de Antropología e Historia for their support.

Functional morphology of the peri-vertebral muscles in great apes – are humans unique?

NADJA SCHILLING1, BETTINA HESSE1, JOHANNA NEUFUß1 and SUSANNAH K.S. THORPE2. 1Institute of Systematic Zoology and Evolutionary Biology, Friedrich-Schiller-University Jena, 2School of Biosciences, University of Birmingham.

Humans are unique among primates in having a striding bipedal gait and a permanent orthograde trunk posture. Thus, the functional demands on the human trunk musculature are different from those in other great apes. To 1) increase our understanding of the functional morphology of the axial system in great apes, 2) distinguish adaptations to human bipedalism from characteristics shared with other great apes due to their common phylogenetic history, and 3) reconstruct functional transformations of the axial musculature during ape evolution, we investigated the lower thoracic and lumbar peri-vertebral muscles of the orangutan and chimpanzee regarding their fiber type composition and anatomical cross-sectional area (ACSA) and compared these data with results from humans. Muscle fiber type distribution was determined using immunohistochemistry; ACSA was measured in CT scans. Similar to humans, chimpanzees and orangutans did not show the segregation of specific fiber types typical for other mammals. This striking reorganization facilitates all muscles to equally contribute to trunk mobilization and stabilization. Furthermore, our results show that compared to the chimpanzee and human, which were fairly similar in the slow fiber proportion, orangutans showed overall higher proportions of slow fibers; likely related to their slow, cautious locomotor behavior. Non-human great apes have a relatively small lateral epaxial muscle tract.
Dental microwear texture analysis of Natufian hunter-gatherers and Neolithic farmers from Northern Israel.

CHRISTOPHER SCHMIDT1, LAURA CHIU1, LINDSY FRAZER1, CLAIRE BARRETT1 and PATRICK MAHONEY2. 1Department of Anthropology, University of Indianapolis, 2School of Anthropology and Conservation, University of Kent.

Dental microwear texture analysis (DTA) reconstructs dietary hardness and toughness using a white light confocal profiler to generate 3D surface representations and data clouds that are processed with scale sensitive fractal analysis software. Here, we employ DTA to search for differences between sixteen Natufian hunter-gatherers (12,500–10,250 BP) and fifteen late Neolithic farmers (10,250–7,500 BP), recovered from archaeological sites in northern Israel. Resin casts of molar occlusal facets 9 and 10 were produced. Data were collected using a 100X objective lens and the extended topography option, which allowed for four contiguous data sets to be taken and stitched together automatically by the microscope. The resulting surface representations were leveled and occlusal debris was digitally removed prior to analysis. Toothfrax and Sifrax software were used to calculate anisotropy (the degree to which microwear features are the same oriented), heterogeneity (the extent to which microwear features are the same over the area of interest), complexity (the surface relief), and the textural fill volume (the amount of surface removed by microwear). Data were log transformed and variation between the hunter-gatherers and farmers was identified using ANOVA. No differences were found between facets 9 and 10. One variable, anisotropy, differed significantly between Natufian and Neolithic groups (df=1, F=5.954, p=0.024), indicating that the microwear was more similarly oriented within the Neolithic. This finding supports the idea that food processing changed over time as agriculture emerged in northern Israel (e.g., Mahoney, 2006). This study was funded by a grant from the National Science Foundation (BCS-0922930 to CWS).

Is there biomechanical equivalence when comparing mobility, activity levels, and limb loading across individuals and species?

DANIEL SCHMITT1 and MARK W. HAMRICK2. 1Department of Evolutionary Anthropology, Duke University, 2Department of Cellular Biology and Anatomy, Medical College of Georgia.

Discussions of mobility and functional anatomy often assume that higher activity levels increase bone loading in all animals in all contexts. But it is worth asking whether two animals moving at the same speed and distance produce the same loading pattern and whether increased bone mechanical properties reflect increased activity levels? Here we examine data from a variety of our comparative laboratory-based studies on limb loading. Our findings reveal that the relationship between activity and loading is more complex than previously assumed. For example, data collected on primate species moving at the same speed on arboreal and terrestrial supports show changes in contact time and center of mass (COM) movements that influence load. Cats moving at equivalent speeds to dogs must generate more muscular force to move the COM, which would load their bones more. Data on primates moving at the same speed also show that gait choices (i.e. walk compared to amble) influences peaks forces and COM movements. Finally, data on hyper-muscular mice with high levels of bone robusticity indicate that these animals choose slower speeds are no more active than wild-type mice, rejecting a relatively straightforward relationship between activity load, and bone strength. Taken together these observations suggest that the same mobility or activity level can yield different loading levels depending on substrate context, gait choice, and species. Given these caveats, definitions of mobility must be precise as to gait, substrate, anatomy, and posture, and must accommodate the notion that bone mechanical properties are not necessarily reflective of activity.

Supported by NSF BCS-0452217, NSF SBR-9200004, and NIH AR-049717.

Differences in endocranial shape between Homo and Aegyptiaca assayed through nonrigid deformation analysis of high-resolution CT images.

P. THOMAS SCHOENEMANN1, RALPH HOLLOWAY2, JANET MONGE3, BRIAN AVANTS4 and JAMES GEE1. 1Department of Anthropology, Indiana University, 2Department of Anthropology, Columbia University, 3Department of Anthropology, University of Pennsylvania, 4Department of Radiology, University of Pennsylvania.

Our understanding of evolutionary changes in brain anatomy, as evident in fossil specimens, is facilitated by a statistical assessment of species differences in endocranial morphology. Because the endocranial surface is morphologically complex, such comparative assessments will ideally involve rich mathematical descriptions that can be directly and easily compared between species and to fossils. Atlases representing statistical averages of species endocranial form
have been using non-rigid deformation techniques applied to endocranial casts collected by Ralph Holloway. Point-by-point voxel-based assessments of species differences have then been constructed by morphing species atlases into each other. This method results in detailed statistical maps of exactly where species differ endocranially, and by how much. We present the results of these methods applied to differences between Homo sapiens, Pan troglodytes, Pan paniscus, and Gorilla gorilla endocranial atlases. The analysis for Homo and Pan troglodytes suggests that the endocranial surface areas, and posterior occipital areas are the most different between these species, suggesting more than 4-fold increases in these areas, while portions of the temporal poles suggest less than 2.5-fold differences (overall, the endocranial surface areas averaged 3.1-fold differences). These findings will be compared with similar published assessments of differences between the brains of these species. Making point-by-point assessments of differences between fossil specimens and extant species atlases, as well as between fossil specimens themselves, will be described. These will allow for a detailed assessment of the evolution of brain evolution as inferred from the endocranial surface.

Mandibular premolar molarization: a platyrhine comparative model.

KATHERINE SCHROER1,2 and BERNARD WOOD2,3.
1Hominid Paleobiology Doctoral Program, 2Center for the Advanced Study of Hominid Paleobiology, Department of Anthropology, The George Washington University, 3Human Origins Program, National Museum of Natural History, Smithsonian Institution.

Molarization of the crown of the last mandibular premolar is a distinctive feature of some extinct early Homo and megadont archaic hominin taxa, but there is debate about whether molarization is a shared derived character or a homoplasy. New World monkeys provide a suitable morphological and developmental sample for understanding molarization in primates. We sampled mandibular postcanine crown and root morphology from 150 callitrichid and other platyrrhine individuals from the collections of the National Museum of Natural History, Smithsonian Institution. The sample included closely-related sympatric species with known dietary niches, including individuals of Saginus fuscicollis, Saginus labiatus, and Callimico goeldii. Mandibular molar and premolar crown morphology was compared using linear and areal measurements taken from plain radiographs. Preliminary results indicate that P1, linear and areal measurements vary independently of body size and crown area correlates more closely with root profile area in molars than in premolars. Principal components analysis of occlusal morphology suggests that sympatric species vary significantly in their mandibular premolar crown morphology. We suggest various ways in which the results of this study of premolar morphology in closely-related and sympatric New World primate species can be used to develop hypotheses about the phylogenetic significance of the mandibular premolar morphology of megadont archaic hominins. This study was funded by a NSF-GRFP and NSF-IGERT DGE-0801634.

The positional behavior of ursine colobus (Colobus vellerosus) and Lowe's monkey (Cercopithecus campbelli lowei) in Ghana's Boabeng-Fiema Monkey Sanctuary.

ROB SCHUBERT and SCOTT MCGRAW. Department of Anthropology, The Ohio State University.

The extent to which primates vary their positional behavior in response to architecturally distinct forests continues to be a topic of active research. Here, we compare the locomotor and postural profiles of two cercopithecoid species ranging across a mosaic of forest habitats in Ghana’s Boabeng-Fiema Monkey Sanctuary (BFMS). From January to October 2009, we used instantaneous time point sampling to collect positional and habitat data on multiple groups of adult female ursine colobus (Colobus vellerosus) and Lowe’s monkey (Cercopithecus campbelli lowei) inhabiting either areas of unlogged, primary forest or regenerating forest. Architectural differences between forests were quantified using focal canopy density sampling methods. Significant intraspecific differences in positional behavior and habitat use profiles were identified using G-tests and Fisher Exact Tests. For the ursine colobus, postural profiles differed between forest habitats. For Lowe’s monkey, both locomotor and postural profiles differed. Both species tended to frequent low forest levels more often in disturbed forest where the paucity of upper canopy pathways required that individuals use thinner supports at lower heights. We suggest that the large body size and leaping adaptations of the ursine colobus constrain its locomotion compared to that of the smaller, more generalized guenon. Nevertheless, those positional behavior differences that were observed were subtle and provide support for the notion that basic positional behavior profiles tend to be conserved across habitats. This study was funded in part by The Ohio State University Graduate School’s Alumni Grants for Graduate Research and Scholarship.

Bioarchaeology and climate change: a view from South Asian prehistory.

GWEN ROBBINS SCHUG. Department of Anthropology, Appalachian State University.

Throughout the second millennium B.C., human populations thrived in west-central India. Decan Chalcolithic people settled in villages employing a mixed economic strategy—farming drought-resistant barley, stockraising, hunting and foraging. After 1000 B.C., the majority of these settlements were abandoned. Only Inamgaon persisted into the Late Jorwe phase (1000-700 B.C.). Archaeologists suggested that increasing aridity and unpredictable monsoon rainfall caused the depopulation. Bioarchaeologists suggested the Late Jorwe was a time of increased dietary diversity, population mobility, lower biocultural stress levels and improved infant health. However, recent paleoclimatic reconstructions indicate the unpredictable monsoon and reduced rainfall were well established long before these settlements were abandoned and are not likely to be directly responsible. This poster presents a new interpretation of life and death at three villages occupied during the Decan Chalcolithic period of Indian prehistory based on new evidence from paleoecology, demography, and bioarchaeology. Paleodemography indicates high fertility and infant mortality led to high pressure population dynamics during the Late Jorwe phase at Inamgaon. The osteological paradox thus plays an important role in the interpretation of biocultural stress markers. When previous data for dental stress markers is combined with evidence of subadult skeletal emancipation, it is apparent that acute and chronic stress markers tell different stories about life at the end of agriculture in prehistoric India. These results are the basis for a new Biodemographic Model for understanding climate and culture change during this period of climate and culture change in Indian prehistory.

Genetic histories of Gwich’in and Inuvialuit populations of Northwest Territories, Canada.

THEODORE G. SCHURR1, AMANDA C. OWINGS1, JILL B. GAIESKI1, INGRID KRITSCH2, ALESTINE ANDRE3, CRYSTAL LENNI2, HALEIGH ZILLIG3, KEVIN KEATING1 and GENOGRAPHIC CONSORTIUM. 1Department of Anthropology, University of Pennsylvania, 2Gwich’in Social and Cultural Institute, 3Inuvialuit Regional Corporation.

In this study, we investigate the genetic history of Dene and Inuvialuit populations from the Northwest Territories to help elucidate the history of circumpolar...
AAPT ABSTRACTS

267

Differential infant and child mortality and morbidity in Late Anglo-Saxon England.

HOLGER SCHUTKOWSKI 1and RONIKA POWER 2. 1Applied Sciences, Bournemouth University, United Kingdom; 2School of Human Evolution and Social Change, Arizona State University, Tempe, AZ.

The relationships among morphology, function, and behavior are complex. A better understanding of these relationships has widespread implications for anthropological research. To this end, studies of living nonhuman primate species are particularly valuable. Chimpanzees (Pan troglodytes), like humans, have an extended period of development, during which substantial changes take place in body size and shape. We investigated the ontogeny of body size, limb proportions, and positional behavior in captive chimpanzees in an attempt to relate gross changes in body morphology to variation in positional behavior. Body weight and linear body segment data were collected for 73 subjects between the ages of 6 months and 13 years. Positional behavior data were collected for 30 subjects within the same age range. The intermembral index, brachial index, upper limb-to-trunk index, and hindlimb-to-trunk index were calculated from the limb measurement data and plotted along with positional behavior variables against age using locally-weighted scatterplot smoothing (LOWESS). Results indicate that as body size increases during ontogeny, the frequency of climbing and suspensory posture decreases. Following an initial increase in frequency during the first 3–4 years, suspensory locomotion, brachiation, and leaping also decrease with increasing body size. The intermembral index changes very little during ontogeny, while the brachial index decreases during the first 48 months then levels off during adolescence. Both the upper limb-to-trunk and the hindlimb-to-trunk indices decrease slightly during ontogeny. These results are consistent with other studies of positional behavior in apes and with known functional relationships between body size, limb proportions, and behavior.

A new method for the determination of post-mortem interval: citrate content of bone.

HENRY P. SCHWARTZ1, KRISTINÂ AGUR2 and LEE MEADOWS JANTZ2. 1School of Geography, Earth Sciences and Environmental Studies, McMaster University, 2Department of Anthropology, University of Tennessee.

Few accurate methods exist currently to determine the time since death (post-mortem interval, PMI) of skeletonized human remains found at crime scenes. Citrate is present as a constituent of living human and animal cortical bone at very uniform initial concentration (2.0 ± 0.1 wt %). Citrate is almost undetectable in bones recovered from > 100 y old burials, suggesting that the decrease in citrate content could be used as a chronometer for PMI. Citrate can be determined easily by use of an enzymatic technique commercially available as a kit. In skeletal remains found in open landscape settings (whether buried or not), we observe that the concentration of citrate remains constant for a period of about 4 weeks, after which it decreases linearly as a function of log(time). The upper limit of the dating range is about 80 years. The rate of decay is approximately constant over a wide range of burial environments in temperate N. America and is independent of average temperature or rainfall. Citrate loss appears to stop below 0 °C. The precision of determination of PMI is a few percent of the age but decreases gradually with increasing age. This study was funded by the Natural Sciences and Engineering Research Council of Canada.

Tales from the Crypt: tooth growth, dental development and the evolution of primate life histories.

GARY T. SCHWARTZ. Institute of Human Origins & School of Human Evolution and Social Change, Arizona State University.

For nearly three decades, Don Reid has been instrumental in helping pioneer the histological analysis of dental hard...
tissues. His diligence and scrupulous attention to detail has yielded a dataset that will inform the timing of individual tooth formation and overall dental development in a variety of extant and extinct hominin species. More recently, his efforts have focused on producing chronologies of tooth formation in a variety of modern human populations, and these data will serve as the benchmark against which dental development in all other human groups, fossil and modern, are compared. Here, I present a synthesis of existing and limited new data on primate dental development and point to future directions in molecular crown formation times, crown extension rates, root extension rates, and emergence ages to further refine our understanding of primate, and in particular, hominoid patterns of dental development and how they relate to variation in life history. Broadly speaking, across primates, the age at first molar emergence is tied to a variety of life history attributes. New data for Malagasy lemurs and great apes present methods that provide frame estimates for ages at molar emergence and the scheduling of life history in early primates and fossil hominins, and suggest new avenues of dental developmental research that beg further exploration. These new data add to the tremendous body of work assembled throughout the career of Dr. Reid that, in conjunction with his patience and skilled mentoring, have shaped the future of research in dental biology, biocurarcheology, and paleoanthropology.

Evolutionary integration in the anthropoid mastigatory system.

JEREMIAH E. SCOTT. School of Human Evolution and Social Change, Institute of Human Origins, Arizona State University.

Australopithecus boisei and Au. robustus are characterized by a number of craniodental features indicating that they share an ancestor to the exclusion of all other hominin species. However, it has been argued that support for this sister relationship is not as strong as many cladistic analyses have suggested. This argument is based on the fact that many of the purported synapomorphies that unite functional and integrated features of the masticatory system and are thus unlikely to constitute independent lines of evidence. Some versions of this critique attribute many of these similarities to a single biological process—selection for postcanine megadontia. This study evaluates the plausibility of this argument by testing the hypothesis that the size of the postcanine dentition is tightly integrated with other components of the masticatory system across extant anthropoid species. Morphometric data collected from twenty-nine species were analyzed using phylogenetic comparative methods. The results provide some support for the hypothesis. For example, there is a fairly strong relationship between relative postcanine size and the relative height of the mandibular condyle relative to the mandibular condylar plane (r=0.68). However, correlations between relative postcanine size and skeletal proxies for maseter position and size are weak or nonsignificant (r<0.40). These results indicate that although atomistic approaches to character definition in the masticatory system undoubtedly confound cladistic analyses of fossil hominins, functionally related characters in this region do not necessarily evolve in a coordinated fashion. Thus, phylogenetic information is lost when mastication-related features are treated as a single character.

Dental microwear texture analysis of fossil carnivores from Langebaanweg, South Africa.

JESSICA R. SCOTT1, DEANO D. STYNDERS, BLAINE W. SCHUBERT2, and PETER S. UNGAR3. 1Doctoral Program in Environmental Dynamics, University of Arkansas, 2Department of Archaeology, University of Cape Town, 3Department of Geosciences and Don Sundquist Center of Excellence in Paleontology, East Tennessee State University, 4Department of Anthropology, University of Arkansas.

Reconstructing the paleocommunity ecology of Miocene-Pliocene boundary sites in Africa is essential to our understanding of the evolution of numerous mammalian taxa, including the hominins. The site of Langebaanweg in South Africa has produced many fossils representing a wide range of mammalian taxa and provides a unique opportunity to study guild dynamics during this important time interval. In this presentation we focus on the fossil hyaenids from Langebaanweg, specifically Chasmaporthetes australis, Hyaenictus hendeyi, Hyaenictitherium namaquensis, and Helohyaena abronia. Owing to a lack of canids at the site, researchers have argued that fossil hyaenids were ecological vicars to both modern hyaenids and canids, with C. australis and I. abronia consuming more bone. We test this hypothesis using dental microwear texture analysis. Previous research has demonstrated that increased dicrophyg results in high microwear surface texture complexity and isotropy. The microwear textures of the Langebaanweg hyaenids were compared to the extant felid Crocuta crocuta, Acinonyx jubatus, and Panthera leo. Our results reveal low levels of inter-specific variation in microwear signatures among the fossil taxa, suggesting limited variability in fracture properties of foods eaten by these species. The marginal differences between fossil taxa were in surface complexity and anisotropy and are likely the result of differences in the frequency of bone consumption among the fossil taxa. In addition, the fossil hyaenids display significantly lower surface complexity and textural fill volume values than modern bone-cracking taxa, supporting previous characterizations of the Mio-Pliocene hyaenids as occasional rather than specialist bone consumers. This project was funded by the US National Science Foundation.

Stressed out: geographic variation in linear enamel hypoplasia in northern populations.

G. RICHARD SCOTT, JACOB WINN, ARI KRAUSE and KELSEY ARMANT. Department of Anthropology, University of Nevada Reno.

Linear enamel hypoplasia is often used as a generalized stress indicator in extinct and extant human populations. The horizontal growth arrest lines that characterize LEH develop during childhood and are triggered by some combination of nutritional deprivation and disease. When the Greenlandic Norse were scored for LEH, they exhibited lines on their incisors and canines to only a minor degree (ca. 25%), an unanticipated finding based on other indicators of climatic and nutritional stress. By contrast, prehistoric Inuit from St. Lawrence Island, Alaska and medieval Scandinavians from Trondheim, Norway exhibited exceptionally high frequencies (ca. 80%) and pronounced expressions of LEH on their anterior teeth. We propose the Inuit and Norwegian samples achieved the same LEH frequencies for markedly different reasons. Prehistoric Inuit in northern populations were susceptible to resource fluctuations but not infectious disease so the likely cause of their LEH was nutritional stress. By contrast, the Norwegians had ample food but lived in crowded conditions conducive to infectious diseases that impacted vulnerable children. Despite isolation in a subarctic environment, the modest LEH in Greenlanders is attributed to: (1) a dispersed settlement pattern that helped them avoid diseases associated with crowding, and (2) a weaning diet based on dairy products that provided sufficient calories and protein to help developing children avoid growth disruption.

An osteobiographical analysis of the Foscue plantation burial crypt, Pollocksville, Jones County, North Carolina.

MELINDA SEEMAN, CHARLIE EWEN and MEGAN PERRY. Department of Anthropology, East Carolina University.

In 2010, an early 19th century crypt was excavated on Foscue Plantation in eastern North Carolina as part of a National Historic site salvage project. According to historical records, three
individuals purportedly were interred in the crypt; Simon Foscue, Sr, Simon Foscue, Jr, and his wife Christiana “Kitty” Rhem Foscue. The lack of research on the 19th century rural population in eastern North Carolina meant that remains recovered from the crypt could provide valuable information on their life histories beyond historical documents, including health, diet, disease, and burial practices.

Excavation of the crypt in fact revealed at least seven individuals: 2 adult males and 2 adult females, a 4 year (± 12 months) old child, and two preterm fetuses, likely twins. Cranial fragments of one of the fetuses were discovered adhering to the internal iliac blade of the young female. That and the estimated age of the fetuses suggests that she died eight months pregnant. The absence of Ar. ramidus individuals in the crypt from the historical records could have been the result of later interment in the crypt during a period of poor record-keeping. Initial paleopathology analysis indicated that the childhood and adult health of these individuals is comparable to free landowning individuals in other areas of the Southeastern U.S. including poor dental health. These detailed osteobiographies presented in this study, along with the historical documents, provide a renewed picture of a cross-section of a rural plantation-owning family in 18th and 19th century eastern North Carolina.

Angulation of the third carpo-metacarpal joint appears to reflect vertical climbing in great apes, but not humans or their ancestors.

MICHAEL S. SELBY1, SCOTT W. SIMPSON2 and C. OWEN LOVEJOY3.
1Department of Anthropology and School of Biomedical Sciences, Kent State University, 2Department of Anthropology, University of California, San Diego.

In the recent description of Ardipithecus ramidus, the third metacarpal (MC3) long axis was compared to the capitae’s articular surface for the hamate (hamate border angle (HBA)) and to the distal capitae’s articular surface (distal capitae angle (DCA)). Great apes, humans and a baboon were compared to Ar. ramidus individuals in the capitae from the historical records could have been the result of later interment in the crypt during a period of poor record-keeping. Initial paleopathology analysis indicated that the childhood and adult health of these individuals is comparable to free landowning individuals in other areas of the Southeastern U.S. including poor dental health. These detailed osteobiographies presented in this study, along with the historical documents, provide a renewed picture of a cross-section of a rural plantation-owning family in 18th and 19th century eastern North Carolina.

Angulation of the third carpo-metacarpal joint appears to reflect vertical climbing in great apes, but not humans or their ancestors.

MICHAEL S. SELBY1, SCOTT W. SIMPSON2 and C. OWEN LOVEJOY3.
1Department of Anthropology and School of Biomedical Sciences, Kent State University, 2Department of Anthropology, University of California, San Diego.

In the recent description of Ardipithecus ramidus, the third metacarpal (MC3) long axis was compared to the capitae’s articular surface for the hamate (hamate border angle (HBA)) and to the distal capitae’s articular surface (distal capitae angle (DCA)). Great apes, humans and a baboon were compared to Ar. ramidus individuals in the capitae from the historical records could have been the result of later interment in the crypt during a period of poor record-keeping. Initial paleopathology analysis indicated that the childhood and adult health of these individuals is comparable to free landowning individuals in other areas of the Southeastern U.S. including poor dental health. These detailed osteobiographies presented in this study, along with the historical documents, provide a renewed picture of a cross-section of a rural plantation-owning family in 18th and 19th century eastern North Carolina.

Angulation of the third carpo-metacarpal joint appears to reflect vertical climbing in great apes, but not humans or their ancestors.

MICHAEL S. SELBY1, SCOTT W. SIMPSON2 and C. OWEN LOVEJOY3.
1Department of Anthropology and School of Biomedical Sciences, Kent State University, 2Department of Anthropology, University of California, San Diego.

In the recent description of Ardipithecus ramidus, the third metacarpal (MC3) long axis was compared to the capitae’s articular surface for the hamate (hamate border angle (HBA)) and to the distal capitae’s articular surface (distal capitae angle (DCA)). Great apes, humans and a baboon were compared to Ar. ramidus individuals in the capitae from the historical records could have been the result of later interment in the crypt during a period of poor record-keeping. Initial paleopathology analysis indicated that the childhood and adult health of these individuals is comparable to free landowning individuals in other areas of the Southeastern U.S. including poor dental health. These detailed osteobiographies presented in this study, along with the historical documents, provide a renewed picture of a cross-section of a rural plantation-owning family in 18th and 19th century eastern North Carolina.

Angulation of the third carpo-metacarpal joint appears to reflect vertical climbing in great apes, but not humans or their ancestors.

MICHAEL S. SELBY1, SCOTT W. SIMPSON2 and C. OWEN LOVEJOY3.
1Department of Anthropology and School of Biomedical Sciences, Kent State University, 2Department of Anthropology, University of California, San Diego.

In the recent description of Ardipithecus ramidus, the third metacarpal (MC3) long axis was compared to the capitae’s articular surface for the hamate (hamate border angle (HBA)) and to the distal capitae’s articular surface (distal capitae angle (DCA)). Great apes, humans and a baboon were compared to Ar. ramidus individuals in the capitae from the historical records could have been the result of later interment in the crypt during a period of poor record-keeping. Initial paleopathology analysis indicated that the childhood and adult health of these individuals is comparable to free landowning individuals in other areas of the Southeastern U.S. including poor dental health. These detailed osteobiographies presented in this study, along with the historical documents, provide a renewed picture of a cross-section of a rural plantation-owning family in 18th and 19th century eastern North Carolina.

Angulation of the third carpo-metacarpal joint appears to reflect vertical climbing in great apes, but not humans or their ancestors.

MICHAEL S. SELBY1, SCOTT W. SIMPSON2 and C. OWEN LOVEJOY3.
1Department of Anthropology and School of Biomedical Sciences, Kent State University, 2Department of Anthropology, University of California, San Diego.

In the recent description of Ardipithecus ramidus, the third metacarpal (MC3) long axis was compared to the capitae’s articular surface for the hamate (hamate border angle (HBA)) and to the distal capitae’s articular surface (distal capitae angle (DCA)). Great apes, humans and a baboon were compared to Ar. ramidus individuals in the capitae from the historical records could have been the result of later interment in the crypt during a period of poor record-keeping. Initial paleopathology analysis indicated that the childhood and adult health of these individuals is comparable to free landowning individuals in other areas of the Southeastern U.S. including poor dental health. These detailed osteobiographies presented in this study, along with the historical documents, provide a renewed picture of a cross-section of a rural plantation-owning family in 18th and 19th century eastern North Carolina.

Angulation of the third carpo-metacarpal joint appears to reflect vertical climbing in great apes, but not humans or their ancestors.

MICHAEL S. SELBY1, SCOTT W. SIMPSON2 and C. OWEN LOVEJOY3.
1Department of Anthropology and School of Biomedical Sciences, Kent State University, 2Department of Anthropology, University of California, San Diego.

In the recent description of Ardipithecus ramidus, the third metacarpal (MC3) long axis was compared to the capitae’s articular surface for the hamate (hamate border angle (HBA)) and to the distal capitae’s articular surface (distal capitae angle (DCA)). Great apes, humans and a baboon were compared to Ar. ramidus individuals in the capitae from the historical records could have been the result of later interment in the crypt during a period of poor record-keeping. Initial paleopathology analysis indicated that the childhood and adult health of these individuals is comparable to free landowning individuals in other areas of the Southeastern U.S. including poor dental health. These detailed osteobiographies presented in this study, along with the historical documents, provide a renewed picture of a cross-section of a rural plantation-owning family in 18th and 19th century eastern North Carolina.

Angulation of the third carpo-metacarpal joint appears to reflect vertical climbing in great apes, but not humans or their ancestors.

MICHAEL S. SELBY1, SCOTT W. SIMPSON2 and C. OWEN LOVEJOY3.
1Department of Anthropology and School of Biomedical Sciences, Kent State University, 2Department of Anthropology, University of California, San Diego.

In the recent description of Ardipithecus ramidus, the third metacarpal (MC3) long axis was compared to the capitae’s articular surface for the hamate (hamate border angle (HBA)) and to the distal capitae’s articular surface (distal capitae angle (DCA)). Great apes, humans and a baboon were compared to Ar. ramidus individuals in the capitae from the historical records could have been the result of later interment in the crypt during a period of poor record-keeping. Initial paleopathology analysis indicated that the childhood and adult health of these individuals is comparable to free landowning individuals in other areas of the Southeastern U.S. including poor dental health. These detailed osteobiographies presented in this study, along with the historical documents, provide a renewed picture of a cross-section of a rural plantation-owning family in 18th and 19th century eastern North Carolina.
resulting error, we computed the accuracy between original forms and intra- and cross-species reconstructions using 20 adult crania each from Pongo, Pan, and Homo as references. Furthermore we included fossil specimens of different form (Mladeck, Guattari, Petralona, and Sta5) to test the applicability of this approach in paleoanthropology. 758 (semi)landmarks were located on polygonal surface models from CT scans. In one specimens of each extant species and in each fossil specimen, we “knocked out” defined areas both in the face and the neurocranium. Missing data was then estimated by TPS, warping all specimens of each species to each “knockout” individual. Accuracy was computed as the square root of the mean squared difference (RMS) between the original and the reconstructions. RMS of intraspecies reconstructions ranged between 1.43mm and 1.73mm. Cross-species reconstructions performed worse. The lowest average RMS could be found reconstructing Sta5 by the Pan sample (0.86mm) and Pan by the Pan sample (2.13mm). When choosing a reference of similar form, the accuracy is comparable to intraspecies reconstructions. We discuss the different intra- and cross-species combinations and conclude that under certain circumstances cross-species fossil reconstructions can lead to useful results.

Supported by the EU FP6 Marie Curie Actions grant MRTN-CT-2005-019564 “EVA” and NSF Hominid Grant 2007, NSF 01-120.

Sexual selection, signalling and the MHC in mandrills, Mandrillus sphinx.

JOANNA M. SETCHELL1, STEFANO VAGLIO2, KRISTIN M. ABBOTT3 and LESLIE A. KNAPP3. 1Department of Anthropology, University of California, Berkeley. 2Department of Integrative Biology, University of California, Berkeley. 3Department of Biological Anthropology, University of Cambridge.

According to ‘good genes’ paradigms, costly secondary sexual characters attract mates by indicating heritable genetic quality. Mate choice may also occur for complementary genes. MHC genes represent such candidates for the genetic benefits of mate choice due to their role in disease resistance. We investigated the relationship between male secondary sexual traits (facial red colour and sternal gland odour) and MHC genotype in a semi-free-ranging population of mandrills (Mandrillus sphinx) in Gabon. Reproduction in this species is heavily biased towards high-ranking males, but also towards males that are MHC-diverse and those that are MHC-dissimilar to the female. We found that red coloration was related to the possession of specific MHC super-types. However, colour was not related to MHC diversity, and cannot reflect genetic dissimilarity, as this is contingent on the genotype of the receiver. In contrast, odour profile diversity was significantly related to MHC diversity, while odour similarity was significantly correlated with MHC similarity. These results suggest that mandrills may use visual traits to indicate the possession of specific genotypes, but rely on odour to facilitate mate choice for MHC diverse and MHC dissimilar partners. Our findings highlight the importance of selecting a reproductive partner of both high genetic quality and with complementary genes, emphasising the importance of multiple modes of signalling and olfactory cues in primate reproduction, and serve to fill a deep phylogenetic gap between our detailed understanding of MHC, mate choice and signalling in rodents and what we know of the same relationships in humans.

Malaria in prehistoric Sardinia (Italy)? Using multiple lines of evidence to test the bony responses observed on individuals from the Middle Bronze Age.

TEDDI J. SETZER1, DAVID SULLIVAN2, JOHN PISCITELLA2 and ABHAI K. TRIPATHI3. 1Department of Anthropology, Wayne State University, 2Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health.

Sardinia (Italy) was known historically as one of the most malarious islands in the Mediterranean. However, little is known about the relationship between malaria and Sardinia in prehistory. Hypotheses range from that of malaria being endemic on the island before it was populated by humans to that of it being introduced during Roman times. This research examines a skeletal collection (MNI 294) from the Middle Bronze Age tomb of Serra ’e Sa Cau-deba on the island of Sardinia to the hypothesis that malaria was present during prehistory. Because malaria does not result in a specific pattern of bony responses, multiple lines of evidence were used. These included a gross examination of the remains for the presence of conditions related to malaria (such as inherited hemolytic anemias). When high rates of bony responses suggestive of anemia were observed, additional analyses were conducted. Bone samples were collected and tested for malarial aDNA (PCR), Plasmodium falciparum histidine-rich protein II (western blots), and the malarial pigment hemozoin (laser desorption mass spectrometry). In addition, a review of the literature pertaining to the ecology and history of Sardinia was used with archaeological, isotopic, linguistic, and ethnographic data to evaluate the possibility that the malaria parasite was affecting humans on the island during prehistory. Although the results of this study were not conclusive, this research demonstrates the value of using multiple lines of evidence, and an interdisciplinary approach in paleopathological studies.

Brain size and foraging behavior of carnivorous mammals at the land-water ecotone, with implications for australopithecan ecology.

ALAN B. SHABEL. Department of Integrative Biology, University of California, Berkeley.

The durophage-ecotone model reconstructs the robust australopithecines as opportunistic consumers of hard-shelled food objects at the land-water ecotone. The model provides an ecomorphological explanation for the derived craniodental morphology of the robusts and a mechanism for the long-term coexistence of the robusts with more gracile hominins. In Africa today, the land-water ecotone is rich in bird and reptile eggs, freshwater crabs, and both aquatic and terrestrial molluscs. These high quality food resources are physically similar in the sense that they represent a soft and easily digestible food item within a brittle shell. The extant African mammals that consume these resources—including the clawless otters (Aonyx)—and...
marsh mongooses (Atilax)—exhibit robust skulls and dexterous hands, similar to the raccoons (Procyon) of North and South America. Here I present new estimates of brain size in 144 species of extant carnivoran mammals based on three external measurements of the neurocranium, a technique that has been previously applied to rodents, carnivores, and primates. The species that forage for hard-shelled foods at the land-water ecotone, including Aonyx and Atilax, exhibit relatively and absolutely large brains. The evolution of large brain size in ecotone durophages could be related to a high quality diet, manual dexterity, or some combination of these and other factors. The implications of these results for the competing models of robust australopithocene ecology will be discussed.

What does mobility look like in the Late Pleistocene?

LAURA SHACKELFORD. Department of Anthropology, University of Illinois at Urbana-Champaign.

Abundant fossil and archaeological remains from the European Late Pleistocene indicate early modern humans underwent biological and cultural adaptations associated with the climatic changes of the last glacial maximum. Anatomical changes in the postcranial skeleton and overall gracility in the lower limb are associated with a shift towards decreased mobility in these populations. A more global perspective on the Late Pleistocene suggests similar changes towards reduced mobility occurred simultaneously in other parts of the Old World, but that variation in anatomical strategies towards this end may have been utilized. Samples of Late Pleistocene early modern humans from Europe, Northern Africa and Asia (N = 100) are analyzed to assess regional variation in postcranial trends. Cross-sectional geometric properties for the proximal and mid-shaft femora and tibiae and measures of mechanical efficiency are evaluated between samples.

Regional Late Pleistocene samples are differentiated by measures of diaphyseal robusticity. Northern African samples are uniquely robust, particularly at the level of the proximal tibia. Relative to other regional samples, the Asian sample has distinctly gracile femoral and tibial diaphyses. Although this may indicate reduced mobility, this sample also demonstrates relatively high mechanical efficiency at the knees and hips, which may point to an alternative mechanism for counteracting loading on the lower limbs. Additional evidence suggests that analyses of cortical properties at different levels of the femur and tibia give varying information, making some levels more informative about activity than others and introducing competing influences at various levels of the lower limbs that can confound behavioral interpretations.

Diet and ranging behavior of bearded sakis (Chiropotes sagulatus) in the Upper Essequibo Conservation Concession, Guyana.

CHRISTOPHER SHAFFER. Department of Anthropology, Washington University in St. Louis.

Bearded sakis are among the most gra- nivorous primates, with seeds composing over 60% of their diet in most studies. They also have large group sizes, with upwards of 40 individuals. These factors likely contribute to the large home and day ranges and subgrouping reported by previous researchers. Although several recent studies have been conducted on the species, data from long term studies of ranging behavior and diet in undisturbed forest is lacking.

During a 14 month study of Chiropotes sagulatus at a new field site in undisturbed rainforest in central Guyana, I found that sakis had a tremendously diverse diet; they used 110+ plant species, ate up to 22 in one day, and utilized some species for over 3 months. The sakis were able to exploit many of the most abundant tree species in the forest and were frequently the only pri mate eating these species. Their ability to masticate tough seeds and utilize the same tree species in different phenologi cal states likely allows them to avoid competition with 7 sympatric primates. The study group consisted of over 60 animals, one of the largest group sizes reported for a neotropical primate. Sakis regularly divided into subgroups, especially during times of resource scarcity.

This study sheds light on the unique be havioral adaptations to granivory of bearded sakis and represents one of the first long-term studies of the behavioral ecology of any primate in Guyana. This study was funded by the National Science Foundation (grant #0648678) and Lambda Alpha.

Stride length, stride frequency and ontogeny: are arboreal marsupials dynamically similar to primates?

LIZA J. SHAPIRO1 and JESSE W. YOUNG2, 3. Department of Anthropology, University of Texas at Austin, 2Department of Anatomy and Neurobiology, Northeastern Ohio Universities College of Medicine.

At a given relative speed, primes are known to have relatively longer stride lengths and lower stride frequencies than other mammals. Ravich (2005) demonstrated that these spatiotemporal features are more exaggerated in infant primates, and concluded that notwithstanding the stabilizing potential of reducing branch oscillations, these features could have evolved as a by-product of grasping extremeties. That is, the distally concent rated limb muscle mass characterizing primates (particularly infants) leads to longer swing durations, lower stride frequencies and longer stride lengths. Arboreal grasping nonprimates should converge with primates, but few data, ontogenetic or otherwise, exist to test this prediction.

We measured hind limb stride characters in the sugar glider, an arboreal grasping marsupial. 428 strides were analyzed for four adults and three juveniles (1-4 months of age) in varying diameter. Controlling for size and speed, the stride lengths of all sugar gliders were as long or exceeded those of adult primates. As substrate diameter decreased, relative stride lengths increased and relative stride frequencies decreased, suggesting an active adjustment for stability. In opposition to the primate ontogenetic pattern, adult sugar gliders had relatively longer strides and lower stride frequencies, regardless of substrate. Data on limb inertial properties in sugar gliders are needed to resolve whether adults have more distally distributed limb mass, or whether their larger relative body size necessitates kinematic adjustment. Lack of dynamic similarity between primates and sugar gliders highlights alternative strategies used by grasping, arboreal mammals that warrant further study.

Supported by NSF BCS 0647402 and the University of Texas at Austin.

Genetic variation and evidence for selection in two serotonin genes in the genus Macaca.

MILENA R. SHATTUCK and RIPAN S. MALHI. Department of Anthropology, University of Illinois, Urbana-Champaign.

Research has increasingly highlighted the role that serotonin plays in shaping behavioral patterns. Serotonin is associated with impulsive and aggressive behavior and many psychiatric drugs work by manipulating the serotonin system. However, few genetic studies show that polymorphisms in genes associated with the serotonin system correlate with behavior. Therefore, an understanding of how the serotonin system evolved is critical for understanding the evolution of human behavior.

The macaque genus is comprised of behaviorally and geographically diverse species, making it a useful model for studying the evolution of genes and behavior. Many genetic features of the macaque serotonin system parallel humans, possibly due to similar selective pressures operating on the serotonin system. Previously it has been shown that positive selection influenced genetic variation in the serotonin system in humans. If parallel evolution is occurring, then macaques should show evidence for positive selection in the serotonin system as well. Our own research on serotonin receptor genes shows that this is likely the...
case for at least one serotonin receptor gene (HTRIA) in macaques. Here we present the results of our analyses on two additional genes – TP2H and SLCA6AA – and compare this to our previous findings. We sequenced these genes in nine macaque species and a vervoet. We also obtained human and chimp sequence data from the UCSC Genome Browser. We compared within- and between-species variation and applied several methods of selection to the data. Results of these analyses are discussed in light of the evidence for selection in humans and the evolutionary implications are addressed. This study was funded by the National Science Foundation, grant BCS-0925458.

“More than the midshaft?”: mapping cross-sectional properties along the entire femoral and diaphysis.

COLIN N. SHAW1,2 and TIMOTHY M. RYAN1,2. 1Department of Anthropology, Pennsylvania State University; 2Center for Quantitative Imaging, Pennsylvania State University.

Long bone diaphyses have been shown to adapt their morphology to the biomechanical strains imposed throughout a lifetime. The assumption underlying this relationship is that areas of increased rigidity and altered cross-sectional shape correspond with (or lie close to) the principle planes of bending. The vast majority of this work has been constrained to single cross-sectional slices, normally taken at the midshaft. Noticeably absent is a description of the variation in cross-sectional properties along the entire diaphysis. To address this, high resolution CT scans (0.11 micron voxels, 0.117 micron slice thickness) were performed (The Center for Quantitative X-Ray Imaging (CQI), Pennsylvania State University) on the femora of 20 Native American agriculturalists (10 male, 10 female). Analysis of femoral cross-sections (20-80% of length) reveals variation among individuals, however, generally J is lowest between 40-60% of limb segment length, cortical area is higher in the proximal half of the femur and decreases distally, and diaphyseal shape (I_dia/minor) is most pronounced proximally. Comparisons of tubular cross-sections (15-55% of length) indicate a general pattern among individuals that involves a monotonic decrease in J moving distally, homogeneity in cortical area in the proximal half of the bone that decreases distally after the midshaft, and diaphyseal shape that is most pronounced proximally (30-45% segment length). In conclusion (1) across individuals, variability is higher in the femoral compared to the tibia, (2) cross-sectional measures other than those taken at the midshaft may also provide valuable information about diaphyseal rigidity and shape.

Sexual dimorphism in the geometry of the distal humeral condyle.

BRIAN M. SHEARER1 and MARC R. MEYER2. 1Department of Anthropology, The Graduate Center of the City University of New York and New York Consortium in Evolutionary Primatology (NYCEP), 2Department of Social and Behavioral Sciences, Chaffey College.

The Carrying Angle has been historically noted as a sexually dimorphic feature in the human arm, but relies on full articulation of the arm in non-skeletal context for an accurate assessment of levels of dimorphism to be made, and therefore has minimal applicability for use in determining the sex of a non-articulated or otherwise fragmentary humerus. Methods attempting to create a proxy for Carrying Angle using only non-articulated skeletal samples rely extensively on bony landmarks of undamaged humeri, while additional techniques for determining sex rely on measurements of overall size or geometric morphometric analyses relying on Type III data. In this pilot study, we have attempted to circumvent the various problems posed by the aforementioned techniques by measuring the angle of the distal humeral condyles in relation to the long axis of the humeral diaphysis with standardized imaging software and without relying exclusively on bony landmarks. We also assess the effectiveness of Baumann’s angle, a traditional dimorphism detection technique, versus our newly devised, digitally acquired angle measurement. The observed results indicate that there is a significant correlation between angle measurements derived from our technique and sex, with additional results indicating higher accuracy in our technique versus Baumann’s. As our method is solely on bony landmarks, it has applicability in cases of fragmentary remains and would be useful in both forensic and bio-archaeological studies.

An analysis of kin-strucured migration by isonymy in 19th century Chemung County, New York.

KEVIN ERIC SHERIDAN1,2. 1Department of Anthropology, Binghamton University – SUNY, 2Public Archaeology Facility, Binghamton University – SUNY.

The effect of kin-strucured migration on the 19th century settlement of the frontier regions of New York State was examined using the 1860 United States Federal Census records. Isonymy was calculated within and between towns, and Fishers (and Karlin-McGregors [who showed proportionally higher rates of migration with lower levels of surname diversity] the combination of low genetic diversity with a relatively high migration index, as well as the greater genetic differentiation of these towns as measured by isonymy, appears to be a signature of kin-structured migration operating at differential level throughout the Euroamerican settlement of the frontier regions of 19th century New York State.

The modern world as an extreme environment.

DIANA S. SHERRY. Department of Human Evolutionary Biology, Harvard University and School of Communication, Emerson College.

Evolutionary perspectives on health and medicine have given rise to two prominent conceptual models and messages. The first emphasizes inherent design "flaws" in the human body arising from inevitable life history tradeoffs involved in maximizing lifetime reproductive success. The second examines physiological variation along dimensions of health in terms of phenotypic plasticity comprising a "functional continuum" of adaptive responses to environmental conditions. Both approaches recognize the mounting evidence of widespread health risks associated with the dysregulation of fundamental biological systems (cardiovascular, metabolic, reproductive) under the influence of modern environments. The modern world has been characterized typically as a "novel" environment generating a "mismatch" (also termed "dissonance" or "disconnect" or "collison") between contemporary Western lifestyles and ancestral physiological/ adaptations. This talk advances the concept of the modern world as an "extreme" environment in the sense that much like climbing Everest or running a marathon in the Sahara, it requires the human body and psyche to function at the very limits of its evolutionary capacities. Both approaches recognize the mounting evidence of widespread health risks associated with the dysregulation of fundamental biological systems (cardiovascular, metabolic, reproductive) under the influence of modern environments. The modern world has been characterized typically as a "novel" environment generating a "mismatch" (also termed "dissonance" or "disconnect" or "collison") between contemporary Western lifestyles and ancestral physiological/ adaptations. This talk advances the concept of the modern world as an "extreme" environment in the sense that much like climbing Everest or running a marathon in the Sahara, it requires the human body and psyche to function at the very limits of its evolutionary capacities. Both approaches recognize the mounting evidence of widespread health risks associated with the dysregulation of fundamental biological systems (cardiovascular, metabolic, reproductive) under the influence of modern environments. The modern world has been characterized typically as a "novel" environment generating a "mismatch" (also termed "dissonance" or "disconnect" or "collison") between contemporary Western lifestyles and ancestral physiological/ adaptations. This talk advances the concept of the modern world as an "extreme" environment in the sense that much like climbing Everest or running a marathon in the Sahara, it requires the human body and psyche to function at the very limits of its evolutionary capacities.
from this standpoint and communicated as a public health message with the use of an intuitive metaphor describing the modern world as an extreme environment.

Developmental changes in the neocortical microstructure of humans and chimpanzees.

CHET C. SHERWOOD1, Tetyana Duka3, Daniel J. Miller4, cheryl d. stimson5, Archie j. fobs3, derek e. wildman1, Kate telfer5, Daniel P. Buxhoeveden2, Katerina Semendeferi and PATRICK R. HOE6. 1The George Washington University, 2National Museum of Health and Medicine-Armed Forces Institute of Pathology, 3Wayne State University School of Medicine, 4University of California, San Diego, 5University of South Carolina, 6Mount Sinai School of Medicine.

Human cognition arises through the interaction among species-specific neurodevelopmental processes, social learning, and experience. The extent to which neocortical development in humans unfolds differently from closely related primates, however, is not well understood. At present, only data on developmental changes in brain mass and cranial capacity are available from great apes. Previous research from macaque monkeys and humans, however, indicate that humans may be distinct in displaying delayed maturation of connectivity in higher-order association regions of the prefrontal cortex, allowing for a more extended period of plasticity in the acquisition of executive cognitive functions. We have initiated a collaborative network to examine developmental changes in the microstructure of the neocortex of common chimpanzees (n = 14 from birth to sexual maturity; n = 4 adults) in comparison to humans. We are using multiple analytical approaches to characterize ontogenetic variation in the neuron/neuropil fraction, the distribution of myelinated axons, density of synapses, and the expression of synapse- and myelin-associated proteins across diverse regions of the neocortex. Our results show that chimpanzees display human-like asynchrony of prefrontal cortex development in many indicators of synaptic connectivity and function. Quantification of axon length density reveals similar rates of myelination across cortical regions in both species until the age of weaning, after which the trajectory of myelination displays region-specific patterns. These findings indicate that a slowly developing prefrontal cortex characterizes the evolutionary branch of African apes, including humans, and might be related to the enhancement of social learning capabilities.

This research was supported by NSF HOMIND grant 0827531.

AAPA ABSTRACTS

Growth and development in physical anthropology.

RICHARD J. SHERWOOD1,2 and DANA L. DUREN1,3. 1Lifespan Health Research Center, Department of Community Health, Wright State University, 2Department of Pediatrics, Wright State University, 3Department of Orthopaedic Surgery, Wright State University.

Physical anthropological research was codified in the U.S. with the creation of the American Association of Physical Anthropology (AAPA) in 1931. Two years earlier a study began in Yellow Springs, Ohio, with a goal to identify "what makes people different." The approach used to answer that question was to study the growth and development of Homo sapiens. The study, the Fels Longitudinal Study (FLS), is currently the longest continuous study of human growth and development in the world. While the AAPA and the FLS have existed as separate entities for 80 years now, it is not surprising, given the relationship between anatomical and developmental research, there has been considerable overlap between the two. As the field of physical anthropology has blossomed to include subdisciplines such as forensics, genetics, primatology, as well as sophisticated statistical methodologies, the importance of growth and development research has escalated.

Our work with the FLS has explored growth and development of the craniofacial complex, skeletal maturity, and childhood bone accrual. Our efforts have sought to characterize the genetic architecture of these traits complexes, and provide comparisons across populations and taxa. While current FLS research is largely directed at biomedically relevant questions, virtually all findings are relevant to physical anthropology providing insights into basic biological processes and life history parameters. Highlighted results of this work serve as an introduction to growth and developmental research in physical anthropology. They demonstrate the importance, not only across the subdisciplines of physical anthropology, but to among anthropological, biological, and clinical inquiries.

Supported by NIH R01DE016692 and NIH R01DE018497 to RJS, and NIH R01HD065247 to DLD.

Secular change in clavicle length in the American population (1840-1970).

NATALIE R. SHIRLEY1 and SANDRA CRIDLIN2. 1Lincoln Memorial University-DeBusk College of Osteopathic Medicine, 2University of Tennessee, Knoxville.

Secular change in skeletal dimensions of the American population has been documented in long bone length and proportion and in the cranio-facial skeleton (Meadows and Jantz, 1995; Jantz and Meadows Jantz, 1999; Jantz, 2001; Jantz and Meadows Jantz, 2000; Jantz and Wescoat, 2002; Jantz and Meadows Jantz, 2010). Specifically, during the past 150 years femur and tibia length has increased, cranial vault height has increased, cranial breadth has decreased, and facial breadth has narrowed. In addition, secular trends have been documented in skeletal maturation of the medial clavicle (Langley-Shirley and Jantz, 2010) and distal tibia and fibula (Cranial and Dental Research Center). This study investigates secular change in clavicle length in the American population from 1840-1970 birth cohorts. The sample includes 695 females and 1744 males from the Forensic Data Bank (including the Terry Collection) and a modern autopsy sample from East Tennessee (the McCormick Clavicle Collection). The sample was divided into 10-year birth cohorts and analyzed for secular trends using linear regression, ANOVA, and post-hoc Hotelling's two sample t-tests.

Results of the linear regression indicate that clavicle length increases in females from 1850 to 1920 and a decrease from 1920-1970. Interestingly, this decrease in length corresponds approximately with the earlier documentation of skeletal maturation. A different trend is apparent in males: clavicle length decreases slightly throughout the 20th century, but this decrease is not statistically significant. This presentation analyzes these trends and compares them to documented trends in skeletal maturation and secular change in other skeletal dimensions.

Evolutionary dynamics of a developmental enhancer with human-specific function.

SAMUEL J. SHOLTIS1, HEATHER BRESLAWSKI1, CAROLE PEASE2, JAMES McGRATH3 and JAMES P. NOVOKHAN3, Departments of Genetics and Comparative Medicine, Yale University School of Medicine.

We have shown using a mouse transgenic assay that the most rapidly evolving conserved non-coding sequence in the human genome (HACNS1) acts as a developmental enhancer. HACNS1 and its chimpanzee and rhesus orthologs all drive expression in eye, ear, branchial arches and midbrain, but HACNS1 has gained an expanded, robust expression domain in the anterior limb and lost expression in the nasal processes. 16 human-specific substitutions are sufficient to produce these expression differences.

To determine the primate and mammalian ancestral states we tested the enhancer activity of HACNS1 orthologs from mouse, horse and bushbaby. Bushbaby shared all expression domains with chimp and rhe-
Lesion lessons: a case study of lower limb ankylosis and possible surgery from Romania.

JASMEEN SIDHU1, THOMAS A. CRIST2, MIHAI CONSTANTINESCU3 and ANDREI D. SOFICARU3. 1University of Northern British Columbia, 2Programs in Physical Therapy and Sociology/Anthropology, Utica College, 3Institutul de Antropologie “Franță I. Rainer” al Academiei Române, Bucharest.

Paleopathological skeletal injuries offer insights into prolonged recovery and compensatory mechanisms utilized at biological, individual, and societal levels. This study examines a virtually intact skeleton of a young woman (30-35 years old) with a severe ankylosed left knee using observational analysis. The remains were recovered from the Spanțov 1959 M 37 site situated in Spanțov, Romania, and date from the fourth century AD. The left knee is completely fused, with the thigh projecting posterolaterally when the femur is held in the normal anatomical position. Compared with the right proximal femur, the left one presents a much more roughened gluteal muscle attachment that is narrower and situated more laterally than the one on the right. The inferior articular surfaces of both condyles are obliterated by “stretched” new bone that connects the proximal tibia to the distal femur. There is manifestation of moderate osteoarthritis of the right knee. The absence of the left tibial tuberosity and its replacement by a flattened round scar suggests that the tuberosity was avulsed and never reattached. A series of blunted thin lines extending laterally and inferriorly from the margins of the former tuberosity may be healed cut marks from a surgical procedure to remove the tuberosity and patella. The probable mechanisms of injury and the biomechanical and socio-cultural adaptations made by this woman to her unique disability are presented.

Body mass and body mass index estimation in archaeological populations from Central Europe.

FRANK SIEGMUND1 and CHRISTINA PAPAGEORGPOULOU2,3. 1Seminar für Ur- und Frühgeschichte, University of Basel, 2Institute of Anthropology, Group of Paleogenetics, Johannes Gutenberg University, 3Archaeological Service Grisons, Switzerland.

Body Mass Index (BMI) is mainly used in medicine as a diagnostic tool to identify weight problems, health risks (e.g., Eknoyan, 2006), and to assess biological standards of living within populations (Komlos et al., 2004). The prediction of body mass (BM) from skeletal material still remains problematic, nonetheless, many studies have indicated that BM can be estimated from human skeletal remains and results have been mainly acquired from early hominins (Ruff et al., 1997; Ruff et al., 2010). The present paper tests BMI estimation formulae (Ruff et al. 1991; McHenry 1992; Grine et al. 1995; Auerbach & Ruff 2004) on skeletal populations from central Europe (350-1500 AD; 629 males, 616 females) with the aim to reconstruct the BM and the BMI within a variable temporal setting. Parameters such as sex, age and robusticity index (Martin & Saller, 1957) are also considered. The method of Auerbach & Ruff (2004) offered the most reliable results. The mean body weight and the BMI for males was estimated 70.8 kg (sd. 6.8) and 25.4 (sd. 2.0) respectively, and for females 58.9 kg (sd. 5.4) and 24.3 (s.d. 1.9) respectively. Robusticity index was correlated to body mass and BMI only at females. The BMI was slightly increasing from adult to mature and slightly diminishing afterwards. The intra-population variability was higher than variation through time. According to WHO (1995; 2000) classifications these populations showed few obese and under-weighted individuals. Although challenging, BMI and BM estimations can offer valuable information on biological welfare of past populations.

Thyroid disease at midlife: byproduct of adaptations for successful pregnancy outcome?

LYNNETTE LEIDY SIEVERT. Department of Anthropology, University of Massachusetts, Amherst.

Thyroid dysfunction is common, especially among women over the age of 50. It is estimated that 5% of all postmenopausal women are treated with both estrogen therapy/hormone therapy and thyroid hormone replacement. Thyroid dysfunction also affects 1-2% of pregnant women. Thyroid activity increases during pregnancy in response to human chorionic gonadotropin stimulation, and in the early weeks of pregnancy the fetal thyroid is dependent on maternal T4. Achieving and maintaining maternal thyroid activity is critical to successful birth outcomes; maternal thyroid hormone deficiency is associated with increased risks of miscarriage, low birth weight, and even mild hypothyroidism that can compromise fetal neurodevelopment. During pregnancy, increasing estrogen levels regulate thyroid hormone levels by stimulating the production of T3, 3',5',3'-triiodothyronine (T3) and 3,5,3'-triiodothyronine (T3). Estrogen also increases thyroid-stimulating hormone (TSH) receptor density in the pituitary. This review will use cross-species evidence to consider, from the perspective of evolutionary medicine, why women are more vulnerable to thyroid diseases than men, and why thyroid dysfunction is more likely to develop during pregnancy and post-menopause. In particular, this review will look at the relationship between estrogen and thyroid hormones, and will investigate the hypothesis that post-menopausal disruption in thyroid function is a byproduct of a critical...
ontogenetic variation in Homo and Pan mandibles: a 3D geometric morphometric approach.

NANDINI SINGH1,2 and KATERINA HARVATI1 1Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 2Senckenberg Center for Human Evolution and Paleoenecology Eberhard Karls Universität Tübingen.

Shape variation in extant hominid mandibles has been widely investigated. However, there is still an ongoing debate on whether inter-specific morphological differences can be attributed to the direction and pattern of ontogenetic trajectories. In this research project, we re-examine patterns of ontogenetic shape change in 187 subadult and adult humans, bonobos and chimpanzees. We propose that ontogenetic shape differences in the mandible are influenced not only by diverging ontogenetic trajectories among taxa, but also by differing patterns of ontogenetic shape changes in the corpus and rami.

We employ Procrustes based geometric morphometrics to quantify and analyse mandibular form. Thirty 3D landmarks were recorded on the entire mandible and these were analysed together as well as separately as corpus and rama elements. Principal components analyses in shape-space and form space, multivariate comparisons were used to examine patterns of ontogenetic shape variation across chimpanzees, bonobos and humans. Our results suggest that ontogenetic trajectories of shape change in Pan and Homo are linear, but not entirely parallel. Moreover, shape differences among the taxa are established early in postnatal ontogeny. Separate analyses of the corpus and rami show that these two regions are semi-independent of each other in their pattern of ontogenetic shape changes. The latter provides support for the functional matrix hypothesis and serves as an additional explanation for divergent patterns of shape change in closely related hominid taxa. These results also emphasize the need for further research on integrative aspects of the primate mandible.

This study was funded by Marie-Curie (“EVAN”) Action grant MRTN-CT-2005-019564.

Juvenile cranial shape variation and superstructure development in African papionins.

MICHELLE SINGLETON. Department of Anatomy, Midwestern University.

The discovery of Rungwecebus (Cercopithecinae: Papionini), which is currently known only from juvenile voucher specimens, has spurred interest in the relationship between juvenile papionin cranial morphology and adult cranial form. Several studies have demonstrated that diagnostic shape differences are present prior to M1 eruption, but many phylogenetic characters are difficult to evaluate in juveniles. For example, African papionin canines are distinguished by their temporal and nuchal line conformations, but these features, which develop in response to mechanical loading, achieve full expression only in mature animals. However, if the influence of the cranial musculature merely modulates existing neurocranial shape differences, shapes of the frontal and occipital bones would be expected to differ between juveniles of two clades.

To test this hypothesis, geometric morphometric analyses of frontal and occipital shape were conducted on M1-stage crania (n=30) representing all African papionin genera except Theropithecus. Linear, 3D landmarks (21 frontal; 17 occipital) were subjected to generalized Procrustes and principal components analyses to explore taxonometric shape variation. In both analyses, the first principal shape component (PSC1) summarized allometric variation, while subsequent components reflected phylogenetic shape differences. Frontal PSC2 summarized differences between the Cercocebus/Mandrillus and Lophocebus/Papio/Rungwecebus lineages in coronal suture location, fronto-temporal suture length, and prominence of glabella. Occipital PSC3 separated the clades on the basis of occipital proportions and in position, but L. aterrimus was more similar to Cercocebus/Mandrillus. These results suggest that in African papionins, epigenetic influences amplify early-arising neurocranium shape differences to yield phylogenetically diagnostic adult cranial superstructures.

The role of landscape in shaping contemporary genetic structure in the chacma baboon (Papio ursinus).

RIASHA SITHALDEEN1,2, JACQUELINE M. BISHOP1 and REBECCA R. ACKERMANN1,1Department of Archaeology, University of Cape Town, 2Department of Zoology, University of Cape Town.

A published phylogeography of Parthenisus estimates that this taxon diverged as a separate lineage 1.84 million years ago (Ma). Two distinct mitochondrial lineages are revealed within the sample dividing chacmas into northeastern (~1.52Ma) and southwestern (~1.22Ma) clades and suggesting an independent history for the chacma clade from ~0.68Ma. This pattern of diversification is linked to landscape change during the climatically variable Pleistocene. These findings are used to test further hypotheses of landscape driven population differentiation within chacma baboons. The purpose of this study is to improve our understanding of the link between past and present landscapes and genetic structuring within Papio. Employing phylgeo graphic techniques a 473bp alignment of the mitochondrial D-loop is analysed from 132 chacma baboon individuals from South Africa, Namibia, Botswana and Zambia. Here the distribution of modern haplotypes suggests low individual dispersal distances while the geographic range of haplogroups hint that habitat specificity plays a significant role in driving contemporary population structure.

Collagen fiber orientation (CFO) variations in the hominid femoral neck are likely invalid for deciphering load history when cortical robusticity is low.

JOHN G. SKEDROS. Bone and Joint Laboratory, Department of Orthopaedics and Veterans Affairs Medical Center, Salt Lake City, Utah.

Load history of the proximal hominid femur is central in the debate of the origins of bipedalism. This is typically inferred from structural/geometrical features of the femoral neck (FN). For example, the emergence of habitual bending across the FN is associated with arched trabecular patterns and asymmetry of cortical thickness in the plane of bending. Recent studies show that variations in predominant collagen fiber orientation (CFO) in the cortical shell are much stronger than structural features in detecting and distinguishing habitual bending from torsion. Stereotypical bipedalism is linked with bending across the FN, producing ambient tension and compression in opposing cortices. CFO data sets and those from the human FN show pronounced cross-sectional variation and are consistent with compression-adopted CFO in the superior cortex but lack counter-balancing tension. Recent biomechanically significant CFO variations are found across the modern human femur, which are consistent with compression-adopted CFO in the superior cortex but have counter-balancing tension implausible. Paradoxical CFO data in the human FN can be reconciled by considering that: (1) cancel lous-cortical bone load sharing are highly disproportionate between the
human and chimpanzee FN, (2) human FN loading is relatively more complex, and (3) the human FN cortex is so thin that load-specific regional histological adaptation (i.e., CFO and secondary osteons) seen in the more robust chimpanzee FN is not required. It can be argued that there is a cortical robusticity threshold below which the use of histological variations is invalid in deciphering load history, which is the case in the human FN.

Mandibular P4 morphology among Plio-Pleistocene hominins: taxonomic implications and morphological trends.

MATTHEW M. SKINNER¹, KATHERINE E. SCHROER³, PHILIPP GUNZ², ZEHENAY ALEMSEGED⁴, BERNARD A. WOOD⁵, and JEAN-JACQUES HUBLIN. ¹Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, ²Hominid Paleobiology Doctoral Program, ³Department of Anthropology, University of California, Berkeley, ⁴Department of Anthropology, George Washington University, ⁵Department of Anthropology, California Academy of Sciences.

In this study we examined EDJ morphology of mandibular fourth premolars (P4) in samples of extant apes and Plio-Pleistocene hominins in order to (1) assess the taxonomic distinctiveness of P4 EDJ morphology and 2) to track changes in P4 EDJ shape during hominin evolution. Premolars were subjected to micro-computed tomography (isometric voxel resolution ~30 microns) and the EDJ surface was segmented as a digital surface model. To quantify shape variation among the study taxa, a geometric morphometric analysis was conducted; placing 3D landmark coordinates around the cervix and along the marginal ridge which runs between the dentine horns of the protoconid and metaconid. Results indicate that P4 EDJ morphology discriminates reliably among hominin taxa. Taxonomically-relevant shape variation in P4 EDJ morphology includes changes to crown base shape, crown height, relative dentine horn height and positioning, and the relative size of the anterior and posterior fovea. Trends in shape variation between hominin taxa are discussed with regard to current hominin phylogenetic hypotheses. This study was supported by the Max Planck Society and NSF-IGERT DGE-0801634 and NSF-GRFP grants.

Integrating geometric morphometrics and finite element analysis to assess the biomechanical implications of shape variation in chimpanzee cemnata.

AMANDA L. SMITH¹, STEFANO BENAZZI¹, LESLIE PRYOR SMITH¹, DAVID J. GREEN¹, KELLI TAMVADA¹, PAUL DECHOW², MARK A. SPENCER², IAN K. GRASSE³, GERHARD W. WEBER² and DAVID S. STRATT¹. ¹Department of Anthropology, University at Albany, ²Department of Anthropology, University of Vienna, ³Department of Biomedical Sciences, Baylor College of Dentistry, ⁴Department of Anthropology, The George Washington University, ⁵Department of Anthropology, Arizona State University, ⁶Department of Mechanical and Industrial Engineering, University of Massachusetts at Amherst.

Finite element analysis (FEA) is a powerful tool for analyzing the biomechanical consequences of shape variation in chimpanzee crania, thereby providing a comparative context in which to interpret cranial variation between hominid species.

For each of 19 chimpanzees, 709 landmarks and semi-landmarks were digitized on 3D surfaces derived from CT scans. The 19 landmark configurations were converted to shape coordinates by Generalized Procrustes Analysis (GPA) and shape variability was decomposed into orthogonal components by Principal Component Analysis (PCA). FE models of the specimens lying at the extremes of the first three principal components were created from CT scans, assigned the material properties of bone, subjected to muscle forces derived from physiological cross-sectional area data, and constrained at the TMJs and bite point so as to simulate mastication. Muscle forces were scaled to maximize the effect of size on strain values. Results indicate that facial projection is an important influence on feeding strains. This approach is still limited, e.g., our six specimens are too few to talk about errors and population variation in earnest. Yet, it represents a first (and practicable) step forward to estimate the spectrum of loading scenarios within a sample.

This project was funded by grants from the National Science Foundation Physical Anthropology HOMINID program (NSF BCS 0725219, 0725183, 0725147, 0725141, 0725136, 0725078), NSF BIO 0743460 and the EU FP6 Marie Curie Actions MRTN-CT-2005-019564 "EVAN".

Late Epipaleolithic infant remains from Kaus Kozah Cave, southwestern Syria.

FRED H. SMITH¹, SHARA BAILEY², ANDREW W. KANDEL³, MOHAMMAD MASRİ⁴, KNOT BRETTKE⁵ and NICHOLAS J. CONARD². ¹Department of Sociology and Anthropology, Illinois State University, ²Department of Anthropology, New York University, ³Department of Prehistory and Quaternary Ecology, University at Albany, ⁴Department of Prehistory and Quaternary Ecology, University of Tubingen, ⁵Senckenberg Center for Human Evolution and Paleoecology, University of Tubingen.

Kaus Kozah Cave (Damascus Province, Syria), excavated by the Tubingen-Damascus Excavation and Survey Project, yielded two infants (Kaus Kozah 1 and 2) at the top of a geological horizon (GH4) containing Middle Paleolithic artifacts. Three overlying layers consist mainly of anthropogenic deposits from the Epipaleolithic and Neolithic. Although both individuals lack grave goods, they are spatially distinct and preserved sufficiently to provide a practicable step forward to estimate cranial and postcranial remains. There were no indications of pathology or stress are observable on bones. Three overlying layers consist mainly of anthropogenic deposits from the Epipaleolithic and Neolithic. Three overlying layers consist mainly of anthropogenic deposits from the Epipaleolithic and Neolithic.
of the Levant. Evidence for hypoplasia in KK1 suggests environmental stress was a significant factor at birth. Combined with results from isotopic studies, these data indicate relatively high levels of stress in populations just before the transition to Neolithic sedentism.

Genetic variation and endurance running: comparing ACE1 and ACTN3 polymorphisms in marathon runners and sprinters.

HEATHER D. SMITH and BRENDA J. BRADLEY. Department of Anthropology, Yale University.

Research on functional morphology is providing mounting evidence that long-distance running has played a major role in human evolution. Compared to other mammals, humans are poor sprinters but perform well at endurance running. This capability has arguably left measurable traces on the human skeleton and hominin fossil record, and we might expect similar indications of selection for endurance running in the human genome. Along this line, the impact of genetic variation on human athletic performance has emerged as an active area of investigation, and several candidate-gene polymorphisms have been associated with physical fitness and a natural aptitude for high-performance athletics. However, previous association studies have yielded conflicting results, and many studies have focused on general athletic performance, not specifically on running. Here we examine polymorphisms at two candidate genes thought to play a role in athletic-performance phenotypes: the angiotensin-1 converting enzyme (ACE1) and alpha-actinin-3 (ACTN3). We compiled published data on genetic variation at these loci across human populations, including samples of runners, other athletes and non-athletes. We also genotyped an additional 171 marathon runners, ultra-marathon runners and sprinters. We then compared genotype and allele frequencies, within a multi-variante analysis, across running phenotypes. Initial results indicate no clear difference between genotype and allele frequencies in samples of sprinters vs. endurance runners. However, allele frequencies observed in the combined sample of runners differ from those of the general population. Studies such as this are a step toward understanding how genetic variation might contribute to human running propensities and capabilities.

Phylogenetic utility of developmental cranial modules in papionin primates: implications for inferring hominin phylogeny.

HEATHER F. SMITH,1,2 and NOREEN VON CRAMON-TAUBADEL3. Department of Anatomy, Arizona College of Osteopathic Medicine, Midwestern University, 1School of Human Evolution and Social Change, Arizona State University, 2School of Anthropology & Conservation, University of Kent.

The ability to draw accurate inferences regarding phylogeny and taxonomy in the hominin and non-hominin primate fossil record is contingent upon an understanding of the relationship between cranial morphology and phylogeny. The primate skull develops as three primary developmental modules, the basicranium, splanchnocranium, and neurocranium, which have been predicted to differ in the extent to which they reflect the underlying phylogenetic relationships of taxa, such that the basicranium which develops earliest in ontogeny from a cartilaginous template should be the most phylogenetically constrained. To address this question, the phylogenetic utility of these cranial regions was compared in a test group; the papionin primates. One hundred and seventy-five landmarks were digitized on the basicranium, splanchnocranium, and neurocranium of samples of 15 papionin species. Mahalanobis distances among taxa were calculated based on each developmental data set, and morphological phenograms were generated and compared to molecular consensus phylogenies for this clade. The phenograms based on the morphology of the basicranium, splanchnocranium, and neurocranium were all found to be significantly correlated with the molecular phylogeny, albeit with a few minor differences in topology, suggesting a close relationship between shape of each cranial module and phylogenetic relationships in papionin species. Additionally, the discovery that the intramembranously ossifying neurocranium and splanchnocranium reflect phylogeny, as does the endochondrally ossifying basicranium suggests that mode of ossification may not be the primary determining factor in the degree of phylogenetic utility of cranial form. The implications of these findings for inferring taxonomy and phylogeny in the fossil record are discussed.

This study was funded by The Leakey Foundation.

Trabecular bone type and distribution in mid and upper facial skeleton of four anthropoids.

LESLIE PRYOR SMITH and PAUL DECHOW. Department of Biomedical Sciences, Texas A&M Health Science Center.

Finite Element Analysis is a useful tool for testing hypotheses regarding the mechanical significance of primate craniofacial morphology. The input of accurate region and species specific cortical bone mechanical properties has a significant effect on the output from finite element models. However, the type and distribution of trabecular bone through-out the craniofacial region of primates and the effect this variation has on the mechanical behavior and modeling of the primate craniofacial complex is unknown. This study quantifies the distribution of trabecular bone (quantified as a fraction of cortical plus trabecular volume) and the variation of trabecular type (rod or plate-like as characterized by a value known as structural model index, or SMI) in the supraorbital and zygomatic regions of Homo, Pan, Gorilla, and Papiio. Micro-computed tomography was used to compute the trabecular bone fraction and SMI in 5 supraorbital and 5 zygomatic regions in each species. Principle component analysis of all regions (n=102) revealed 2 primary components that explain 75% of the variation: a strong negative correlation between trabecular bone fraction and SMI, as well as SMI and cortical region volume. Strong correlations between trabecular and cortical properties suggest that they play an integrated mechanical role. Kruskal-Wallis test showed statistically significant (p<0.05) differences exist in SMI between species and trabecular fraction between regions and species. This study shows that craniofacial trabecular and cortical bone mechanical properties are linked and also species and region specific, suggesting that these variations should be incorporated into respective primate craniofacial FEMs.

This study was funded by the National Science Foundation Physical Anthropology HOMINID program (NSF BCS 0725126).

The influence of social dynamics on gestural communication in two groups of chimpanzees (Pan troglodytes).

LINDSEY W. SMITH, Department of Anthropology, City University of New York Graduate Center, New York Consortium in Evolutionary Primatology (NYCEP).

Gestural communication in primates is influenced by a number of factors, including environment, morphology, and social dynamics. This study examines how social relationships and social structure shape gestural signaling in two groups of chimpanzees (Pan troglodytes). Data were collected from a group of 11 individuals at the St. Louis Zoo (STLZ) from June to August 2007, and from a group of 13 individuals at the Los Angeles Zoo (LAZ) from September to December 2007. Gestures were coded from video recordings of social interactions in the subjects’ outdoor enclosures whenever multiple individuals were within 4m, using a Sony DCR-DVD403 Handycam. Twenty-six distinct gestures were recorded in the STLZ group, and twenty-eight gestures were recorded in the LAZ group, with an overlap of twenty-two gestures. In both groups, males gestured most fre-
queently to females. STLZ females gestured most frequently to other females, while LAZ females gestured most frequently to other males. In both groups, adults gestured most frequently to other adults, and juveniles gestured most frequently to adults. In all age/sex classes of both groups, gestures were used most frequently in the context of Near Others. Despite differences in group composition and environment, the two study groups showed remarkable similarities in their gestural signaling, suggesting that the influence of social dynamics is consistent across groups. A keener understanding of how some aspects of gestural communication in chimpanzees is important for investigations of the evolution of gestural communication in African apes.

Funding for this research was provided by the CUNY Mario Capelloni Dissertation Award and the American Association of University Women American Fellow-ship, NYCEP (NSF DGE 0333415), and Sigma Xi.

Demography, health status, and mortuary rituals of the Late Woodland Poole-Rose Ossuary, Ontario, Canada: a study of the clavicles.

NICOLE E. SMITH, MARY H. MANHEIN and HEATHER MCKILLOP. Department of Geography and Anthropology, Louisiana State University.

The Poole-Rose ossuary is a pre-contact (1550 A.D. ±50 years) native secondary burial from Ontario, Canada. This study extracts cultural information about the Poole-Rose ossuary population through analysis of the clavicle. Information on demography, health status, trauma, and cultural modification was collected on the clavicles. The minimum number of individuals is 196 based on the right acromial end of the clavicle. Results show significant degenerative joint disease was present in the acromioclavicular joint as compared to the sternoclavicular joint (P = 0.001). Active peristele reactions of the clavicle are more frequent than healed reactions. Clavicular lesions are significantly associated with adult individuals (P = 0.037), but affect both left and right side of the body and both stern- nal and acromial joint of the bone to similar degrees. Healed clavicular fractures are infrequent in the ossuary population, appearing as gestural marks in the Poole clavicles and clavicle fragments. Cut marks consist of fewer than 10 cuts on major muscle attachment sites. A significant association exists between presence of a rhomboid fossa and age of the individual (P = 0.001). Metric analysis of the Poole-Rose ossuary clavicles includes similar correlations between length and robusticity of both left and right bones. Right bones were more variable in curvature than left bones, however, suggesting differential pressures from handedness that were generally placed on the right side more often than the left. Results of this study combined with those of previous studies of the Poole-Rose ossuary bolster a greater understanding of pre-contact culture and health in the Great Lakes region.

Coronoid and condylar process relationship in domestic dogs and its relevance for human evolutionary models.

SHELLEY L. SMITH1, JESSE MEIK2, and JOHN W. FONDON III2. Department of Sociology and Anthropology, 3Department of Biology, University of Texas at Arlington.

Rak et al. (2002) proposed that the relationship between the coronoid and condylar processes differed between Neanderthals and modern humans and that ramus morphology had taxonomic implications with respect to Neanderthals. Wolpoff and Frayer (2005) countered, documenting considerable variation for the proferred traits. Here we explore co-variation in mandibular characteristics in domestic dogs (Canis familiaris), another polytypic species displaying wide variation in jaw morphology, to elucidate relationships that may hold more broadly for hominids as well.

Imaged was used to measure photographs of 150 mandibles from diverse adult male dogs. Mandible length (infra-dentale - condylion laterale) in superior view served as a size measure. Coronoid and condyle heights were measured in lateral view from their apices to a constructed baseline (sub-carnassial - angular process base). Masseter area was approximated following masseteric fossa muscle markings. The ratio of coronoid:condyle height ranges from 1.61 to 2.08 (mean = 1.86; SD = 0.10). Log(Length) is strongly correlated (r = 0.96) with Log(Masseter Area). Using Log(Masseter Area) residuals to adjust for the effect of mandible length yields significant results for condyle and coronoid height separately but not for their ratio, due to similarity of slopes for the condyle and coronoid equations (Log(Condyle) vs. Masseter Residual, B = 0.19, p = 0.02; Log(Coronoid) vs. Masseter Residual, B = -0.17, p = 0.04; Coronoid:Condyle vs. Masseter Residual, B = -0.09, p = 0.26). Therefore, condyle height and coronoid height appear to scale with similar slopes in dogs, and their relative heights may not be independently informative.

Building a teaching collection and fostering the scientific method in undergraduate forensic anthropol-ogy classes.

SUSAN KIRKPATRICK SMITH. Department of Geography and Anthropology, Kennesaw State University.

Forensic anthropology classes are sometimes burdened by their own popularity. One problem is the difficulty of providing enough human bone for undergraduate students to work with in a lab context. Additionally, it is necessary to provide relevant content for the students who will never pursue forensic anthropology and are simply taking the course out of a personal interest. To address these concerns, I have created experimental laboratory exercises and research proj-ects for students that serve to 1) provide a carefully selected reference collection of animal bones with Unmodified trauma on them; 2) provide students with targeted excavation experience with bone by conducting excavations of animals; and 3) require original research projects that engage students broadly in the methodology of scientific anthropological experimentation.

This paper provides an overview of the class and lab exercises in which the students participate and a discussion of how these exercises simultaneously provide study material for the lab. Student success in the laboratory exercises is demonstrated with a discussion of student participation in a campus-wide Symposium for Student Research. The class and lab activities can be adopted and adapted easily, and are particularly useful for anthropology departments that do not have funding for expensive laboratory equipment or supplies.

Historical evidence for ontogenetic differences between modern human and Neanderthal dentitions.

TANYA M. SMITH1,2, PAUL TAFFOREAU3, DONALD J. REID4, JOANE POUECH5, VINCENT LAZZARI3, JOHN P. ZERMENO3, DEBBIE GUA- TELLI-SFERNBERG4, ANTHONY OLEJK- NICZAK5,6, ALMUT HOFFMANN6, JAKOV RADOCVICH5, MASBOUR MAKAREMI5, MICHEL TOUSSAINT5, CHRIS STRINGER2,7 and JEAN-JAC-QUES HUBLIN3. 1Department of Human Evolutionary Biology, Harvard Museum of Natural History, 2Department of Evolutionary Anthropology, European Synchrotron Radiation Facility, Grenoble, 3Department of Oral Biology, Newcastle University, 4International Institute of Paleoanthropology and Human Paleontology University de Poitiers, 5Department of Anthropology, Ohio State University, 6Centro Nacional de Investigación sobre la Evolución Humana, Burgos, 7Department of Paleontology, University of Bonn, Germany, 8Department of Anthropology, Ohio State University, 9Department of Anthropology, University of Bonn, 10Department of Anthropology, University of California, Berkeley, 11Department of Paleontology, University of Michigan, 12Dep of Paleoanthropology, The Natural History Museum.

Humans have an unusual life history with an early weaning age, long childhood, late first reproduction, short inter-birth intervals, and long lifespan. Despite 80 years of speculation, the origins of these developmental patterns in Homo sapiens remain unknown. Because they record daily growth during formation, teeth have pro-
vided important insights, revealing that australopiths and early Homo had more rapid ontogenies than recent humans. Here we apply synchrotron virtual histol-
ogy to a geographically and temporally diverse sample of Middle Paleolithic juveniles, including Neandertals, to assess tooth formation and calculate age at death from dental microstructure. We quantified the following developmental variables: cuspal enamel thickness, long-period line periodicity (number of daily increments between successive lines), long-period line number, coronal extension rate, and crown formation time in 90 teeth from 28 Nean-
derthals and 39 teeth from 9 fossil H. sapi-
ens individuals. When compared with both European and African recent humans, thinner enamel, lower long-period line periodicities, and faster extension rates typi-
cally lead to lower crown formation times in Neandertals. We find that most Nean-
derthal tooth crowns grew more rapidly than modern human teeth, resulting in sign-
ificantly faster dental maturation. These findings demonstrate that recent human developmental standards should not be used to assess Neandertal ontogeny. In contrast, Middle Paleolithic H. sapiens juveniles show greater similarity to recent humans when compared to earlier homini taxa, both Neandertals and H. sapiens appear to have extended the duration of dental development. This period of dental immaturity is particularly prolonged in modern humans.

This study was funded by the Max Planck Society, the European Synchrotron Radia-
tion Facility, and Harvard University.

New findings on the vomeronasal complex of platyrrhine primates.

TIMOTHY D. SMITH,1 EVA C. GARRETT,2,3 KUNWAR P. BHATNAGAR,4 CHRISTOPHER J. BONAR,1 AMANDA E. BRUELIN,1 JOHN C. DENNIS2 and EDWARD E. MORRISON.7 1Department of Physical Therapy, Slippery Rock University, 2Department of Anthropology, The Graduate Center at the City University of New York., 3New York Consor-
tium in Evolutionary Primatology, 4Department of Anatomical Sciences and Neurobiology, University of Louis-
ville School of Medicine, 5Dallas World Aquarium, 6Department of Biology, Slippery Rock University, 7Department of Anatomy, Physiology, and Pharma-
cology, College of Veterinary Medicine, Auburn University.

Although all platyrrhine primates possess a vomeronasal organ (VNO), few species have been studied in detail. In this study, we revisit the microanatomy of the VNO and surrounding structures in platy-
rhines using a sample of 55 cadaveric specimens of 14 species and 14 genera. Serially sectioned and stained samples, VNO neuroepithelial structure was described and related osteological features were measured. Selected samples were examined using procedures to identify ter-
minally differentiated vomeronasal receptor neurons (VRNs) via immunolabeling of olfactory marker protein (OMP). Most spe-
cies possessed identifiable neuroepithelial portions of the VNO, with some poor preser-
vation in an adult Alouatta prevented determination. The VNO of an adult Ateles, described in detail for the first time, had a few rows of VRNs and nerves visible in the surrounding lamina propria. Available samples of subadults indicate that the VNO neuroepithelium is generally thinner, in terms of basal to apical rows of nuclei, at birth than in adults. Immunohistochemi-
cal findings suggest that the VNO neuroepithelium has maturation differences among adult platyrrhines. In particular, findings show Saguinus spp. has a paucity of mature VRNs. The cartilaginous capsule that surrounds the VNO is typically J-shaped or U-shaped, and is partially ossi-
ified in some species (most extensively in Aotus). The capsule articulates with a groove on the bony palate, and preliminary results indicate a correlation with socioe-
ological variation in species"
A new 3D morphometric method based on a combinatorial encoding of 3D point configurations: application to skull anatomy for clinical research and physical anthropology.

KEVIN SOL1, EMECIC GIOAN1, GERARD SUBSOI2, YANN HEUEZE2, JOAN RICHTSMEIER2, JOSE BRAGA3, GERARD SUBSOL1, YANN HEUZE2, FRANCIS THACKERAY4.

Three-dimensional (3D) shape analysis of anatomical structures is currently based either on the analysis of distances or angles between landmarks or on the computation of metric parameters which characterize the deformation of landmark configurations. However, significant differences which are not related to the normal inter-individual variation are not only metrical but also "structural". For example, in progenesis, it is a whole subset of landmarks which protrudes relative to another subset in a correlated way. Such a deformation is not directly emphasized by the variation of the landmark coordinates and this suggests the need for additional 3D morphometric tools.

We propose to model the 3D landmark configurations by using the oriented matroid theory, a combinatorial mathematical structure which was developed over the past forty years. Oriented matroids allow one to model the relative positions of points in 3D without taking into account the distances between them. It is then possible to characterize some geometrical properties as the convexity or the alignment of subsets of landmarks, to detect structural changes as the crossing of a landmark through the plane defined by three others. We applied this new method on sets of 133 cranial landmarks collected on 43 individuals presenting with varying types of coronal craniosynostosis. We computed the oriented matroid-based models and introduced a new discrete distance between two individuals. The matrix of all the distances allows differentiation among the craniosynostosis variant groups. We will also show how it could be used to compare extant and fossil skulls as STS5.

Multivariate analysis and resampling methods were used to assess size and shape differences between taxa. The results show that lower and upper second deciduous molars are useful for discriminating taxa, with a low rate of misclassified Neandertal and anatomically modern human specimens. Thus, we demonstrate the taxonomic utility of deciduous molars for identifying the taxonomic affinity of isolated or problematic specimens.

Research supported by the French Embassy in South Africa and the South African Research Foundation.

New approaches to investigating ancient Maya diet: a three-isotope model for the reconstruction of dietary protein sources.

ANDREW D. SOMERVILLE and ANDREW W. FROEHLIE. Department of Anthropology, University of California, San Diego.

The reconstruction of past dietary practices provides valuable information on the evolution, social relations, and subsistence strategies of archaeological populations. As one of the most extensively studied ancient societies, the Maya of Central America are ideal for region wide investigations of synchronous and diachronic dietary practices. Here, by using previously-published isotope data, we apply a new dietary reconstruction model (Froehlie et al., 2009, AJPA Suppl. 48:130) based on discriminant function analysis of three stable isotope variables (δ13Ccoll, δ13Ccap, and δ15Ncoll) to generate hypothetical diet members representing different protein sources available to the ancient Maya. We model beans, squash seeds, C2 animal, C4 animal, and 100% maize as possible dietary end-members. Using the model, we test for differential access to these sources between status groups, sexes and regions, as well as over time within groups. Our data demonstrate that there is no clear differential access to protein types between status groups or between sexes across the entire study population, but we find regional differences between the Southern Lowlands, Belize, and the Peten. Moreover, our data reveal significant within-site temporal changes in dietary practices. The residents of Laamani, for example, switched to a heavier reliance on C4-fed animal sources in the Postclassic Period, confirming the suppositions of earlier authors (Wright and White 1996:177), and possibly re-representing a greater reliance on domesticated animals, such as turkeys and dogs. This study provides a more nuanced understanding of the ancient Maya and highlights the utility of applying this dietary reconstruction model to archaeological populations.

Size and shape analysis of second deciduous molars in genus Homo.

CAROLINE SOUDAY1,2,3 and SHARA E. BALEY2. 1New York Consortium in Evolutionary Primatology. 2The Center for the Study of Human Origins, New York University, 3Département de Préhistoire, Museum National d’Histoire Naturelle Paris.

In the context of understanding human evolution, dental remains are a valuable subject to study: they represent the largest part of the human fossil record and allow comparisons between fragmentary individuals. Although juvenile hominin remains represent a large part of the fossil record, most studies in dental anthropology have focused on permanent teeth. The intraspecific variability in size and morphology is assumed to be high, which could challenge the use of deciduous teeth to assess taxonomic affinities of isolated dental remains. However, the use of geometric morphometric analysis can bring a new light on this issue.

The present study investigates second deciduous molar size and shape in the genus Homo, with a particular emphasis on Neandertals (n = 20) and modern humans (n = 218). Dental crown shapes were analysed using two-dimensional outline analysis based on Radial Fourier transforms on photographs, that allow the inclusion of non-circular teeth to maximize sample size. Crown size has been estimated by measuring crown base area. Multivariate analysis and resampling methods were used to assess size and shape differences between taxa. The results show that lower and upper second deciduous molars are useful for discriminating taxa, with a low rate of misclassified Neandertal and anatomically modern human specimens. Thus, we demonstrate the taxonomic utility of deciduous molars for identifying the taxonomic affinity of isolated or problematic specimens.

Research supported by the French Ministry of Higher Education and Research, the New York Consortium in Evolutionary Primatology and the Leakey Foundation.

Identifying differential patterns of activity: potentials and limits of tracing entheses changes in archaeological populations.

NIVIEN SPEITH. Biological Anthropology Research Centre, Archaeological Sciences, University of Bradford.

Bioarchaeological studies commonly and often too readily use musculoskeletal stress markers (MSM) to reconstruct past activities. Despite substantial progress in understanding the underlying factors of enthesal change, tracing past activities still suffers from largely subjective observation of trait formations, thus complicating the comparisons and interpretation of activity or stress impact.

The aim of this study was to apply a novel scoring method, based on clinical information and tested on documentary collections (Villotte 2006), to archaeological populations as part of a research project on skeletal and archaeological indicators of identity in early medieval Alamannic populations. The skeletons of 504 adult individuals from the populations of Pleidelsheim (n = 178) and Neresheim (n = 126) were analysed for activity-related changes at 36 fibrocartilagenous and fibrous entheses.
The analysis revealed that prevalence of enthesopathies, i.e. pathological changes to entheses due to muscle overuse, is comparatively low, but while differential identification of activity-related enthesal change is improved. Significant differences were observed in males and females within and between populations. Individuals from the more agricultural Neresheim show significantly higher prevalence of enthesal changes. Sexual dimorphism as well as an increase of MSM with age can be identified in both populations, however, with different patterns of incidence. The study furthermore strongly indicates that muscular attachments should be evaluated in functional groups, of the upper or lower limb, in order to interpret activity patterns informed by underlying physiological rather than absolute factors. This approach permits reliable tracing of general tendencies of activity in past populations, providing promising information regarding Alamanic lifeways.

Grant support: This research is supported by the Arts and Humanities Research Council (AHRC) of the UK.

Pairbonded adult titi monkeys (Callicebus discolor) change their affiliative relationships in the presence of infants.

ANDREA SPENCE-AIZENBERG1, ANTHONY DI FIORE2,3 and EDUARDO FERNANDEZ-DUQUE1. 1Department of Anthropology, University of Pennsylvania, 2Department of Anthropology and Center for the Study of Human Origins, New York University, 3New York Consortium in Evolutionary Primatology.

Red titi monkeys (Callicebus discolor) reside in socially-monogamous groups where the adult male and female form a stable pair and share in the care of their infants. To better understand possible costs of biparental care on pairbond maintenance, we compared the relationships between pairmates with and without dependent infants. We collected 232 hours of observational data on proximity, grooming, and resting in contact by adult males and adult females in two wild groups of red titis in Yasuní National Park, Ecuador to characterize each sex’s contribution to affiliative interactions. To evaluate whether the presence of a dependent infant influenced affiliative behaviors between pairmates, we compared the frequency of these behaviors in a 22-week period prior to the birth of infants with the frequency during the 16 weeks following births (n = 5 infants). Males contributed more to maintaining proximity than females both before and after the birth of an infant (mean Hinde’s Index = 28 and 22 respectively). In the presence of infants females groomed the males more frequently than they were groomed (0.5% ± 0.6% vs. 0.1% ± 0.2%). Before a birth, grooming rates were higher for both sexes, but sex differences were less pronounced (male vs. female, 1.0% ± 2% vs. 1.2% ± 1.5%). Resting in contact was also more frequent before than after a birth (3.0% ± 2.7% vs. 1.3% ± 2.0%). Our results suggest that a decrease in the rate of affiliative interactions between pairmates is a potential cost of direct infant care for wild titi monkeys.

This research was funded through a Hewlett Award for Innovation in International Offerings Grant to Dr. E. Fernandez-Duque and National Geographic Society and Leakey Foundation society grants to Fernandez-Duque and A. D. Fiore (Department of Anthropology, NYU).

Non-masticatory tooth wear at Gri-cignano d’Aversa, Italy (2500-1750 BCE): the importance of macro- and microscopic analysis.

ALESSANDRA SPERDUTI1, POALA FRANCESCA ROSSI1,2, DAVID FRAYER1,2 and LUCA BONDIOLI3, 1Museo Nazionale Preistorico Etnografico “L. Pigorini”, Sezione di Antropologia, 2Department of Anthropology, University of Kansas, 3New York Consortium in Evolutionary Primatology.

The analysis of activity-induced dental modification (AIDM) gives clues about intra-population distribution of specific tasks by gender and age class. The occurrence and frequency of AIDM is dependent from the total time of exposure to abrasive materials, so assessment must be determined using microscopic analysis of the crown surfaces to document the earliest stages of wear and to trace the progression of the wear through time.

At the Bronze Age necropolis of Gricignano d’Aversa (one of the most important, largest skeletal series for the period in Central Italy) numerous individuals show notches on the occlusal and lateral margins of anterior teeth. A total of 120 late adolescent and adult individuals were surveyed for the presence of these grooves and all teeth were macroscopically examined. High resolution epoxy, transparent casts were made of all anterior teeth and evaluated by optic and SEM microscopy. Our results show a high occurrence of AIDM in female dentitions (54.6%; n=44), no AIDM cases for males (n=38), and 13.2% for unknown sex individuals (n=38). We suspect these notches are related to fiber processing and the fact that they occur only in females suggests a sex-specific task specialization. We found that microscopic analysis was indispensable for recognizing incipient traces of attrition in younger individuals (which we would have missed at the macroscopic level) as well as detecting wider and more complex patterns of tooth involvement in older individuals.

This study highlights the merit of combining macro and microscopic analysis in a systematic survey of non-occlusal tooth wear.

Neuropil asymmetry in the cerebral cortex of humans and chimpanzees: implications for the evolution of unique cortical circuitry in the human brain.

MUHAMMAD SPOCKET1, WILLIAM HOPKINS2,3, SERENA BIANCHI1, ABIGAIL HEYMeyer1, SARAH ANDERSON1, CHERYL SIMPSON1, ABBEY POPPE2,3, SERENA BIANCHI1, ALESSANDRA SPERDUTI1,2, DANIEL MURPHY4,5,6 and CHET SHERWOOD1. 1Department of Anthropology, The George Washington University, 2Department of Psychology, Agnes Scott College, 3Division of Psychology, Yerkes National Primate Research Center, 4National Museum of Health and Medicine/ Armed Forces Institute of Pathology, Walter Reed Army Medical Centre, 5Department of Neuroscience, Mount Sinai School of Medicine, 6New York Consortium in Evolutionary Primatology.

The claim that behavioral and neuromorphological asymmetries are unique to humans has been challenged by data from several nonhuman species. Interestingly previous studies of minicolumn lateralization revealed that humans may differ from other primates in displaying a left hemisphere bias in the neocortex region of the planum temporale, but it is not known how asymmetry in the neocortex varies across multiple regions of the cerebral cortex and if there are any correlations with behavioral laterality. The neuropil is functional importance as it is the portion of the cortical gray matter where synaptic connections are formed. We used image analysis methods to quantify neuropil asymmetry in five cytoarchitectonically defined cortical regions of chimpanzees (6 males, 6 females) and humans (3 males, 3 females), including rostral prefrontal, inferior frontal, primary motor, agranular insular, and planum temporale. Results revealed a significant difference between species in mean neuropil asymmetry (P = 0.023). Humans displayed a clear directional bias in the amount of neuropil favoring the left hemisphere. Analysis of data within-species, revealed that cortical regions did not differ significantly in the amount of neuropil space for chimpanzees (P<0.001), with agranular insular cortex showing the greatest amount of space for connectivity. In the human sample cortical regions did not differ significantly in the amount of neuropil space, however, this might be due to relatively small sample size. These results suggest that lateralization of minicolumns and neuropil space may represent an evolutionary alteration in the circuitry of the human cortex allowing for hemispheric specialization of function. This work was supported by the National Science Foundation (BCS-
282

American Journal of Physical Anthropology

AAPA ABSTRACTS

0515484 and BCS-0549117), the National Institutes of Health (NS42867) and the James S. McDonnell Foundation (22002078).

Living hand to mouth: how marsupials can unravel the mysteries surrounding the evolution of touch acuity in primates.

AMANDA N SPRINGER12 and MAGDALENA N MUCHLINSKI.1 Department of Biology, University of Charleston, and MAGDALENA N MUCHLINSKI.2 Department of Biology, University of Charleston, Charleston, 2Department of Anatomy and Pathology, Marshall University School of Medicine.

The infraorbital foramen (IOF) is located below the orbit of the eye, and transmits sensory information from the upper lip, face, and vibrissa to the brain. The IOF has been used as an informative feature to interpret the ecology and phylogeny of crown primates and pliadians. Even though the IOF has been discussed in the literature, the functional significance of its size among mammals is still unknown. A recent comparative study into IOF area suggests the relative size of the IOF indicates differences in face touch acuity. Among mammals, primates have some of the smallest IOF areas. It is hypothesized that primates IOF reduction may be a result of their increased reliance on hands, rather than their muzzles, to pre-process foods. In this study we test this hypothesis by observing the feeding behavior of marsupials. Marsupials were chosen to test this hypothesis for two reasons: (1) Marsupials converge with primates in both anatomy and ecology, and (2) unlike primates, some marsupials approach and pre-process foods only with their muzzles, while others initiate feeding and pre-processing of food with their hands. Results of this study find that marsupials that initiate feeding with their muzzles have larger IOFs than those that manipulate and pre-process foods with their hands (p<0.05). These findings have implications interpreting the fossil record. The majority of stem primates (pliadians) have relatively larger IOFs than extinct crown primates. The difference in IOF area may be an indicator of how these animals fed rather than phylogeny as previously suggested.

This study was funded by NSF MU-Advance.

Detecting admixture in dental traits: implications for the role of Neandertals in human evolution.

VICTORIA S. SPRINGER. Department of Anthropology, Texas A&M University.

This study focused on the morphological expression of admixture in human populations in order to assess potential admixture in fossil remains. The Pima Native Americans have a documented small percentage of European ancestry. Here the dental metrics and morphology of the Pima were compared to those of their most likely Native American and European ancestors: pre-contact Hohokam from the American Southwest, and Medieval Spaniards from San Pablo Monastery in Burgos, Spain. This study was a test of the hypothesis that admixture can be detected in dental traits, even with highly disproportionate levels of input from both ancestors. The dental metrics show a consistent significant difference in tooth size between the Hohokam and San Pablo, the Spaniard means being smaller than the Hohokam. The Pima, however, have mean sizes that vary from larger than the Hohokam to smaller than the San Pablo sample. This wider variation in the Pima is consistent with previous studies of admixture in non-human primates and indicates that even small amounts of admixture are detectable in dental metrics. The results of this study can be applied to many studies of population dynamics from present day to the Pleistocene.

This study was funded by the College of Liberal Arts, Texas A&M University and the Department of Anthropology, Texas A&M University.

Geometric morphometric analysis of platyrrhine lower molar shape.

ELIZABETH M. ST. CLAIR. Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University.

Teeth play an important role in our understanding of taxonomic affinities and dietary adaptation in fossil primates. Innovations in shape quantification allow investigation of the relative influence of different factors on dental morphology. This study uses geometric morphometric analysis to identify axes of shape variation in platyrrhine molars. Fourteen landmarks were placed on CT surface renderings of lower m2s (n=111) from 19 species (12 genera). Following initial Procrustes superimposition, species average landmark coordinates were created. Generalized Procrustes analysis was used to align the landmark configurations and a principal components (PC) analysis was performed to identify dominant axes of shape variation. Four PCs explained more than 5% of the variance each (80% cumulatively). PC1 (50.4%) displayed a strong dietary signal, related to relief and crest development, with positive values in the incectivorous (Stanimi, Callimico) and folivorous (Alouatta, Brachyteles) species and negative values in the seed-predating pitheciines; soft fruit specialists (e.g., Ateles) possessed intermediate values. PC2 (13.8%) separated the one callitrichid in the sample, Callimico, from other taxa. Phylogenetic Generalized Least Squares analysis showed that PC2 and PC4 were weakly correlated with centroid size (correlation coefficient = 0.46 for PC2, 0.44 for PC4, p <0.05 for both). These results indicate a dominant dietary signal in molar shape but also show some shape change correlated with size but relatively independent of obvious dietary or phylogenetic associations. The latter result deserves further attention, as it contrasts with previous work on strepsirrhines and tarsiers that showed stronger taxonomic variance and lower association between shape and size.

This study was funded by a 2009 American Society of Mammalogists Grant-In-Aid to E.M.S.C. and a 2010 AAPA Professional Development Grant to Doug M. Boyer.

A preliminary study of triangular ridge bifurcation in human maxillary premolars.

WHITNEY L. STAMEY and SCOTT E. BURNETT. Department of Anthropology, Eckerd College.

Morphological dental variation has proven useful in examining human populations origins and relationships. Most studies of dental morphology rely primarily on incisor or molar dental traits, while canines and premolars have received less attention. This study examines the utility of an understudied maxillary premolar trait, triangular ridge bifurcation (TRB). TRB is characterized by bifurcation of the central occlusal ridge of the buccal cusp on mandibular and maxillary premolars. A graduated scoring system of maxillary premolar TRB was created with four possible categories of ridge form and size: no bifurcated ridge, small, medium, and large bifurcated ridge. Analysis included 502 dental casts from Bantu (n=130), Pima Indian (n=126), South African White (n=108), and South African Indian (n=138) samples. Forty-five casts were rescored to conduct inter- and intra-observer concordance tests. Sample frequency comparisons were made with Fisher's Exact tests (p<0.05). Results indicate high scoring reliability in inter- and intra-observer tests with 87% and 89% concordance respectively. TRB frequencies were highest on P1. Overall, TRB occurred most frequently in the Bantu sample (P1=39.2%, P2=20.0%), followed by Pima Indians (P1=28.6%, P2=13.5%). The South African Indian (P1=16.7%, P2=13.8%), and South African White (P1=6.5%, P2=3.7%) samples were statistically similar, with significantly lower TRB frequencies than both the Bantu and Pima Indian samples. These results suggest that triangular ridge bifurcation may be a valuable addition to the battery of morphological dental traits used in anthropological studies of population variation.

How violent were the people of the Gallina Phase, really?

VLISHA STANERSON. Department of Anthropology, Colorado State University.
Violence has long been an intriguing subject in anthropology and archaeology. The prehistoric inhabitants of the Gallina Phase (A.D. 1050 - 1250/1300) in north central New Mexico were no exception. Early publications about the Gallina Phase labeled the people as backward and excessively violent, and relatively few researchers challenge such accounts. I propose that the evidence of violence in the archaeological record is no more prevalent in the Gallina Phase than it is in other cultural groups in the area during this time period.

Using the specimens from two collections curated at Colorado State University and University of New Mexico, over 100 individuals were examined and the occurrence of trauma-related pathology documented. The data were subjected to statistical and geospatial analysis in order to identify the type, prevalence, and distribution of evidence in the Gallina record. The Gallina skeletal series show that the percentage of those who died and exhibit skeletal evidence of violent trauma is comparable to subpopulations of contemporaneous cultures groups. Given that the occurrence of violent, traumatic lesions is no more prevalent than that shown in other Puebloan populations; it seems that the inhabitants of the Gallina Phase were no more violent than other neighboring groups of the Southwest.

Chimpanzees and the reconstruction of behavior of Ardipithecus ramidus.

CRAIG B. STANFORD. Departments of Anthropology and Biological Sciences, University of Southern California.

The chimpanzee has served as a model of the behavior and ecology of earliest hominins for many decades. The recently published description and reconstruction of the fossil hominin Ardipithecus ramidus has sharpened this debate and been used to criticize the utility of the chimpanzee model. In this paper I consider the behavior and ecology of earliest hominins in light of current information on chimpanzee positional behavior. Lovejoy et al. (2009) argue that because their reconstruction of A. ramidus positional behavior indicates plantigrade locomotion, chimpanzees may be irrelevant for understanding the behavioral ecology of earliest hominins. Further, the Lovejoy et al. critique is based on an implicit acceptance of a knuckle-walking phase in hominin evolution, for which there is no evidence. In this paper I present data from a range of sources showing that the behavioral ecology of knuckle-walking ape or plantigrade cercopithecids are equally useful in understanding the behavior of early hominins such as A. ramidus. I also argue that Lovejoy et al. implicitly use the behavior of great apes in support of their interpretation of A. ramidus.

A. *ramidus* was a very ape-like early hominin adapted to both arboreal and terrestrial substrates. As in the 1980s, when research following the initial publications on *Australopithecus afarensis* indicated that AL-288 was likely an obligate terrestrial hominin, further research on the *A. ramidus* skeleton will offer new views of its posture and locomotion. The behavior of chimpanzees and other great apes will be instrumental in understanding the Ardipithecus fossils.

Morphological integration of the face in Down syndrome individuals and siblings.

JOHN M. STARBUCK, ROGER H. REEVES and JOAN T. RICHTSMIEIER. 1 Department of Anthropology, Pennsylvania State University, 2Department of Physiology, Johns Hopkins University School of Medicine.

Down syndrome (DS), resulting from trisomy at chromosome 21, is the most common live-born human aneuploidy. The phenotypic expression of trisomy 21 produces variable, though characteristic facial morphology. We hypothesize that individual heritable facial features are changed according to particular patterns in people with DS because gene dosage imbalance alters developmental events in a similar manner. This alteration will result in changed patterns of morphological integration. To address this hypothesis we statistically compared morphological integration (MI) patterns of immaturity DS faces (N = 52) with those of non-DS siblings (N = 54), aged 6-12 yrs. Thirty-one linear distances were estimated using coordinate data representing 17 anthropometric landmarks on 3D digital photographic images. MIboot (Cole, 2002) was used to test for local differences in MI of facial features. Our results suggest that facial features are affected differentially in DS as evidenced by statistically significant differences in MI both within and between facial features. Our findings provide a phenotypic readout in the human face of previous findings of neural crest involvement in mouse models for DS.

Funding: PHS 1R01HD038384, NSF Graduate Research Fellowship #200808335.

Juvenile scurvy—a radiographic perspective.

ROBERT STARK and SANDRA GRAVIE-LOK. 1Department of Anthropology, McMaster University, 2Department of Anthropology, University of Alberta.

The use of radiography for assessing cases of juvenile scurvy has been a standard procedure in clinical cases of this disorder for almost a century. Despite several known pathognomonic clinical radiographic indicators of juvenile scurvy, radiography has as yet to be employed to any significant degree in palaeopathological attempts to identify this disorder among archaeological populations.

We review the classic radiographic indicators of juvenile scurvy and compare them to radiographs of 14 sub-adult individuals from the sites of Stymphalos and Zaraka, Greece. These individuals were also examined for macroscopic indications of the condition. Several of the juveniles exhibit radiographic signs consistent with the clinical radiographic indicators of juvenile scurvy. In some, but not all, cases these indicators co-occur with macroscopic indicators of juvenile scurvy. This pattern of co-occurrence may relate to differences in the timing and visible development of lesions and their subsequent rates of healing.

Based on the significant results of the study conducted we suggest that future studies should attempt to employ radiography when assessing for juvenile scurvy. This may allow for improved standards of assessment, permitting comparisons with known clinical examples of this disorder and helping to separate cases of scurvy from other pathological disorders, especially anemia. If our interpretation of the co-occurrence patterns of lesions at Stymphalos and Zaraka is correct, it may also offer insights into the duration and recurrence of episodes of juvenile scurvy in past populations.

This study was funded by the University of Alberta, the Social Sciences and Humanities Research Council of Canada (SSHRC) and the Wiener Laboratory of the American School of Classical Studies at Athens.

Social und regional stratification in Body Mass Index of 18- and 19-year-old Swiss conscripts 1992-2009 (N=400,000) and its secular trend since 1875.

KASPAR STAUB, FRANK J. RUHLI, TOBIAS SCHOCCH, ULRICH WOITER and CHRISTIAN FREISTER. 1Institute of Anatomy, University of Zurich, 2Empirical Research in Economics, University of Zurich and CESifo, Munich, 3Institute of History, University of Bern, 4University of Applied Sciences Northwestern Switzerland, School of Business HSW/ ICC.

Overweight and obesity have reached the level of a pandemic in developed countries. BMI is not ideal measure for body fat, but it is nevertheless strongly correlated with total body fat and furthermore the only measure available in large data sets for long-term time trends. We present unbiased, individually measured and thus highly representative annual BMI data sample on 18-20-years-old Swiss conscripts (N = 460’887, universal conscription) from 1992 to 2009, representing ca. 90% of age cohorts. We trace for socioeconomic and
Regional differences and aim to add historic context based on the same data source to identify the onset of current overweight pandemic. We find that in 2009 24.2% of 19-20-year-old and 20.8% of 18-19-year-old Swiss conscripts were generally overweight (BMI >25 kg/m²). The prevalence of obesity (BMI >30 kg/m²) has doubled since 1992 reaching 5.7% in 2009. BMI distribution became more right-skewed since 1992, upper percentiles increased markedly, especially after 2002. Current uprising in BMI values took place in two steps, in the second half of the 1980s and again since 2002 until nowadays. We find no stagnation of BMI values in the recent past. Since 1992 regional differences in BMI disappeared more prominently than socioeconomic differences. Since 1875 Swiss conscripts changed from rather being underweight (BMI <18.5 kg/m²) to being overweight. In 1875–79 young men at the lower end of socioeconomic strata showed significantly lower BMI values compared to the upper socioeconomic classes. Nowadays social stratification in BMI has inversed, when over weight affects the lower socioeconomic classes to a higher extent.

Financial Support: Swiss National Science Foundation (Project-No. 109802) and Swiss Foundation for Nutrition Research.

Why kill women? Investigating the sex ratio of violence at Orendorf.

DAWNI WOLFE STEADMAN. Department of Anthropology, Binghamton University, State University of New York, Binghamton. The Middle Mississippian site of Orendorf (~AD1150) in the central Illinois valley exhibits one of the highest frequencies of warfare-related trauma in the Southeast. Several individuals excavated from the Orendorf cemetery and village were added to the study, bringing the total number of individuals in the Orendorf skeletal sample to approximately 275. Of these, 27 adults (16% of all adults) exhibit evidence of violent encounters and include equal proportions of males and females. Few individuals survived a violent episode. Victims were killed by projectile points and blunt trauma and there is evidence of decapitation and trophy taking. The type and lethality of injuries suggest relatively equal treatment of the sexes during violent attacks. Given the ethnographic literature that chronicles elaborate war preparation ceremonies for males and the archaeological evidence of male warrior iconography it is perhaps surprising that females are equally represented among the victims at Orendorf and other sites in the central Illinois valley. Two hypotheses concerning why females exhibit similar risk levels for victimization are evaluated using archaeological, skeletal and ethnoarchaeological data. First, females suffered trauma that may be more consistent with intra-group codified beatings rather than intergroup warfare. Second, the “why not?” hypothesis argues that females were perceived as enemies just as much as males and their deaths were actively avoided during attacks. While the first hypothesis is not supported by the results, the second hypothesis reflects the current debate in the literature concerning gender construction in pre-European societies and merits further evaluation.

Stones, bones, cities, and states: a new approach to the Neolithic revolution.

RICHARD H. STECKEL,1 and JOHN WALLIS2. 1Departments of Economics, Anthropology and History, Ohio State University, 2Department of Economics, University of Maryland.

The rise of agriculture and the emergence of towns and cities transformed human activities and marked the beginning of modern human society. Social scientists have constructed various explanations on thin reeds of evidence, which can be placed into exogenous and endogenous categories such as climate change and over-hunting of a common property resource. We review these explanations and analyze skeletal evidence from the Western Hemisphere project, which shows living in early pre-Columbian urban areas was less healthy but also considerably less violent than found among hunter-gatherers. Drawing upon the theory of the natural state, in which the political system manipulates economic privilege to create social order, we hypothesize that new methods of social organization were essential for the rise of agriculture and urbanization. We argue that Neolithic societies preferred urban living built on farming despite worse health outcomes because methods of social organization created social order, enforced property rights and reduced violence. This study was funded by the National Science Foundation, grant numbers SBR-9223761 and SBR-9423435.

The exploitation of coastal resources informs on ancient human behavior and past environments: an integrated paleoecological approach to investigating modern human origins.

TERESA E. STEELE. Department of Anthropology, University of California, Davis.

Investigations into modern human origins have been challenged by identifying how behavioral changes – often marked as innovations indicative of modern human cognition – were related to the demographic changes that lead to the expansion of fully modern humans out of Africa and to environmental changes. Examination of the exploitation of coastal resources, particularly mollusks, by ancient Middle Stone Age (MSA) and Middle Paleolithic (MP) humans provides an integrated paleoecological approach to addressing these questions. Mollusks reflect past environments, which can help chronologically constrain assemblages. Changes in species composition may reflect changes in the local coast, such as local fluctuations between rocky and sandy shores. Detailed studies of recent archaeological mollusk assemblages demonstrate that mollusk samples decline in mean and median size because of increasing human predation pressure, which often coincides with increases in human population densities. These studies of mollusk exploitation informs on how people exploited their environments, how technological and behavioral innovations may have increased the land’s carrying capacity, and the tight relationship between these processes. MSA and MP humans also frequently exploited mollusks. MSA and MP mollusks are large, suggesting that these human populations lived at low densities. In the South African MSA record, subtle mollusk size changes during the MSA are expected to coincide with behavioral innovations that are often taken to indicate the appearance of modern human cognition; however, mollusk size remains stable and the implications are discussed here.

Testing the correlation between the anatomical structures of odorant and pheromone perception and their corresponding gene families in primates and other mammals.

MICHAEL STEIPER1,2,3,4, and EVA C. GARRETT2,4. 1Department of Anthropology, Hunter College of the City University of New York (CUNY), 2Program in Anthropology, The Graduate Center, CUNY, 3Program in Biology, the Graduate Center, CUNY, 4New York Consortium in Evolutionary Primatology (NYCEP).

Mammals possess dual olfactory systems that function in detecting distinct types of stimuli, with the olfactory system (OS) detecting ecological and the vomeronasal system (VNS) detecting sexual cues (pheromones). Despite the importance of olfaction in this class, the development of these systems is highly variable. Recent studies on the underlying genetics and morphological components of mammalian olfaction have asserted a relationship between these components, but few have directly tested this link. This study tests hypotheses of coevolution between the pheromone perception genes (VIR) and the morphology of the vomeronasal organ (VNO), and olfaction genes (OR)
and the size of the olfactory epithelium. A regression analysis of phylogenetically independent contrasts yielded a significant correlation between VNO morphology and the percent of functional VIR genes but not the absolute number of VIR genes, and olfactory epithelium and number of OR genes. As predicted from their divergent function, elements of the MOS and VNS did not correlate with each other. The higher correlation of the percent of functional VIR genes and VNO type rather than absolute number of VIR genes may be due to the extreme variation of VIR genes among mammalian clades, and absence of correlated evolution between OR genes and elements of the VNS indicates these systems are under different selection pressures. These findings are relevant to primate kidney function and olfactory function may have affected the VNS and MOS in differently, and these systems should not be used interchangeably when discussing the “trade-off” between olfaction and vision.

Evolution of adrenarche in Homo and Pan.

KIRSTIN N. STERNER1, SHERI A. CHURCH1, DEREK E. WILDMAN2,3 and ROBIN M. BERNSTEIN1,4 1Center for Molecular Medicine & Genetics, Wayne State University, School of Medicine, 2Department of Biological Sciences, The George Washington University, 3Department of Obstetrics & Gynecology, Wayne State University, School of Medicine, 4Department of Anthropology, The George Washington University, Center for the Advanced Study of Hominid Paleobiology, The George Washington University.

Adrenarche, or the onset of prepubertal adrenal androgen production (specifically dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS)) after a period of adrenal quiescence, has been proposed as a shared, derived characteristic in humans and chimpanzees, since no conclusive evidence for adrenarche has been documented in other nonhuman primate species. We explore this issue in two ways: 1) we measured serum levels of DHEA/S in captive male and female chimpanzees and orangutans sampled throughout ontogeny, and 2) using a comparative genomic approach, we examined five genes that code for proteins involved in DHEAS synthesis for evidence of adaptive evolution in their translated and regulatory regions. Chimpanzees and bonobos, but not gorillas and orangutans, show human-like patterns of postnatal adrenal androgen secretion, suggesting these species experience adrenarche. Our genetic analyses suggest adaptive evolution in cytochrome P450, family 17 subfamily A polypeptide 1 (CYP17A1). The 3-beta-hydroxysteroid dehydrogenase/Delta 5-Delta 4 (HSD3B) genes include a number of functional transcripts and pseudogenes. Interestingly, we also describe a tandem gene duplication event potentially mediated by a retrotranspon that resulted in two HSD3B genes in catarrhines (HSD3B1 and HSD3B2) with tissue specific functions. In humans, HSD3B2 is expressed primarily in the adrenals, ovary and testis, while HSD3B1 is expressed in the placenta. These data suggest the modern manifestation of adrenarche is a recent evolutionary phenomenon and that the evolutionary roots for this developmental stage may be traced back to more ancient lineages in primate phylogeny. This research was funded by NSF BCS0550209 and The George Washington University’s Dilthey Faculty Fellowship.

Biology and art: kin connections partly predict the value of Southwestern pottery.

JOAN STEVENSON, FIONA FELKER, KAETLYN KING, PARSAN SAFFAIE and PHILLIP EVANS. Department of Anthropology, Western Washington University.

Dissassayke notes that art is universal, requires much effort for seemingly unnecessary goals, and has biological relevance. Pottery-making was revived by a group of matriarchs from the Tewa-speakers of the San Ildefonso and Santa Clara pueblos in New Mexico in the early 1900s. Potters, often as children, learn how to process the clays, create, decorate and fire pots. The pots are not utilitarian but are sold as art to both tourists and wealthy patrons. Unlike about other types of art, the detailed descriptions of genealogies for artists. One must be Native American and born or married into either pueblo to participate in production of the characteristic pottery. We propose that the number of kin ties affects the values of these pots. Pot and artist traits were measured and correlations and regression analyses run using SPSS 17. Dollar values of pots (N= 444 to 473) are significantly positively correlated with all measures of the pots (size, design elements) and artist (kinship to other potters, artist's age and "advertising" efforts). Pot values are greatest when the pot is bigger, represents more effort, the artist has received more "publicity" and is more experienced with more kin ties to other potters. Preliminary regression analyses explain 38% of the variance in the dollar values of the pots. Clearly, the importance of kin ties relative to the dollar value of the pot helps reinforce group boundaries and social cohesion, a useful adaptation for a subculture at risk of losing its identity.

Pre-sapiens hominins, brain growth and the exploitation of freshwater environments.

KATHLYN STEWART. Paleobiology, Canadian Museum of Nature.

Nutritional studies report that the human brain, particularly in infants, has a large requirement for essential fatty acids, especially DHA (docosahexaenoic acid) and AA (arachidonic acid), for normal growth and maintenance. Early hominins, with their developing brains, must have also required these nutrients. DHA and AA are found in highest quantity in freshwater (and marine) fish and invertebrates, a diet which conflicts with the prevailing view that early hominins were primarily terrestrial carnivores. In support of the hypothesis that early hominins foraged along lake and river margins and consumed nutrient-rich foods, data are presented here which document the procurement of fish and shellfish from early hominin sites. In particular the longer-term and repeated occurrence of particular fish species with high nutritional values indicates selection by early hominins. In response to cyclical drought conditions, this paper suggests that intensified and more consistent hominid exploitation of high-quality lake and river margin resources provided sufficient food and potable water for survival, and expatiately a steady supply of essential fatty acids. This higher quality nutrition allowed energy to be redirected from inefficient gut operation to brain growth, and a consistent supply of essential fatty acids also provided the requisite nutrients to fuel the growing brain.

Mobility and diaphysial robusticity throughout the appendicular skeleton: modern human hunter-gatherers, fossil hominins, and extant apes.

JAY T. STOCK. Leverhulme Centre for Human Evolutionary Studies, University of Cambridge.

Mobility is one of the most variable characteristics of both species and prehistoric societies. This study investigates the relationship between population level characteristics of mobility and long bone diaphysial robusticity among modern human hunter-gatherers, fossil hominins, and extant primates. Hunter-gatherers provide a useful test of this relationship, as there is tremendous variation in habitual behaviour between populations, but individuals within populations are likely to be characterized by relatively homogenous activity patterns, often defined by sex. The robusticity of major long-bones throughout upper and lower limb are compared among a 17 hunting and
gathering populations from both historic and archaeological contexts, Pan, Pongo, Hylabates and selected fossil hominins. The human populations represent a broad spectrum of foraging strategies, with individuals (n = 51) from South, East and North Africa, the Levant, the Danube, northwestern Europe, the Cis-Baikal region of Siberia, the Andaman Islands, Australia, Japan, the great-Lakes and peri-Arctic regions of Canada, Coastal California and the Tierra del Fuego. Variation among these populations suggests that the use of watercraft leaves a strong biogeographical imprint on cranial mobility throughout the upper limb, while terrestrial mobility strongly influenced lower limb robusticity. Variation in terrestrial mobility appears to be correlated most strongly with femoral diaphyseal shape, and tilting rightward in these differences appearing relatively early in ontogeny. Intraspecific comparisons suggest that there is a strong differentiation between arboreal and terrestrial locomotion in phalangeal mobility. While major differences in mobility are reflected in characteristics of limb morphology, more subtle patterns of variation remain challenging to interpret. This research was supported by funding from Natural Environment Research Council, U.K.

Next generation sequencing enrichment strategies for ancient tuberculosis: pitfalls and results.

ANNE C. STONE1, LUZ-ANDREA PFISTER1, KELLY HARKINS1, TESSA CAMPBELL2, JANE E. BUISKRA2, and ALICIA K. WILBUR1,3. 1School of Human Evolution and Social Change, Arizona State University, 2Department of Archaeology, University of Capetown, South Africa, 3Washington National Pri- mate Research Center, Seattle, WA.

In our research, we attempt to characterize ancient mycobacterial strains from cases of disseminated bone TB in order to understand the phylogenetic relationships between strains of tuberculosis prior to and after the Age of Exploration. DNA was extracted from over 120 samples exhibiting classic tuberculosis lesions obtained from both the New and Old World with a range from 5800 BCE to A.D. 1800. Then, four quantitative PCR assays were used to gauge the preservation of host and pathogen DNA. Human nuclear and mitochondrial DNA may have disappeared more than once out of and/or into Africa, and that representatives of Early Homo may have been among the earliest colonists of Eurasia. The phylogeny also corroborates the hypothesis that Homo floresiensis is a geogenetically primitive Homo; the phylogeny based on the conservative taxonomy is not biogeographically informative. However, if the “species” employed in the speciﬁc taxonomy can be thought of as geographically and temporally bounded populations that were semi-isolated and that rarely interfused, then the biogeographic implications of trees based on those taxonomic units may nonetheless be salient.

Evolution and heath from infancy to adolescence in the Dogon of Mali.

BEVERLY I. STRASSMANN. Department of Anthropology, University of Michigan, Ann Arbor.

In a prospective cohort study of human biology in Mali, West Africa, I followed the development of 1700 Dogon children prospectively from 1998 to 2003. At the outset of the study, the oldest children were five years old and they were now age 18 years. I will discuss the main conclu-
Molecular paternity analyses confirm inbreeding avoidance and low reproductive skew in the northern muriqui, Brachyteles hypoxanthus.

KAREN B. STRIER1, PAULO B. CHAVES2, SERGIO L. MENDES3, VALÉRIA FAGUNDES2 and ANTHONY DI FIORE2.

1Department of Anthropology, University of Wisconsin-Madison; 2Department of Anthropology and Center for the Study of Human Origins, New York University; 3Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Brazil.

Efforts to understand the distribution of paternity in wild primates have focused on the relationship between male rank and access to fertile females. Yet, despite the wide range of demographic, reproductive, and ecological factors now known to mitigate the effects of rank on male reproduction in hierarchical societies, comparable insights into patterns of paternity in egalitarian societies have lagged behind. We investigated these patterns in one group of northern muriqui monkeys that has been the subject of long-term behavioral studies at the RPPN Feliciano Miguel Abdala (previously, the Estação Biológica de Caratinga), in Minas Gerais, Brazil. Fecal samples from adult males were collected from 69 individuals, including 22 infants born from 2005-2007, the 21 different mothers, and all 26 of the potential fathers of at least one of the infants. Samples were genotyped at 12-17 microsatellite loci found to be polymorphic in muriquis from an initial set of 52 loci originally identified in either other playmates or humans. These multilocus genotypes were then used to assign infant paternities with > 95% confidence after exclusion and maximum likelihood methods. We found low reproductive skew, consistent with predictions based on the peaceful, affiliative relationships that distinguish the social dynamics of philopatric male northern muriquis from those of other primates. Our data also confirm prior behavioral evidence of inbreeding avoidance among close relatives, and raise new questions about the roles that maternal kin group size and life histories may play in the reproductive strategies of northern muriquis and other patrilocally mating primates.
A variety of primates navigate their habitats via a system of repeatedly-traveled routes. Many repeated-route systems, such as those used by spider monkeys (Ateles belzebuth) in the Yasuní National Forest, Ecuador, follow geographical features. Route use in spider monkeys may make facilitate discovery of unknown feeding patches, improving foraging efficiency, thereby reducing information stored in memory. To test this hypothesis, we created two computer models to simulate the behavior of spider monkeys foraging in unfamiliar environments. One model simulates monkeys searching using a modified random-walk step model in which monkeys alternate 100-meter steps with turning angles derived from observed spider monkey behavior. The second model constrains travel to a route system. Simulated monkeys in each model searched among ten spatial arrays of feeding trees derived from behavioral observations (1999-2000). We compared total distance traveled, directness of travel, and trajectory of starting direction for each feeding tree discovery (n=5000) for the two models. We then compared these variables to those derived from observed foraging behavior (n=250). Route-model monkeys traveled shorter distances between (T=-7.3,45, df= 49,999, P<0.0001) and more directly to (T=-41.3064, df= 49,999, P<0.0001) feeding trees than did randomly-foraging monkeys, and discovered trees in the direction they started more often (T=-5.3522, df=49999, P<0.0001). Results support the hypothesis that the use of a route system can improve foraging efficiency. Observed spider monkeys outperformed simulated monkeys from both models in all variables, suggesting that observed monkeys are incorporating spatial and ecological information into their foraging decisions, even when foraging along route systems.

This study was funded by the National Science Foundation, The Leakey Foundation.

Juvenile stature estimation of the Arikara Plains Indians.

REBECCA Y. SUTPHIN. Department of Sociology and Anthropology, North Carolina State University.

Limited analysis has been conducted for estimating stature derived from the long bone lengths of juvenile skeletons. While juvenile stature estimation may be particularly beneficial in the forensic setting, it may have applications for use as a proxy for nutritional health of past populations like adult stature. Stature equations developed by Ruff (2007) and Smith (2007) were used to predict juvenile stature from long bone measurements of 1-17 year old Arikara Plains Indians from three temporally distinct burial sites spanning 1800-1832 C.E. (Extended Coalescent (EC), Post-contact Coalescent (PC), and Disorganized Coalescent (DC) time periods). Ages were collapsed into three year age ranges: 1-3, 4-6, 7-9, 10-12, 13-15, and 16-17 year old. Test results revealed a significant difference in the 4-6 age range for the femoral derived statures between EC and DC (p-value = 0.0005) and PC and DC (p-value = 0.013) sites. The tibia and combined femur and tibia stature estimates also showed a significant difference during the 4-6 range for the EC and PC (tibia p-value = 0.03; femur and tibia p-value = 0.055) sites and EC and DC (tibia p-value = 0.01; femur and tibia p-value = 0.002) sites. Changes in femoral length were noted in the DC site, while tibial changes were noted in the EC site. Interestingly, results of the combined femur and tibia stature estimates suggest a shift in bone length. While juvenile males maintained the same relative stature possibly reflecting the presence of environmental stressors for the Arikara juveniles in this age category.

The Black Gate cemetery, Newcastle-upon-Tyne, England: a bio-cultural approach to understanding a later Anglo-Saxon assemblage.

DIANA MAHONEY SWALES. Department of Archaeology, University of Sheffield.

The Black Gate cemetery was established within the abandoned remains of a Roman fort (Pons Aelius) in the 8th century and was an active burial ground until the 12th century A.D. The cemetery has yielded 663 articulated skeletons, making it one of the largest Christian skeletal assemblages recovered from later Anglo-Saxon England. Aside from the cemetery there is no physical evidence for settlement in the area from the abandonment of Pons Aelius in 410 A.D. until the first phase of construction of a Norman castle in 1080 A.D. Documentary evidence indicates the presence of a monastery within the immediate locality of the cemetery. However, archaeological evidence for monastic settlement at the site has yet to be established. To determine the origin of the contributory population osteological analysis was undertaken. Investigation into the relationship between mortality and morbidity and different demographic and social components of the assemblage enabled a picture of the overall social and environmental impact on physiological stress to be assessed. This was compared with thirteen sites of known context to determine if the health profile observed amongst the Black Gate population shared characteristics with urban, rural or monastic assemblages. A detailed picture of the health and funerary behaviour of the Black Gate cemetery was attained. However, the origins of this population remains inconclusive. This research emphasises the multi-factorial nature of physiological stress and that age, diet, cultural practices and status had a greater impact upon the skeleton than settlement type in the later Anglo-Saxon period.

Obscuring limb allometry: The geometric mean and limb indices.

ADAM D. SYLVESTER1 and BENJAMIN M. AUERBACH2. 1Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 2Department of Anthropology, The University of Tennessee.

It has been found repeatedly that human proximal limb elements scale with negative allometry while distal limb elements scale with positive allometry. This indicates that proximal limb indices should scale allometrically, as distal elements increase in length more rapidly relative to proximal elements. Such a pattern has not, however, been substantiated by empirical analyses. Here we investigate two phenomena that may contribute to this paradox: The use of the geometric mean as a size variable and the effect of other sources of limb length variation in obscuring intralimb index allometry.

Limb bone lengths and metrics necessary to estimate stature, using the Fully technique, were measured on 1007 indigenous American skeletons. Limb bone lengths and metrics regressed in log space against both Fully stature and the geometric mean of the same bones. To investigate the contribution of unspecified sources of limb length variation in obscuring intralimb index allometry, we created limb length variation by adding modeled residuals to expected values obtained from our regression analyses. We generated 1000 populations for each of 21 different magnitudes of modeled residuals. Correlations were calculated between limb element lengths, limb element lengths and stature, and intralimb indices and total limb length for the modeled populations. Results show the geometric mean cannot be recommended as a size variable because resulting allometry coefficients are not independent, and do not reflect values obtained when using a biologically relevant measure of size. We also determined that sources of limb length variation are sufficient to conceal intralimb index allometry.

Ancient mtDNA analysis at Nuvuk, an ancient Thule village at Point Barrow, Alaska.

JUSTIN TACKNEY1, ANNE M. JENSEN2, JENNIFER A. RAFF3 and DENNIS H. O’ROURKE4. 1Department of Anthropology, University of Utah, 2UIUC Science LLC.

Nuvuk, a village at Point Barrow, Alaska, was continuously inhabited for
AAPA ABSTRACTS 289

Can heterochronic change explain shape differences in the distal femora of Plio-Pleistocene hominins and humans?

MELISSA TALLMAN1,2.1Department of Anthropology, Graduate Center, City University of New York, 2New York Consortium in Evolutionary Anthropology.

It has been proposed that the morphological differences between the distal femora of humans and early Plio-Pleistocene hominins are the result of a heterochronous shift in the human lineage towards a longer period of development. This assertion was tested using three-dimensional geometric morphometric microscribe data, collected as a series of x, y, z coordinates. Data were collected on an ontogenetic sample of forty-three Pan troglodytes individuals categorized in seven age classes and twenty-seven Homo sapiens, aged 2 to adult, as well as relevant original fossils. Data were subjected to a generalized procrustes analysis and multivariate statistics were subsequently performed. The ontogenetic trajectory for Homo and Pan were significantly different. For modern humans, the major ontogenetic change in the distal femur was captured almost entirely along principal component 1 in a principal components analysis. WT 15000 and ER 1481 fell within the 95% confidence ellipse of modern humans, but all other fossils fell well outside. Major ontogenetic changes in Pan were captured on both PC 1 and PC 2. Distal femora from Australopithecus afarensis, as well as ER 15000, fell within the 95% equal frequency ellipse for the Pan ontogenetic trajectory, while ER 1481 and WT 15000 were furthest outside. These results indicate that shape differences between the distal femora of Plio-Pleistocene hominins and humans cannot be accounted for by heterochrony alone.

This research was supported by WG 7515, NSF DDI 0559091, and partial funding from NSF 0333415 (NYCEP) and 0515360 (Eric Delsol).

American Journal of Physical Anthropology

Can heterochronic change explain shape differences in the distal femora of Plio-Pleistocene hominins and humans?

MELISSA TALLMAN1,2. 1Department of Anthropology, Graduate Center, City University of New York, 2New York Consortium in Evolutionary Anthropology.

It has been proposed that the morphological differences between the distal femora of humans and early Plio-Pleistocene hominins are the result of a heterochronous shift in the human lineage towards a longer period of development. This assertion was tested using three-dimensional geometric morphometric microscribe data, collected as a series of x, y, z coordinates. Data were collected on an ontogenetic sample of forty-three Pan troglodytes individuals categorized in seven age classes and twenty-seven Homo sapiens, aged 2 to adult, as well as relevant original fossils. Data were subjected to a generalized procrustes analysis and multivariate statistics were subsequently performed. The ontogenetic trajectory for Homo and Pan were significantly different. For modern humans, the major ontogenetic change in the distal femur was captured almost entirely along principal component 1 in a principal components analysis. WT 15000 and ER 1481 fell within the 95% confidence ellipse of modern humans, but all other fossils fell well outside. Major ontogenetic changes in Pan were captured on both PC 1 and PC 2. Distal femora from Australopithecus afarensis, as well as ER 15000, fell within the 95% equal frequency ellipse for the Pan ontogenetic trajectory, while ER 1481 and WT 15000 were furthest outside. These results indicate that shape differences between the distal femora of Plio-Pleistocene hominins and humans cannot be accounted for by heterochrony alone.

This research was supported by WG 7515, NSF DDI 0559091, and partial funding from NSF 0333415 (NYCEP) and 0515360 (Eric Delsol).
The conditions required for an economic bipedal locomotion. Key role of the pelvic parameter; the sacral incidence angle, growth, evolution and plasticity.

CHRISTINE TARDIEU¹, NOEMIE BONNEAU¹, CHRISTOPHE BOULAY², JEROME HECQUET¹, JEAN LEGAYE¹ and GENEVIEVE DUVAL-BEAUPERE². ¹CNRS, Comparative Anatomy, MNHN, Paris, ²Children’s Hospital La Timone, Marseille, France.

Lower limbs is an essential component of erect posture and bipedal walking, however it is poorly studied. G. Duval Beauperè highlighted the importance of a sagittal pelvic parameter called the “angle of sacral incidence” (35-75°) which plays a critical role in driving the changes in the sagittal spinal curvatures from one individual to another. Does this angle change during growth related to gait acquisition? We compared 50 adult, 17 infantile and 20 intact newborn pelves. We used the software package, “DE-VISU”, developed by J. Hequet. From a set of 47 landmarks, we reconstructed the three pelvic joints, the angle of incidence and many other useful parameters.

From the neonatal to the adult state, the “angle of incidence” increases (means: newborns, 28°; infants, 40°; adults, 54°). The sacrum moves backward in the sagittal plane with respect to the acetabula, a crucial element in the economy of erect posture. A chain of correlations links the degree of the sacral slope and of the angle of incidence, which is tightly linked with the degree of lumar lordose.

We show the absence of sexual dimorphism for the “angle of incidence”. We present its lower values in non human primates and its significant increase in young Japanese macaques trained for bipedalism. We conclude that adequate correlations between the degree of incidence and of vertebral curvatures, ensuring an economic sagittal balance of the trunk above the lower limbs, are established progressively during growth with gait acquisition.

Growth in the marmoset monkey: toward a model of childhood obesity.

SUZETTE TARDIF¹, MICHAEL POWER¹, CORINNA ROSS¹ and JULIEN RUTHERFORD². ¹Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center at San Antonio, ²American College of Obstetricians & Gynecologists, ³University of Illinois at Chicago.

Childhood obesity is a growing health problem. A better understanding of the developmental, behavioral and physiological factors leading to obesity in childhood would be enhanced by the availability of a primates model of the condition. Marmoset monkeys are a potentially useful model of the effects of early life perturbations on later life health and disease, due to their relatively fast maturation and short life span. In addition, the production of litters means that the effects of the prenatal and postnatal environment may be differentiated via experimental manipulations not possible in other primates. A portion of the captive marmoset population becomes obese, even when maintained on a typical captive primate diet that is relatively low in fat and high in fiber – however these diets, for most marmosets, are often high in simple carbohydrates. Excess adiposity in captive common marmosets appears to develop as early as 2 months of age, a point at which marmosets are in the process of weaning. There is some indication that feeding behavior of infants destined to become obese may be differentiated from those remaining lean as early as the weaning period. Maternal condition and infant birth weight appear to influence adiposity, but only among infants vulnerable to obesity. Early life obesity in marmosets is often associated with impaired glucose metabolism and hypertriglyceridemia that may eventually lead to diabetes and cardiovascular disease. This research was supported by NIH grant DK77639.

Demographic analysis of an A.D. 825 ossuarium context: the Gold Mine mound of Northeastern Louisiana.

BRITTNEY TATCHELL and DAWNIE W. STEADMAN. Department of Anthropology, Binghamton University.

Demographic analysis of an A.D. 825 ossuarium context: the Gold Mine mound of Northeastern Louisiana. Mound A. Demographic profiles are compared with “typical” prehistoric demography of the Orendorf site. Of 63 adults, at least 24 are female (50%) and 19 are male (30.6%). Mortality is highest in the 25-50 year age category, followed by the 20-35 year and 0-5 year categories. Sex and age distributions of Gold Mine do not differ significantly from Orendorf (p > 0.05) or between mound strata (p > 0.05). The results show no significant bias in age and sex representation at the site. Diverse mortuary demography and lack of burial goods suggest the mound dates to the Baytown period rather than the more stratified Coles Creek period.

Diet, brains, and evolutionary constraints.

IAN TATTERSALL. Division of Anthropology, American Museum of Natural History.

Evolution is an opportunistic process that can only capitalize on features of organisms that are already in place. It is not a process of optimization; and its future directions are constrained as well as heralded by the possibilities inherent in existing structures and developmental pathways present within lineages. They are also constrained by behavioral and environmental factors that are external to the genotype and structural phenotype. In hominid phylogeny one of the most important of these external constraints has clearly been diet quality, not least because of the very particular energy requirements of the metabolically very expensive brain – the dramatic increase in the size of which has been perhaps the most notable feature of the last two million years of human evolution. In the course of hominid brain enlargement (the pattern of which may be as much a reflection of interspecific competition among hominids as it is of interspecies selection) two unrelated elements, one extrinsic and one intrinsic to the organisms concerned, have clearly acted in concert not only as facilitators, but also as constraints. These elements are the availability of adequate environmental resources, and the behavioral capacity to exploit them. Recognizing and distinguishing the roles of each factor at various stages in the process will be essential to any complete understanding of how humans became the remarkable neural and cognitive entities they are today.

Science and Democracy: “Education” and Participation in the Genomic Era.

KAREN-SUE TAUSSIG. Department of Anthropology, University of Minnesota.

This paper, based on ethnographic research in the United States, examines a range of efforts to engage ordinary
people in what I call “genetic thinking and practice.” Practices such as gene therapy, pharmacogenomics, and stem-cell therapies promise transformative interventions into human life and health. Department of Anthropology, Stony Brook University, 4Institute for the Conservation of Tropical Environments, Stony Brook University, 5Institute of the Conservation of Tropical Environments, Stony Brook University, 6Department of Anthropology, Stony Brook University, 7National Evolutionary Synthesis Center, Durham, NC, 8Institute of Biotechnology, University of Helsinki.

Mitochondrial DNA variation in the Fijian Archipelago.

DIANA A. TAYLOR1, GETANJALI TIWARI1, MICHAELA CATLIN2, ANAND P. TYAGI3 and ALAN J. REDD3. 1Department of Anthropology, University of Kansas, 2Division of Biology, The University of the South Pacific.

The Fijian Archipelago plays a central role in the history of the peopling of Polynesia. To date, there has been insufficient sampling across Fijian Islands despite evidence for axes of variation in culture, language, and biology. In order to explore population structure within the Fijian Archipelago, we sampled 88 mitochondrial DNAs from five Fijian, two Melanesian, and two Polynesian islands. This study is the first to examine variation in Rotuma and among the Fijian islands.

We sequenced the Hyper Variable Region I (HVI). Our analysis of genetic diversity indicated a bottleneck in Rotuma and intermediate haplotype diversity in Fiji with respect to Polynesia and Melanesia. A multidimensional scaling plot places Fiji in the center between Melanesian and Polynesian populations. Rotuma is an outlier beyond Polynesia. We found mitochondrial haplogroup variation among Fijian islands. For example, Rotumans have a single mtDNA haplogroup—B4a1a1a (Polynesian Motif). Moreover, Kadavu had 30% M28 haplogroup frequency, suggesting that it has a closer relationship with Melanesia than elsewhere in Fiji. Interestingly, the Lau group did not show affinities preferentially with Polynesia as would be expected based on archaeological, historical, phenotypic, and geographic evidence.

Obesity in the skeleton: correlating long bone external dimensions to Body Mass Index (BMI).

REBBECA WILSON TAYLOR1,2 and KANYA GODDE1,3. 1Department of Anthropology, University of Tennessee, Knoxville, 2Department of Medical Assisting, South College, Knoxville 3Department of Anthropology, Texas State University, San Marcos.

Even though body-mass index (BMI) is widely used to evaluate past populations, it is rarely applied to forensic cases. The American obesity epidemic, with a 34% rate of obesity nationwide (CDC 2010), may provide the ability to distinguish body type from the skeleton, which then can be incorporated in forensic analyses. Based on previous studies (Godde and Woon 2008; Knapp et al. 2009; Moore 2008; Wilson et al. 2010), it was hypothesized that significant differences in long bone external dimensions exist among varying BMI levels. A series of external measurements of long bones were obtained from individuals with known height and weight in the William M. Bass Donated Skeletal Collection (N=394) to calculate shape indices for approximation of the cross-sectional geometry of the diaphyses. Data were divided according to BMI and grouped into average, obese, and morbidly obese. Three analyses were conducted based on this separation: (1) average/obese/morbidly obese; (2) average-obese-morbidly obese; (3) average/obese-morbidly obese. Indices from long bones were inputted into Kruskall-Wallis ANOVA tests, along with post-hoc tests, to detect significant differences among groups; and discriminant analyses were run to determine classification error rates. Results from the ANOVA indicated the second analysis yielded three shape indices (Humerus mid-shaft, Femur mid-shaft and subtrochanteric) that were significant in relation to BMI, but with a 36% error rate. Although this produced an undesirable error rate, it suggests that external dimensions could predict BMI when combined with other skeletal indicators, a finding consistent with Moore (2008).

Patterns of mortality and group transfer explain differences in male and female longevity in Propithecus edwardsi, Milne-Edwards’ sifaka.

STACEY R. TECOT1,3, STEPHEN J. KING3,4,5, JENNIFER L VERDOLIN2,7 and PATRICIA C. WRIGHT6,5,3. 1School of Anthropology, University of Arizona, 2Department of Ecology and Evolution, Stony Brook University, 3Department of Anthropology, Stony Brook University, 4Institute for the Conservation of Tropical Environments, Stony Brook University, 5Centre ValBio, Ranomafana, Madagascar, 6Department of Anthropology, University of Massachusetts, 7National Evolutionary Synthesis Center, Durham, NC.

American Journal of Physical Anthropology

AAPA ABSTRACTS
Propithecus edwardsi females live longer than males, however characteristics proposed to drive sex differences in lifespan (e.g., sexual dimorphism, male-biased aggression) are lacking. To elucidate proximate explanations for sex differences in lifespan, we explored demographic and life history patterns of a population of P. edwardsi in Ranomafana National Park, Madagascar. Using 80 group-years of data on births, deaths, and transfers from 41 females and 34 males collected over 23 years, we calculated sex ratios and compared specific Kaplan-Meier survival curves based on mortality and group-related transfer. We hypothesize that sex differences in the timing of group transfer and mortality can account for differences in observed maximum lifespans (males 19y; females 32y). Sex ratios were 0.48±0.06 from sexual maturity until one year, whereas 50% of males survived until 14.75y, whereas 50% of females survived until only 2.2y. Early mortality differences led to the male-biased sex ratio, but exit rates converged after 10y. By 18y females present in the population remained, whereas males continued to exit steadily after 10y until no males older than 19 were present. The continued exit of males at older ages was largely due to transfer. We suggest that sex differences in the timing of transfer, and the unique challenges of dispersal at older ages, may explain sex differences in lifespan. Research supported by NSF-BCS 721233.

A female skeleton with syndromic sagittal craniosynostosis from late Byzantine Priene (Turkey) – a CT investigation.

WOLFRUDIGER TEEGEN. Institute of Prehistoric Archaeology, Ludwig-Maximilians-University.

The Hellenistic city Priene is located in today western Turkey. In Byzantine times several churches and chapels were built, surrounded by cemeteries. One of the late Byzantine cemeteries is located in the former sanctuary of the Egyptian Gods (Raack, 2008). Here, 34 burials with up to 50 individuals were excavated, and recently studied (Teegen 2010). This cemetery was, however, much larger. During the 2010 campaign, a somewhat disturbed burial was excavated at the periphery of the cemetery. The analysis revealed a young adult female with a calculated body height (Pearson 1918) of 148.3 cm. She died after a miscarriage of at least twins 8 to 9 lunar months after conception. Her skull shows premature sagittal craniosynostosis and closure of the right occipito-mastoid suture. A CT scan was performed at Soeke Hospital, showing thickening of the left cranial vault up to 10 mm. The right temporal and sphenoid bones are also heavily thickened and deformed. Their structure is indicating a temporal lobe malformation. The occipital bone shows an abnormal structure without marked areas of the occipital poles and the posterior cranial fossa. The lower leg and foot bones are not preserved. Due to this association of malformations it should be called a syndromic sagittal craniosynostosis. The differential diagnosis of this case will be discussed.

Research was funded by the German Archaeological Institute at Istanbul.

Variation in body size during the agricultural transition in prehistoric Japan.

D.H. TEMPLE, Department of Anthropology, University of North Carolina Wilmington.

This study compares body size between Late/Final Jomon (4000-2300 BP) and Yayoi (2500-1700 BP) period people. Average limb lengths were compared using MANOVA with Tukey’s HSD test (P < .05). Skewness of limb lengths and body mass and average body mass were compared with t-tests. Leg length is significantly reduced in Jomon compared to Yayoi males and females. Significantly longer femora are observed among Yayoi compared to Jomon males. No significant differences in tibal length are observed between Jomon and Yayoi males. Jomon and Yayoi period females do not significantly differ in any measure of average limb length. Leg length expresses significant positive skewness in Jomon females (t = 2.45, P < .05), but not males (t = -0.08). This reflects significantly positive skewness in the femora (t = 2.44 P < .05) and tibiae (t = 5.38, P < .05) of Jomon females. No significant skewness is observed among Yayoi males (t = -0.03) or females (t = .35) leg length. Significantly greater body mass is observed among Yayoi compared to Jomon males (t = -2.53, P < .013) and females (t = -7.89, P < .0001). Significant skewness in body mass is not observed among Jomon (t = -7.74) or Yayoi males (t = .068). Significant negative skewness is observed among Jomon females (t = 4.4, P < .0001), but not Yayoi females (t = -1.69). This suggests greater environmental influences on size among Jomon compared to Yayoi samples. Greater plasticity in size among females is also likely.

American Journal of Physical Anthropology

Masserter fiber length and position influence relative maximum jaw gapes in the sexually-dimorphic Macaca fascicularis.

CLAIRE E. TERHUNE1, WILLIAM L. HYLANDER2, CHRISTOPHER J. VINYARD3 and ANDREA B. TAYLOR1,2. 1Department of Community and Family Medicine, Duke University School of Medicine, 2Department of Evolutionary Anthropology, Duke University, 3Department of Anatomy and Neurobiology, NEUOCOM.

Maximum jaw gape is influenced by several factors across primates including jaw morphology (e.g., jaw length), muscle position and fiber architecture. Maximum gape and jaw length are hypothesized to be sexually-dimorphic and across primate species. Alternatively, the impact of jaw-adductor fiber length (Lf) (primarily the anterior-most masseter fibers), and muscle position is less clear. In part, this is due to the functional trade-off in modifying Lf and muscle position. More caudally-positioned muscles and longer fibers facilitate gape, while more rostrally-positioned muscles and shorter fibers increase muscle force.

We examine the influence of masseter position and Lf using an inextricable sample of highly dimorphic Macaca fascicularis (n=5 males, 5 females). As Macaca fascicularis males have relatively larger gapes than females (Hylander and Vinyard, 2006), we predict that in this species, males will have relatively longer-fibered anterior masseter and/or relatively caudally-positioned muscles compared to females. Mann-Whitney U-tests suggest that, relative to jaw length, males have both more caudally-positioned masseters (p=0.016) and longer anterior masseter fibers (p=0.075) compared to females. These results suggest that male M. fascicularis have masseters that facilitate maximum gape at some cost to masseter muscle force. Because relative canine height is correlated with maximum gape in catarrhines, and male macaques have relatively longer canines, the observed masseter configuration supports the hypothesis that male M. fascicularis have experienced selection pressures to increase maximum gapes at a cost to force production (Hylander and Vinyard, 2006). This musculoskeletal configuration is likely functionally significant for behaviors involving aggressive displays in male M. fascicularis. This study was supported by NSF (BCS 0492160 and BCS 0962677).

Rotator cuff disease in post-medieval London.

DANIELLE TEYSSIER1 and TONY WALDRON2. 1University of Nevada Las Vegas, 2University College London.

This experiment is a cross-sectional study that examines the prevalence of
rotator cuff disease in three post-medieval assemblages, one of high status and two of low status. The examination was carried out at the Museum of London, on 137 skeletally aged between 36-45 years and over 45 years. The study also measures the areas of the rotator cuff that were affected by rotator cuff disease, and the relationship between rotator cuff disease and a hooked acromion. The study used the occurrence of both pitting at the muscle insertion locations of the rotator cuff and new bone on or around the insertion, as the operational definition of rotator cuff disease. When rotator cuff disease was found within the population, the areas affected were recorded, along with the shape of the acromion. The prevalence rate of the disease within the population was calculated and evaluated with 95% confidence intervals. The results show that the healthy category had a higher rate of rotator cuff disease especially in the 46+ age bracket. The results from this study are not statistically significant, however, they do show some trends which could be compared to a larger study on the same topic.

The genetic structure of the Kuwaiti population: mitochondrial DNA markers.

JASEM THEYAB1, SUZANNE AL-BUSTAN2 and MICHAEL H. CRAWFORD1. 1Department of Anthropology, University of Kansas, 2Department of Biological Sciences, Faculty of Science, Kuwait University.

In the past few decades, researchers using human mitochondrial DNA (mtDNA) have significantly contributed to our understanding of human evolution and migration. However, little attention has been paid to the Arabian Peninsula which is assumed to be one of the first inhabited regions following the expansion of early Homo sapiens out of Africa. Recently, a number of investigations have started to reconstruct human expansion through the archaeology and the study of the genetic structure of populations of the Arabian Peninsula. Populations of Kuwait, located in the Northeast portion of the Arabian Peninsula, have not been studied from a molecular genetic perspective.

This study investigated the mitochondrial DNA (mtDNA) genetic variation in 117 unrelated individuals to determine the genetic structure of the Kuwaiti population and compared the Kuwaiti population to their neighboring populations. Restriction fragment length polymorphism (RFLP) and mtDNA sequencing analyses were used to reconstruct the genetic structure of Kuwait. The result showed that the Kuwaiti population has a high frequency of haplogroup pre-HV (18%) and U (12%) similar to other Arabian populations. In addition, the African influence was detected through the presence of haplogroup L (1.6%). Furthermore, the MDS plot showed that the Kuwaiti population is clustered with neighboring populations, including Iran and Saudi Arabia, but not Iraq.

To test or not to test: UC Berkeley's unfortunate incoming student gene test program.

CHARIS THOMPSON. Department of Gender and Women's Studies and Science, Technology and Society Center, UC Berkeley.

In the summer of 2010, UC Berkeley's On the Same Page program sent buccal swab test kits to nearly all of its incoming students with the aim of testing the students' DNA samples for three alleles. The program was ill-thought out and ethically compromised. As one of the people whose input and participation in the project was solicited, I explain behind the scenes negotiations we engaged in to try and salvage the program, why our efforts were ultimately unsuccessful, what should be learned from this fiasco, and what a great program for students in genomics have for human subjects research in general.

Social bonds in wild white-faced saki monkeys reflect male/female pair preference, despite lacking behavior and physical traits typical of primate monogamy.

CYNTHIA L. THOMPSON and MARI-LYN A. NORCONK. Department of Anthropology, School of Biomedical Sciences, Kent State University.

White-faced sakis lack most of the behavioral and physical traits typical of primate monogamy. In order to determine if social bonds in this species reflect patterns displayed by pair-bonded groups or larger multi-male, multi-female groups, this study draws on 17-months of data collected on wild white-faced sakis at Brownsberg Nature Park, Suriname. We analyzed within-group social bonds for three habituated groups (one two-adult and two multi-adult groups; one of which had polygamous mating) by measuring grooming time, time in proximity and approach/leave patterns between adult and subadult group members. We found that both two-adult and multi-adult groups showed significantly stronger social bonds between a single male-female dyad within each group (deemed “primary dyads”). In all three groups, primary dyads were composed of the oldest adult male and a reproductive female. This pair had significantly higher levels of grooming than other within-group dyads (t = 4.2, p < .001). Grooming between 4.5-11.6 times as much as the average of other within-group dyads. Primary dyads were also in close proximity (<1m) more often than non-primary dyads (t = 3.0, p < .01). Grooming in primary dyads was always highly non-reciprocal, with females investing more time grooming males; non-primary dyads varied in reciprocity, but were often more reciprocal. These results suggest that while white-faced sakis do not show behavioral and physical traits typical of monogamy or pair-bonding, social bonds are still strongest between a single breeding male/female pair.

This study was funded by NSF (# 0925122) and the International Primatological Society.

Energetic costs of reproduction in wild female chimpanzees.

MELANIE EMERY THOMPSON1, MARTIN MULLER1, ERIN FITZGERALD2 and RICHARD WRANGHAM2. 1Department of Anthropology, University of New Mexico, 2Department of Human Evolutionary Biology, Harvard University.

Reproduction imposes significant costs to female primates living in habitats of limited and fluctuating energy availability. Females in a variety of primate species have been observed to shift foraging strategies during pregnancy and lactation, typically by increasing food intake or prioritizing high energy foods. However, little is known about metabolic changes that occur during reproductive efforts in primates and whether the energy conservation mechanisms present in humans are unique or typical of primates generally. Measurement of insulin dynamics offers a powerful way for examining the energetics of reproduction because insulin is directly involved in managing energy stores and because C-peptide, a byproduct on insulin production, can be measured non-invasively in the urine of wild primates. We studied the changes in C-peptide excretion over 26 pregnancies and 35 lactation periods in wild chimpanzees (Pan troglodytes schweinfurthii) in the Kanyawara community of Kibale National Park, Uganda. Pregnant chimpanzees experienced a steady increase in C-peptide concentrations over the course of gestation, paralleling the mechanism for maternal energy storage during human pregnancy. C-peptide fluctuations during lactation also showed interesting parallels to those shown in humans in that levels dropped during the initial months of lactation and increased significantly over the following 2 years of lactational amenorrhea. C-peptide elevations were also temporarily related to the resumption of cycling. C-peptide levels varied significantly with respect to maternal experience and individual resource access. However, temporal abundance of food resources had unexpectedly weak effects in these females, who experienced costs
of increased feeding competition when foraging parties were larger. This study was supported by grants from the American Association of Physical Anthropologists, the Leakey Foundation, and the National Science Foundation (SBR-9729123 and SBR-9807448).

A new bent on hominin ankle evolution.

ZACHARY J. THROCKMORTON1 and JEREMY M. DESILVA2. 1Department of Anthropology, University of Wisconsin-Madison, 2Department of Anthropology, Boston University.

The hominin foot evolved from a grasping appendage to a stiff, propulsive lever during the Plio-Pleistocene. Key to this transition was the development of the longitudinal arch, a soft-tissue structure that stores elastic energy and stiffens the foot during bipedal locomotion. As soft-tissue generally does not fossilize, paleoanthropologists rely on footprints and bony correlates of arch development to infer arch evolution, though there is little consensus on when and by what pattern the arch evolved. We present evidence from radiographs of modern humans (n = 261) and a comparative study of ape tibiae (n = 154) that the set of the distal tibia in the sagittal plane is related to rearfoot arching (a component of the longitudinal arch, along with the midfoot arch). Most non-human primates present a plantarflexed tibial arch angle, while most humans exhibit a dorsiflexed angle. Humans with a plantarflexed angle (n = 22) have significantly lower talocalcaneal and talar declination angles – both measures of an asymptomatic flatfoot. Application of these results to the hominin fossil record illustrates that a well-developed rearfoot arch was present in Australopithecus afrasias, and like modern humans, Australopithecine populations were individually variable for this character. “Lucy” (A.L. 288-1), along with two Plio-Pleistocene tibiae from genus Homo (KNM-ER 1481 and StW 567), have a plantarflexed set to the distal tibiae and likely had asymptomatic flat feet. Whether asymptomatic flat feet were more common in our ancestors and if this trait followed a gradual, directional pattern of evolution remains unclear and will require additional fossil evidence.

Skeletal correlates of horse riding in Post-Medieval Britain.

TRACEY TICHNELL. Department of Anthropology, Michigan State University.

Two of the most common skeletal markers used to reconstruct activity are cross-sectional geometry and entheses. These types of markers are rarely used together and often do not correlate. This may be the result of different forces affecting alterations to bone geometry and muscle insertion sites. However, using both types of markers may be the most effective way to identify a specific habitual activity in a generally robust and active population. This study used both types of markers to identify a suite of features for horse riding in Post-Medieval Britain. The samples that were used came from two sites: Chelsea Old Church (n = 49), a cemetery from a rural community who likely rode habitually, and Farringdon (n = 51), a cemetery for urban poor in London who likely did not ride. These samples did not significantly differ in either age make-up or in general skeletal robusticity. A platymeric index was calculated using anteroposterior and mediolateral measurements at the midshaft. Entheses robusticity for several leg muscles was recorded using a ranking system. The Chelsea Old Church sample was significantly rounder (p = 0.026), possibly due to muscles acting on the femur while riding. The gluteal tuberosity and medial linea aspera were significantly more robust in the Chelsea Old Church sample (p = 0.026 and p = 0.027, respectively), suggesting increased use of hip abductors and adductors and knee extensors. This suite of features is consistent with English-style riding and together provides stronger evidence for horse riding in this population than either marker could alone.

Distinguishing demography from selection: parsing multiple signals within a single gene.

CHRISTOPHER R. TILLQUIST and FABIAN A. CRESPO. Department of Anthropology, University of Louisville.

Much work has been done examining population-based sequence data for the signature of selection. Generally these tests have focused on comparing characteristics of the surrounding sequence in different populations or species to infer the action of selection on a particular locus. Here we present an analysis of the geographic distribution of multiple single nucleotide polymorphisms within a single gene. For these analyses, we selected the PR Domain-Containing Protein 16 (PRDM16), a gene involved in developmental morphogenesis and an important component in the differentiation of preadipocytes into brown fat. This rather large gene, greater than 300 kb, is found at 1p36.3 — a region with a relatively high rate of recombination. We use CEPH-HGDP data from 612 Eurasian individuals sampled from 36 populations to test whether SNPs found within the same gene give similar patterns when analyzed for geographic anisotropy. The CEPH-HGDP database for PRDM16 contains 77 SNPs within the PRDM16 gene, and regional estimates of linkage disequilibrium document two separate major stretches of near complete LD. Analyzing a subset of the 77 available SNPs from within and without regions of high LD and spanning the gene reveals dissimilar patterns of anisotropy. While SNPs within LD blocks show rather similar patterns, SNPs outside of LD blocks give a different yet concordant pattern. We infer that these results may be evidence of a combination of purifying selection and demographic processes, and suggest this approach as a complementary method for understanding human genome evolution writ large.

Aching arms: extreme enthesopathies (MSMs) from the proximal ulnae of a UAE Bronze Age population (Tell Abraq).

MARY BETH TIMM and DEBRA L. MARTIN. Department of Anthropology, University of Nevada, Las Vegas.

The Bronze Age in the Arabian Peninsula (c.2200-2000 BC), referred to as the Umm an-Nar period, is not as well understood as other regions. Over four hundred individuals were recovered from this tomb and provide the largest human skeletal population from the UAE Bronze Age. This research project examines the proximal end of the ulna for enthesopathies that reflect extension, flexion, and supination of the forearm. These muscles are related to fishing (making and using nets) and food processing (processing grains), and other fine hand movements that involve pulling objects towards and away from the coronal plane. This human skeletal population is unique because the majority of its individuals had extremely large enthesopathies. Data from this population suggest, however, that differentiation in labor forces resulted in differences in expression between the M. brachialis, M. supinator, and M. brachii. For example, individuals who have larger definition in the M. brachialis do not have as well defined M. triceps brachii. Preliminary data analyses by sex demonstrate that females used their M. triceps brachii more while men used their M. brachialis and M. supinators more frequently. As these muscles oppose each other, it would seem that these individuals were either exerting more force while extending or flexing the arm, but not both. Women exerted more force while extending the elbow while men exerted more force flexing and supinating the forearm. Regardless of sex and size, in this population many individuals exhibited extreme manifestations of these enthesopathies.

American Journal of Physical Anthropology
Genetic signatures of a Late Pleistocene demographic collapse in an Endangered forest dwelling primate (Mandrillus leucophaeus).

NELSON TING1, CHRISTOS ASTARAS2, GAIL HEARN3, JOEL CORUSH1, ANDREW S BURRELL1, NAOMI PHILLIPS3, BETHAN J MORGAN4, ELIZABETH L GADSBY5, and CHRISTIAN ROOS6. 1Department of Anthropology, University of Iowa, 2Wildlife Conservation Research Unit, Oxford University, 3Department of Biology, Drexel University; Bioko Biodiversity Protection Program, 4Department of Anthropology, New York University, 5Department of Biology, Arcadia University, 6Zoological Society of San Diego, 7Pandrillus, Calabar, Nigeria, 8Primate Genetics Lab and Gene Bank of Primates, German Primate Center.

The drill (Mandrillus leucophaeus) is one of the most threatened primate species in the world and is listed as one of the highest of priorities for African primate conservation by the IUCN. It is endemic to the Cross-Sanaga-Bioko rainforest region of Central Africa and suffers from habitat fragmentation and illegal hunting. Although recent work has shed some light upon the ecology of wild drills, other aspects of its natural history remain largely unknown. In particular, no molecular work has ever examined drill population and demographic history, which can provide valuable insight into how natural and anthropogenic changes to the environment affect rainforest species.

Over 2,000 base pairs of mitochondrial DNA were amplified and sequenced in nearly 60 individuals across the drill range. The BEAST package was used in a population genetic analysis to infer a mitochondrial lineage and in this species that coincides with the result of genetic drift. Together, these results support a hypothesis of long-standing ecological divergence between eastern and western gorillas, and more recently, possibly non-adaptive evolution of tail length variations between eastern and western gorillas. In conclusion, the tail length varies even in closely related taxa, and we propose that tail length relative to the trunk length is its major role in shaping hallucial anatomy. The results of this study provide novel and interesting insights into gorilla evolution since the last shared common ancestor with Pan and Homo and underscore the importance of gorilla taxonomic relationships for interpreting the fossil records of human and great ape evolution.

This research was supported by a Wenner-Gren Foundation post-PhD grant (No. 7822) and the Smithsonian Scholarly Studies Program.

Tail Length estimation in macaques from sacro-caudal skeletal morphology.

SAYAKA TOJIMA, WATARU YANO and MASATO NAKATSUKASA, Laboratory of Physical Anthropology, Department of Zoology, Kyoto University.

Tail length in primates greatly varies. This morphological variation could reflect primate adaptations. However, tail length varies even in closely related taxa, and evolutionary or adaptive meaning of it is not fully understood. In order to investigate the cause and evolutionary process of tail length variation, it is necessary to devise a reliable method to estimate the tail length from partial skeletal elements. Previous studies treated tail length categorically (e.g. "long", "short", "very short", "absent") and quantitative estimation has not been conducted. This study used 89 skeletal specimens of hybrid individuals of Japanese macaque (Macaca fuscata) and Formosan rock macaque (M. cyclopis), which were produced by an illegal introduction of the latter into the natural habitat of Japanese macaques and captured by the wildlife protection office to prevent a genetic disturbance. These individuals were ideal to calculate predicting formulae to estimate relative tail length (the percentage of tail length relative to the trunk length) since their tail length varied greatly (101 to 470 mm or 18.3 to 88.8% in relative length) depending on the degree of genetic admixture. The tail length measurements were taken from the sacrum and proximal caudal vertebrae (~C3) and multivariate regression formulae were explored by step-wise method. The utility of the obtained formulae was tested by an application to in vivo data. These individuals were ideal for testing formulae for predicting tail length in macaques. The result showed that these formulae generally work well to estimate tail length in macaques.

A biomechanical analysis of the aye-aye (Daubentonia madagascarensis) mandible in tree gnawing.

MAXX TOLER, Department of Evolutionary Anthropology, Duke University.

Daubentonia has a set of behavioral and morphological adaptations that are unique among primates. Among these are craniodental adaptations facilitating the extraction of insects from wood by gnawing. They possess a downwarishly oriented face relative to the cranium, which Cartmill (1972) suggested to be an adaptation for resisting large bite forces. Additionally, their teeth converge on a rodent-like condition, including banded, ever-growing incisors. Prior research found an inconsistent pattern of morphological specialization for large bite force production at the anterior dentition in other tree-gouging and scraping prosimians but did not measure Daubentonia (Williams et al. 2002; Vinyard et al. 2003). Given the anatomical specialization of the incisors, this study proposes that Daubentonia will have morphological indicators of large bite force production in comparison to tree-gouging and scraping prosimians. Shape ratios were generated from linear measurements taken from five species of gouging, scraping and non-gouging prosimians. Inter-specific comparisons were made using a Kruskal-Wallis test followed by pairwise Mann-Whitney U-tests. Daubentonia exhibited relatively wider and deeper mandibular corpora, shorter mandibles, and larger condylar areas when compared to other species. These results suggest the role of Daubentonia may be designed to produce large anterior bite forces in comparison to other gougers and scrapers. Given this preliminary results, in vivo data are required to confirm that the anterior bite forces produced
by Daubentonia are higher than those of other gouging prosimians.

Isotopic identification of childhood feeding practices among the ancient Moche, Peru.

J. MARLA TOYNE1, CHRISTINE D. WHITE2 and FRED J. LONGSTAFFE2.
1Department of Anthropology, The University of Western Ontario, 2Department of Earth Sciences, The University of Western Ontario.

We explore Moche infant feeding behavior at the large urban centre of Huacas de Moche (A.D. 100-700), Peru, using stable isotopic analysis of 63 individuals, including 16 subadults (<15 years) and 47 adults of both sexes from both residential and sacrificial contexts. We used collagen (dentin) and structural carbonate (enamel) from teeth, which represent infant and childhood dietary isotopic signatures, and collagen and structural carbonate from bone, which represent adult dietary carbonate signatures. These data enabled the identification of trophic level, water sources, and macronutrient shifts occurring during the transition from complete breastfeeding to complete independence of mother’s milk.

Trends in results conform to expected dietary shifts in carbon- (increasing with age), nitrogen- and oxygen- (both decreasing with age) isotope compositions and demonstrate significant changes among earlier and later-forming teeth, and bone for both collagen and structural carbonate. These data allow us to estimate that supplementation (introduction of solid foods) occurred as early as 2 years and that weaning (cessation of mother’s milk as primary food source) was completed by approximately 5 years. Variability by sex and burial context is evident. This study demonstrates the value of multi-tissue isotopic comparisons in elucidating complex changes in ancient dietary strategies for children, and provides a baseline for infant feeding behavior in ancient Peruvian populations.

This research was supported by a SSHRC Canada research grant to C.D. White (no. 332337) and a SSHRC Canada Post-Doctoral Fellowship to J.M. Toyn (no. 756-2010 0739).

Consequences of changing numerical asymmetries on intergroup relations among tufted capuchins: a case study.

MARÍA PAULA TJIAGUE1,2 and CLARA J. SCARRY3. 1Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 2Departmento Cientifico Etnografia, Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), 3Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University.

The appositional articular shape from 30 matched specimens from Homo sapiens, Gorilla sp., and Pan troglodytes (5 males and 5 females in each) formed the study group. Laser surface scans were made using a Minolta 910 and edited in Geomagic. Landmark Editor was used to place twelve landmarks on the proximal talar and fifteen tibial articular surfaces, respectively. Landmark configurations were then superimposed in Morphologika 2.0 and statistically analyzed with SAS. Singular warps analysis was used to explore the relationship between competences and joint shapes. Shape differences and similarities of articular shape observed between these closely related taxa. Arboreal taxa articular interfaces had increased plane with oval posterior and lateral articular surface, and increased lateral facet size and concavity. Terrestrial taxa had trapezoid rather than oval articular interfaces, concave medial malleolar facet, concave rather than convex medial malleolar groove and both the trochlear apex and the medial facet anteriorly displaced. Shape variations of articular interfaces were accurately observed using combined articular matrices, allowing the study of the ontogeny of joint shape, and that of fossil hominoid taxa. This study was funded by NSF (BCS-042539) and the University of Oregon.

The ethics of collections in biological anthropology.

TRUDY R. TURNER. Department of Anthropology, University of Wisconsin-Milwaukee.

Most biological anthropologists deal with collected materials. The collection can be skeletal or material remains, repositories of DNA or cells, or field notes. Because of the use of collections, anthropologists have begun to ask the following questions - what is done with them, how they are maintained and who has access to them. Many of these discussions can be subsumed under the general theme of repatriation. Repatriation of native material has been in process for years; other types of collections are currently under review, including collections held by large museums, individual’s field notes and genetic databases. At this point in time, there seems to be two different approaches to the ethics of collections. On the one hand, collections of some material remains have been the topic of considerable ethical debate and are subject to the legal requirements of repatriation. On the other hand, large databases of genetic information are being deliberately col-
lectected in such a way as to attempt anonymity and obviate any possibility of return. An examination of the ethics of collections biological anthropologists could engage with other groups who have a history of engagement with collections including museums, libraries and other groups that have differentiated with information technology. These discussions are beginning with the formulation of principles that will govern the collection and stewardship of materials and include a clearly defined agreement between the principal investigators and the curators of the collection.

Long bone bilateral asymmetry in modern South Africans.

NATALIE M. UHL. University of Illinois at Urbana-Champaign.

Many studies utilize only one side of the skeleton, usually the left side, when available. Time is a limiting factor in most data collection, so measuring only one side of the skeleton can expedite data collection and subsequently increase sample sizes. However, several studies have discerned significant differences in size and other morphological factors (e.g., pubic symphysis score) between either side of the same individual. Ignoring these differences could affect inferences and study results. This study includes 258 modern South African individuals from the Pretoria Bone Collection, housed at the University of Pretoria, South Africa. Both White and Black South Africans and males and females are represented in the sample. Percentage of directional asymmetry was calculated for maximum length of the humerus, humeral head diameter, humeral midshaft diameter, maximum length of the femur, femoral head diameter, and femoral midshaft diameter.

Results are similar to previous studies in other populations – greater amounts of asymmetry in upper limb bones compared to lower limb bones. Maximum length of the humerus shows the greatest asymmetry (1.1246%), while femoral midshaft diameter has only a minute amount of directional asymmetry (0.000078%). Directional asymmetry is greater in the humeral head diameter than the femoral head diameter (0.979705% and -0.00018%, respectively). Humeral midshaft diameter shows very little directional asymmetry (0.00022%). Research involving long bones should consider bilateral asymmetry during method development and analysis in order to maximize sample size while still obtaining precise results. This research was funded by a research grant from the Department of Anthropology at the University of Illinois and Urbana-Champaign.

Where have all the women come from? Discrepancies in the number of male and females lineages in Mifflin County Anabaptist cemeteries.

BETHANY M. USHER1 and JAIMIN D. WEETS1,2. 1Center for Teaching Excellence and Sociology and Anthropology Department, George Mason University, 2Department of Anthropology, State University of New York at Potsdam.

In earlier studies of the genetic and social structure of Amish and Mennonite cemeteries, we have constructed a unique genealogical database. The file, containing over 4000 records, consists of all individuals buried known to be buried in the seven Anabaptist cemeteries of the Big Valley, Mifflin County, Pennsylvania between initial settlement between the late 1780s and 2002, and their ancestors back to the last recorded common ancestor. Interestingly, this research has shown that while there are about eighty known male founding lineages in this population, there are almost double the number of female “founders.” There are two hypotheses that may explain this discrepancy: 1) As this is a patrilineal community with only male religious leaders, it may have accepted female converts more easily than male converts, leading a larger diversity of female lineages. 2) Because adult females in the community adopt their husband’s family name, the genetic relationship of females may not be recorded in written records. Many of the “founder” females may, in fact, come from the same lineage, and thus the written records may over-estimate the number of female founding lineages. The implications of the two hypotheses are significantly different in understanding the genetic diversity of these populations and the social structure of the communities and their cemeteries. Existing genetic and historical records are used to test both hypotheses, and the implications for the analysis of the cemetery structure are examined.

Metabolic regulation of postpartum fecundity in human females.

CLAUDIA R. VALEGIA. Department of Anthropology, University of Pennsylvania.

The return to postpartum fecundity clearly reflects the often cited Current vs Future Reproduction life-history trade-off and, ultimately, represents an energy allocation problem. Lactating women face metabolic challenges even greater than pregnant ones. From an evolutionary perspective, we should expect the regulation of this transition to be tightly associated with energy availability and, consequently, to maternal ecology.

After several decades of research, at different levels of analysis (from molecular to physiological to demographic) we are beginning to obtain a more focused picture of the mechanisms behind the return to postpartum fecundity. In this presentation, I will discuss models that attempt to explain the resumption of full postpartum fecundity as the result of maternal metabolic energy allocation decisions. It is now clear that the mere amount of calories (e.g., nutritional status) is not the main regulator of these decisions. Rather, a more nuanced mechanism that involves diet quality and energy balance is emerging as a better candidate. The dynamics of insulin sensitivity during lactation, as well as other metabolic mediators, may aid in understanding the transition of ovarian function with a reduction in the energy demands of milk production.

As a secondary goal, I would like to comment on the impact that lifestyle/ ecological changes brought by development programs may have on the fertility and health of women in developing countries, with an emphasis on an applied view on human reproductive ecology.

This study was funded by NICHHD (R03HD07226), the Nestlé’ Foundation for Research, the Wenner-Gren Foundation, CONICET (Argentina), and the University of Pennsylvania Population Aging Research Center and Population Studies Center.

Phylogeography of brown spider monkeys (Ateles hybridus) in Colombia: testing the riverine hypothesis.

LINA M. VALENCIA1,2,3, ANDRES LINK1,2,3, and ANTHONY DIFIORI1,2,3. 1Department of Anthropology, New York University, 2Center for the Study of Human Origins, New York University, 3New York Consortium in Evolutionary Primatology.

The diversification and phylogeny of spider monkeys have been explained by mechanisms such as geological fluctuations and ecological changes. However, there is little evidence to support riverine barriers as drivers of speciation in the group. Nonetheless, among brown spider monkeys (A. hybridus), two subspecies have been recognized based on differences in pelage coloration, divided by the Magdalena River in Colombia, suggesting their divergence could have been programmed by the river acting as a barrier. This study evaluates the influence of the Magdalena River as a barrier to gene flow between the different populations of A. hybridus in Colombia as well as the phylogenetic relationships and the degree of genetic differentiation. Mitochondrial HV-1 and COI sequence variation from 10 populations (50 individuals) along the two banks of the Magdalena River were examined. Haplotypes were shared between populations on both banks and there wasn’t an evident clustering of the samples in two supported clades, corresponding to each bank of the river. All populations
sampled weren't significantly differentiated and most of the genetic variation was observed within populations rather than between banks. Population genetic analysis showed gene flow between banks. A significant correlation between genetic and geographic distance, as would be predicted by the IBD model. There wasn't a highly structured phylogeographic pattern and based on these mtDNA data, the riverine barrier hypothesis was not an important mechanism influencing the population genetic structure of A. hybridus, suggesting the Magdalena River has not been a barrier to female-mediated gene flow in neutral markers. This study was funded by Primate Action Fund – Conservation International.

The Behavioural Ecology of Eulemur fulus rufus: a test of the socioecological model.

KIM VALENTA. Department of Anthropology, University of Toronto.

Numerous factors influence primate grouping patterns, social interactions and mating systems, including phylogeny, demographic variables, the distribution of resources and predation pressure. The presence of Eulemur fulus rufus in extremely different habitats in Madagascar provides a unique opportunity to examine the influence of ecological factors on social organization and mating systems while controlling for phylogeny. Western populations live in highly seasonal tropical dry forests, while eastern populations live in closed rainforest. Both populations have been extensively studied for over three decades, resulting in an enormous amount of long-term data on many aspects of E.f. rufus behaviour, ecology and morphology, including diet, ranging, life history variables, dispersal, female-female relationships, sociality, and mating systems. E.f. rufus thus provide a unique and valuable opportunity to evaluate extant models of primate sociality. I summarize published data regarding E.f. rufus behavioural ecology, as well as generating and testing predictions for E.f. rufus social organization and mating systems based on the socioecological model and sexual selection theory. The socioecological model predicts patterns of social organization and behaviour of western populations of E.f. rufus extremely well, and yet has low predictive power with regard to the social organization and behaviour of eastern populations. This disparity partially results from the extreme unpredictability of food resources in Malagasy rainforests. The temporal availability and predictability of food resources is not explicitly accounted for in the socioecological model, and has consequences for patterns of primate grouping, mate competition, dispersal patterns and social organization.

American Journal of Physical Anthropology

AAPA ABSTRACTS

This study was funded by the National Sciences and Engineering Research Council of Canada.

Gradient of dental wear and mandibular corpus height in Pleistocene Homo.

ADAM VAN ARSDALE. Wellesley College, Department of Anthropology.

The 2600 mandible from Dmanisi has been noted for its exceptionally tall corpus, a gradient more extreme than nearly all other Pleistocene Homo mandibles. This observation raises the question of whether or not these two features are related, and in particular, whether or not the latter is in some way causally linked to the former. Here we test the hypothesis that the gradient of molar wear is linked to increased corpus height in Pleistocene hominins. Our results suggest there is a positive relationship between the two, presumably relating to developmental and biomechanical constraints associated with the action of the jaw during juvenile development in these specimens. This relationship is examined in several specific cases, some of which stand out as interesting exceptions to the larger trend. In the particular case of the Dmanisi hominin sample, this effect, coupled with aspects of aging and sexual dimorphism, may partly explain the seemingly excessive amount of variation observed in the sample. Viewed in the larger lens of early Homo evolution, this observation raises interesting questions for the development of the mastiatory environment throughout juvenile and early adult stages of life.

Brain size evolution in seasonal habitats: cognitive buffer effects and energetic constraints both apply in catarrhine primates.

JANNEKE VAN WOERDEN, CAREL VAN SCHAIK and KARIN ISLER. Anthropological Institute and Museum, University of Zurich.

When asking whether the relative brain size of species is linked to the degree of seasonality of their habitat, ceteris paribus two aspects are important. On the one hand, seasonality forces animals to deal with periods of food scarcity, posing an energetic constraint on the highly expensive brain. On the other hand, seasonal habitats may act as a selective pressure to increase brain size, as behavioural flexibility helps to deal with these periods of food scarcity. We expect energetic constraints to always be present in seasonal habitats, even though these might be covered by cognitive buffer effects. In a comparative analysis of 81 species of primates, controlling for phylogeny, body mass and other confounding variables such as degree of folivory and group size, we found a strong negative relationship between experienced seasonality, as proxied by monthly variation in dietary intake, and relative brain size in both lemurs (p=0.004) and catarrhines (p=0.01). However, a cognitive buffer effect is weak in lemurs (relatively large-brained lemurs show only a weak trend p=0.11) to experience less variation in their dietary intake than would be expected given the seasonality of their habitat), whereas in catarrhine primates such a cognitive buffer effect is strong (p=0.02), effectively masking a direct correlation between brain size and habitat seasonality (p=0.7). From this conclusion, expansion of taxonomic strata are more pronounced in a taxa group if a relatively large percentage of body metabolism is needed to maintain brain function, whereas a large absolute brain size may facilitate cognitive buffer effects. This study was funded by the Swiss National Science Foundation grant No. 3100A0-117789.

Reinterpreting cribra orbitalia etiology in a coastal North Carolina Algonkin population using CT scans.

CRYSTAL VASALECH1, THOMAS G. WEST2, MGF GILLILAND3 and MEGAN PERRY4. Department of Anthropology, East Carolina University, 2Eastern Radiologists, 3Department of Pathology and Laboratory Medicine, Brody School of Medicine at East Carolina University, 4Department of Anthropology, East Carolina University.

Cribra orbitalia is visually characterized by porous lesions on the orbital roof and is often attributed to iron deficiency anemia, although other etiologies are possible. The main objective of this study is to reassess the diagnosis of iron-deficiency related cribra orbitalia in a North Carolina coastal Algonkin population (n=50, AD 295-1460) using non-destructive methods. Microscopic techniques such as thin-ground sectioning have successfully differentiated between idiopathic expansion attributable to anemia as opposed to other etiologies. Such destructive techniques often are not possible with some U.S. samples because of NAGPRA provisions. Thus, we utilize non-invasive computed tomography (CT) scanning as a viable alternative to identify idiopathic expansion versus other sources of porosity in the orbital roof. Forty-five crania with varied forms of orbital roof and is often attributed to iron deficiency anemia, although other etiologies are possible. The main objective of this study is to reassess the diagnosis of iron-deficiency related cribra orbitalia in a North Carolina coastal Algonkin population (n=50, AD 295-1460) using non-destructive methods. Microscopic techniques such as thin-ground sectioning have successfully differentiated between idiopathic expansion attributable to anemia as opposed to other etiologies. Such destructive techniques often are not possible with some U.S. samples because of NAGPRA provisions. Thus, we utilize non-invasive computed tomography (CT) scanning as a viable alternative to identify idiopathic expansion versus other sources of porosity in the orbital roof. Forty-five crania with varied forms of upper orbital lesions and 5 crania without lesions were selected for this analysis. The axial anterior-posterior CT images allow distinction between diploic expansion and resorption of the corre-
responding cortical bone and cortical bone porosity. This preliminary study therefore suggests that CT scanning is a viable replacement for histological assessment of pathologies in cases where destructive analyses are prohibited. By more accurately understanding the etiology of cribra orbitalia in archaeological populations, we can better understand their dietary habits, health, quality of life, and overall adaptations to their unique environment. Reconsidering the etiology of cribra orbitalia has important implications for the current interpretations of malnutrition and infectious disease in earlier human populations. This new non-destructive methodology has implications for paleopathological methodology, archaeology, and Native American history.

This study was possible because of the generous support of the Department of Cardiovascular Sciences at the Brody School of Medicine, East Carolina University for allowing us the use of their CT scanner and the help of scanning technician, Kelli West.

Nocturnal light environments in Madagascar: implications for nocturnal primate color vision.

CARRIE C. VEILLEUX, Department of Anthropology, University of Texas at Austin.

Recent work has highlighted the importance of vision, particularly acuity and color vision, in nocturnal primate behavior, ecology, and evolution. Comparative studies document variation in nocturnal primate visual anatomy and function, while field studies explore how vision is used behaviorally. Yet, little research has explored how nocturnal light environments vary within and between primate habitats. I examined nocturnal ambient light variation at two sites in Madagascar, deciduous dry forests at Kirindy Mitea National Park (KNMP) and rainforest at Ranomafana National Park (RNP). At KNMP, I quantified nocturnal irradiance (intensity and spectral quality) at 54 locations for 34 nights, revisiting each location every 4 nights (n=516 measurements) and recording lunar elevation and cloud cover. At RNP, I measured irradiance during crepuscular (n=8) and gibbous phases (n=10). I estimated foliage density with an LAIL meter at each location. Nocturnal irradiance in Madagascar was significantly affected by habitat type, lunar phase and elevation, foliage density, and cloud cover. In particular, KNMP was significantly brighter and relatively richer in shorter wavelengths than RNP. Similarly, brighter lunar phases (full, gibbous) were relatively richer in shorter wavelengths than more starlit phases (crepuscent, new). Even when full, moonlight intensity and spectral quality varied with lunar elevation, increasing in short-wavelength richness at lower lunar elevations. Combined, these results suggest that nocturnal lemurs navigate complex and changing visual environments. By integrating an awareness of the light environments encountered by different nocturnal species with their color vision abilities, we can better understand the evolution of nocturnal primate color vision.

This study was funded by the Wenner-Gren Foundation, the Leakey Foundation, the American Society of Mammalogists, and the American Philosophical Society.

Comparing canopy structure between modern rainforests and Miocene analogue forests using ground-based LiDAR: implications for hominoid locomotion.

VIVEK V. VENKATARAMAN, 1 and NATHANIEL J. DOMINY, 2 Department of Biological Sciences, Dartmouth College, 3Department of Anthropology, Dartmouth College.

The physical structure of forests is one driving factor behind locomotor adaptations in forest-dwelling animals, including primates. Understanding how these forests reconstitute the past, locomotor adaptations in arboreal primates, both fossil and extant, are interpreted in the context of modern rainforest structure. However, such an approach may obscure the role of forest structure in the adaptive radiation of primate morphology. The goal of this study is to compare the physical structure of modern rainforests and ancient Tertiary forests. To accomplish this, we employed a "Tertiary analogue" model using the laurel-dominated forests of the Canary islands, forests similar to those that once covered mainland Europe while it was inhabited by hominoids during the Miocene. We used ground-based LiDAR (light detection and ranging) to make dense measurements of the location of canopy elements and assembled these into high resolution views of structure in three dimensions. Data were collected at rainforest sites containing extant primates in Africa, South America, and Southeast Asia, as well as in the analogue Tertiary laurel forests of Garajonay National Park, Canary Islands. Results indicate clear differences in canopy structure between modern and analogue Tertiary forests. Rainforests are generally taller and exhibit stratified canopies with a dense understory, while laurel-dominated forests exhibit open and undulating, yet tightly-gathered outer canopies, with few understory elements. In light of the structural differences between these forest types, we speculate that the locomotor adaptations of European hominoids could be associated with laurel forests rather than with rainforests of modern aspect.

This work was supported by a NSF Graduate Research Fellowship.

American Journal of Physical Anthropology

Are gibbons built for mobility?

EVIE E. VEREECKE, 1, 2 ANTHONY J. CHANNON, 1 and FANA MICHLSENS, 3 Anthropology, South Faculty of Medicine, Katholieke Universiteit Leuven Campus, 2Laboratory for Functional Morphology, University of Antwerp, 3Structure and Motion Lab, Royal Veterinary College.

Gibbons are highly versatile arboreal apes with a diverse locomotor repertoire including leaping, climbing, brachiation and bipedalism. This contrasts with modern humans, who are highly specialised for bipedalism. We hypothesise that the anatomy of gibbons maximizes mobility and speed, whereas human anatomy favours stability and force production. The anatomy of gibbons was investigated using various methods, including medical imaging, dissection of fresh cadavers and muscle moment arm (MA) measurements, and was coupled to kinematic data of different locomotor modes collected in a free-ranging, captive environment.

The results indicate that the shoulder, hip and ankle joints have a high intrinsic mobility, which can be linked to the high angular excursions in the sagittal plane of these joints during bipedalism, leaping and brachiation. The shoulder muscles and elbow flexors are characterised by relatively long muscle fibres, providing a wide range of motion, yet are also powerful due to their large PCSA and MAs. The slender hip and knee flexors also have long muscle fibres and large MAs, and seem geared towards stabilisation. Most limb muscles are, however, short-fascicled (with long tendons), but a wide range of motion is facilitated by their relatively large MA. Only the strong wrist flexors have a restricted range of motion, which might indicate an important function in controlling wrist extension.

We conclude that the anatomy of gibbons is indeed geared towards providing maximal mobility, which is of major importance in an arboreal habitat, but this does not come at the expense of stability and force production.

A hominin first metatarsal base from Drimolen, South Africa.

DANIELLE SARAH VERNON, 1 MATTHEW W. TOCHERI, 2 and COLIN G. MENTER, 1 Department of Anthropology and Development Studies, University of Johannesburg, 2Human Origins Program, Department of Anthropology, National Museum of Natural History, Smithsonian Institution.

Numerous studies have focused on the description of the first metatarsal due to its importance in assessing locomotion in early hominins. Here we describe a hominin left first metatarsal base, DNH 115, from Drimolen, South Africa dated from 2.0-1.5 mya. We quantified the morphology of the base.
using three-dimensional surface curvatures and compared these with a sample of modern humans, chimpanzees, gorillas, baboons and fossil hominins. The assessment of curvature of this articular surface successfully discriminates between extant taxa and suggests differences in joint mobility. Our statistical analyses indicate that this surface is most curved in chimpanzees and western gorillas, moderately curved in eastern gorillas, and relatively flat in modern humans and baboons. Highly curved surfaces suggest a more mobile hallux, whereas flatter surfaces suggest reduced joint mobility.

DNH 115 groups most closely with SKX 5017, a specimen that has been attributed to Pan arvulpus robustus, and both of these cluster most closely with eastern gorillas. AL-333-54 groups with chimpanzees, whereas OH 8, STW 573 and STW 559 group together between eastern chimpanzees, SK 1813 and STW 595 group together with modern humans. In total, these results indicate that the African fossil hominins have a more curved first metatarsals, the Drimolen specimen is the most curved, closely resembling eastern gorillas, suggesting that climbing activities may have played an important role in the behavioural repertoire of Pan arvulpus.

This research was funded in part by a PAST grant to DSV, a Wenner-Gren Foundation post-PhD grant (No. 7822) to MWT and by the National Research Foundation to CGM.

Analysis of mtDNA haplogroup A2 frequency, distribution and diversity among populations from North and Central America and the Caribbean.

MIGUEL G. VILAR1,2, J. KOJI LUM2, CARLALYNNE MELENDEZ3, AMANDA OWINGS3, JILL B. GAIESKI3 and THOMAS SCHURR1. 1Department of Anthropology, University of Pennsylvania, 2Department of Anthropology, Binghamton University, 3Department of Geography, University of Puerto Rico.

Native American and Amerindian populations belong to one of five major mitochondrial DNA (mtDNA) haplogroups (A2, B2, C1, D4, X2a) associated with the settlement of the Americas by groups from Asia through the Bering Strait more than 20,000 years before present. Haplogroup A2 occurs in its highest frequency in populations across 8,000 miles, from the North West Territories of Canada to Mexico and Mesoamerica, around the Caribbean, to the northern and central regions of South America. The geographic range, distribution and lineage diversity of haplogroup A2 could thus be indicative of settlement patterns and subsequent migrations. In order to infer patterns of settlement and gene flow we extracted, amplified and sequenced the mtDNA control region of (a) 420 individuals from the Northwest Territories, (b) 150 individuals from southern Mexico, and (c) 250 individuals from eastern Puerto Rico. Haplogroups were determined for each participant and variation frequencies were ascertained. Haplogroup A2 lineages were selected from each population and compared to those from twelve populations across the Americas. Eight distinct haplogroup A2 samples were then selected from each of the three geographically distinct populations, and their complete mtDNA genomes sequenced to determine mtDNA sub-haplogroups and infer finer scale patterns of settlement of post-settlement gene flow. All three regions had a high frequency of the ancestral A2 lineage, but also exhibited geographically-specific lineages that were not shared among populations. This pattern is indicative of a rapid expansion introducing the ancestral A2 lineage across the continents, followed by the acquisition of population-specific mutations in subsequent isolation. This project is supported by funds from the National Geographic Society and the Research Foundation (JKL) of Binghamton University.

Hounsfield Unit ranges in the CT-scans of bog bodies, cold and warm mummies.

CHIARA VILLA and NIELS LYNNERUP. Laboratory of Biological Anthropology, Institute of Forensic Medicine, University of Copenhagen, Denmark.

Mummification processes, either artificial or natural, preserve the tissues from post-mortem decay, but change them from their original state. In this study we provide the first comprehensive set of Hounsfield Unit (HU) ranges specific for tissues mummified under different environmental conditions (bog bodies, Egyptian and frozen mummies). We also analyse the impact of different museal preservation techniques on the HU ranges, as e.g. in the Tell Man and Grauballe Man bog bodies from Denmark. The mummies were compared with forensic cases, cremated and inhumated ancient human skeletal remains, and fossil animal bones. Knowledge of the typical HU range for the different tissues in mummies may prevent misinterpretation of increased or reduced radiodensity as evidence well as of paleopathological expressions of pathology were chosen to do an extended analysis. Using differential diagnosis and clinical literature, qualitative aspects of life history were analyzed. As farmers and mariners, members of the community were dependent on good health to maintain a life-line of sustenance for themselves and each other. Their pathologies, however, suggest that they were in need of support from others during times of illness or injury. These pathologies

American Journal of Physical Anthropology
include osteoarthritis with eburnation, osteomyelitis, osteochondritis, discectanes, partial paralysis, and healed fractures. For each case, severe expressions on bone are interpreted based on current medical notions of disability and pain. Ideas about care and functionality are provided for ailing and injured people using a biocultural model of coping and extended care. For example, severe eburnation on the posterior articular surface combined with osteoarthritis on the anterior portion of the patella suggests limited range of movement and inability to flex the knee. Severe osteomyelitis in the radius and ulna bones would have prohibited use of the arm and would have been painful at the slightest movement. Partial paralysis due to some form of neurological myopathy would have allowed mitations in the form of feeding and daily attention to personal hygiene. This research suggests ways of integrating the bioarchaeology of individuals within a community context.

Linking feeding ecology and jaw form in two species of wild orangutans.

ERIN R. VOGEL, MADELINE E. HARDUS, ASTRI ZULEA, SERGE A. WICH, ANDREA B. TAYLOR, CAREL P. VAN SCHAIK

Mastication takes a significant role in feeding ecology of Pongo abelii (Bornean orangutan) and P. pygmaeus wurmbii (Sumatran orangutan). The mechanical properties of the foods have long been predicted to influence many aspects of modern human and nonhuman primate biology, especially dental and mandibular morphology. The existence of a functional and adaptive relationship between jaw morphology, feeding behavior and diet in primates is well accepted among physical anthropologists. Here we present new data on the mechanical properties of the foods that support this relationship. Bornean orangutans (Pongo pygmaeus wurmbii) have relatively more robust mandibles compared to Sumatran orangutans (P. abelii). We describe this finding as the intersection of functional and adaptive relationship between the observed differences in masticatory morphology (i.e., mandibular robusticity) and the mechanical properties of foods consumed by wild Bornean and Sumatran orangutans. Specifically we predict that the diet of the relatively more robust-jawed P. p. wurmbii would be more resistant to fracture and deformation than the diet of P. abelii. In support of our prediction, P. p. wurmbii masticated several plants tissues that were significantly more resistant to fracture and deformation than the diet masticated by P. abelii (Welch ANOVA, p < 0.01), including unripe fruits, inner-bark, and leaves. Bornean orangutans also included a greater percentage of these items in their diets compared to Sumatran orangutans, particularly when ripe fruit availability was low. By integrating data on dietary ecology, food mechanics, and morphology, we can begin to deepen our understanding of the complex relationship between form and function in living and extinct primates.

This work was funded by grants from the National Science Foundation, Grant Number 0645122 and the L.S.B Leakey Foundation.

Ecology and economy in the settlements of Viking Haithabu and medieval Schleswig: an isotopic perspective.

MARINA VOHBERGER, JORIS PETERS, CLAUS VON CARAP, BORNHEIM, OLF GELTICHER, and GISELA GRUPE

The site of Viking Haithabu (9. to 10. century AD) and medieval Schleswig (11. to 12. century AD) form a settlement continuum in an extraordinary ecological system, the estuary of the river Schlei. It is located in the immediate proximity of the main trade routes in southern Jutland during a pivotal time that witnessed the appearance of medieval towns. Performing an economic rise to a higher standard, the estuary became a prominent trading place positioned at a focal point of the main trade routes at a crossroad between northern Europe and the Middle East, housing a prominent town surrounded by a vast ecological setting dominated by salt marshes and a vast coastal zone. Performing an economic rise to a higher standard, the estuary became a prominent trading place. The goal of this presentation is to demonstrate that new two-dimensional (2D) linear measurements are more powerful than previous "Standards" measurements (Buikstra and Ubelaker 1994) for estimating sex or sex-specific ancestry from the innominate or sacrum. The precise measurements of biological parameters is critical in physical anthropology and with the advent of new technology and statistical methods it may be time to re-evaluate what we consider necessary standard measurements in our data collection protocol. A sample of 136 innominate and 163 sacra of European and African American males and females from the Hamann-Todd Collection were utilized to capture two-dimensional landmark data which was then used to extract 2D inter-landmark distances. These new linear measurements were subjected to a forward stepwise discriminant function analysis (FSDFA) to determine the measurements needed for the highest level of accuracy possible for the estimation of sex (2 groups) and ancestry/sex (4 groups). The FSDFA selected seven innominate measurements producing a 99% cross-validated accuracy (CVA) for sex, and five measurements with an 83% CVA for ancestry/sex estimation. Using only the "Standards" measurements we were able to produce a 93% CVA for sex estimation and a 61.3% CVA for sex/ancestry estimation.

The FSDFA selected six new sacral measurements producing an 89% CVA for sex estimation, and eight measurements with a 65.6% CVA for ancestry/sex estimation. The data collected were unable to reproduce all three sacral "Standards" measurements however, utilizing only anterior length and anterior superior breadth, sex was estimated at 53.4% CVA and 38% CVA for ancestry/sex.
Cranio metric data supports a mosaic model of demic and cultural Neolithic diffusion to outlying regions of Europe.

NOREEN VON CRAMON- TAUBADEL1 and RON PINHASI2. 1School of Anthropology and Conservation, University of Kent, 2Department of Archeology, University College Cork.

The extent to which the transition to agriculture in Europe was the result of biological diffusion from the Near East or the adoption of farming practices by indigenous hunter-gatherers is subject to continuing debate. Thus far, archaeological study and the analysis of modern and ancient European DNA have yielded inconclusive results regarding these hypotheses. Here we test these ideas using an extensive cranio metric dataset representing 30 hunter-gatherer and farming populations. Pairwise population cranio metric distance was compared against temporally-controlled geographic models representing evolutionary hypotheses of biological and cultural transmission. The results show that, following the biological diffusion of Near Eastern farmers into central Europe, two biological lineages were established with limited gene flow between them. Farming communities spread across Europe, while hunter-gather communities located in outlying geographic regions adopted some cultural elements from the farmers. Therefore, the transition to farming in Europe did not involve the complete replacement of indigenous hunter-gather populations despite significant gene flow from the Near East. This study suggests that a mosaic process of biological and cultural diffusion was operating in outlying regions of Europe, thereby reconciling previously conflicting results obtained from genetic and archaeological studies.

Heart treatment in ancient Egyptian mummification.

ANDREW D. WADE and ANDREW J. NELSON. Department of Anthropology, University of Western Ontario.

Descriptions in the popular and academic literature of the evisceration process, organ treatment, and body cavity treatment, as part of the Egyptian mummification tradition, are derived largely from accounts by Herodotus, Diodorus Siculus, Porphry, and Plutarch. Our reliance on these normative descriptions obscures the wide range of techniques practiced, impeding the study of geographic, chronological, and socio-political variations in ancient Egyptian mortuary practice and ideology. This line of inquiry, using detailed paleoanatomical analysis to examine mortuary organization and ideology, is part of ongoing research at the University of Western Ontario, in conjunction with the IMPACT radiological mummy database project. Using published descriptions and primary computed tomography data, this poster focuses on heart treatment in Egyptian mummi fication, comparing the classical descriptions with patterns apparent in empirical data. These empirical data are drawn from two samples: (1) a literature-based sample of 150 adequately described mummies, and (2) a sample of 7 mummies examined directly using computed tomography.

Retention, removal, and replacement of the heart varies between time periods, sexes, and statuses, and these treatments are discussed in relation to their place in the literature and their radiological appearance. In spite of a high degree of heterogeneity in the Egyptian mummification tradition, researchers continue to focus on modern and classi styper stereotypical views of what was operating in theover the course of more than three millennia. In particular, the dogmatic assumption that the heart was nearly universally retained in situ, or replaced if accidentally removed, is greatly exaggerated.

Ecological influences on female chimpanzee (Pan troglodytes schweinfurthii) gregariousness: a test of the scramble competition hypothesis.

MONICA WAKEFIELD. Department of Anthropology, University of California San Diego.

Feeding competition is potentially the most important cost of grouping for social mammals, especially for females, whose reproductive success is limited mostly by foraging efficiency. Among chimpanzees, females are typically less gregarious than males, presumably due to prohibitively high feeding competition in particular scramble competition for lactating mothers. However, female sociability varies considerably within and between populations. For example, females from the Ngogo community in Kibale NP, Uganda are highly gregarious relative to other East African sites and exhibit levels of sociability similar to West African females. This raises questions about the balance between the costs and benefits of grouping and how this is influenced ecological and demographic factors. I seek to fill an important gap in our understanding of how ecology influences social behavior by examining ecological costs associated with grouping for anestrous females at Ngogo. The Ngogo site has a rich raw material procurement pattern, particularly scramble competition for low temporal or seasonal variation and provides a good opportunity to compare behavior under relatively favorable ecological conditions. Group randomization and multiple regression tests from 1362 hours of observation on 26 females demonstrated that variation in gregariousness was not influenced by spatial or temporal variation in food abundance. Furthermore, I did not find evidence to support the hypothesis that gregariousness is more restricted in lactating females due to greater energetic sensitivity to the costs of scramble feeding competition. These findings demonstrate that reduced costs of feeding competition due to favorable ecological conditions allows for greater female gregariousness and enables females to form strong social bonds.

This study was funded by the Leakey Foundation and Yale University.

Territory size in Canis lupus: implications for Neandertal mobility.

CHRISTOPHER S. WALKER1 and STEVEN E. CHURCHILL2,3. 1Department of Evolutionary Anthropology, Duke University, 2Institute for Human Evolution, University of the Witwatersrand.

Neandertal settlement patterns have historically been reconstructed with reference to lithic raw material transport distances and faunal indicators of site seasonality. Settlement patterns, however, reflect residential mobility, which is only one component of overall mobility patterns. Given that Neandertals relied heavily on animal protein in the plant food-poor environments of Pleistocene Europe, their home range sizes, and levels of logistical mobility, were likely largely determined by prey abundance and distribution. Here we use data on home range size in the grey wolf (Canis lupus) to develop a model that relates prey biomass and climatic variables to home range size in northern Europe. Data were collected from an existing dataset that sampled individuals from over 350 Neandertal sites across Europe, and included over 6000 home ranges. The resulting territory size model (500-6000 km²) is consistent with the range of Neandertal sites across Europe, and is supported by a suite of faunal and archaeological indicators of site seasonality. The model also provides a framework for understanding the adaptive significance of Neandertal mobility patterns. Results indicate that Neandertals were highly mobile, and likely required and maintained large territories even at fairly small social group sizes (less than 15-20 individuals) Neandertals likely required and maintained large territories (500-6000 km²), which is consistent with results of's studies of lithic raw material procurement patterns. Thus the high mobility costs of predation may have been one constraint acting on maximum Neandertal social group size. Further, as in wolves, high residential mobility was likely required to fully exploit the large territories.

Intraindividual histomorphological and geometric variation in the human femur: a pilot study.

ROBERT A. WALKER. Department of Basic Sciences (Anatomy), New York Chiropractic College.

The femur is the most highly studied bone histologically, particularly at midshaft. Intraindividual histomorphological and geometric variation within the femur has been less studied.
To elucidate intradividual femoral variation, the right femur of a single human young adult female was serially sectioned at 10 cm. intervals from the midshaft distally. The femur is derived from the Libben site, a Late Woodland ossuary from northeast Ohio dated to ca. 900 C.E. A second goal of this study was to determine the state of histological preservation in bone from this site. While the organic matrix is highly degraded, when impregnated with epoxy and undecalcified sections prepared, haversian structures are seen to be well preserved. Eight 4 sq. mm. microscopic fields equally spaced around the perimeter of the cortex subjacent to the periosteal surface were examined in each section. All secondary osteons were counted within each field, and osteons per sq. mm. were analyzed. Total cortical area in urban and rural populations is more proximal and anterior-posteriorly. In all ten sections, the posterior half of the cortex has significantly higher osteon density than the anterior. There is a nonsignificant trend for higher osteon densities in the more distal sections than the more proximal. Osteon density is positively correlated with polar moment of inertia and area moments of inertia. These measures reflect the distribution of bone to resist bending and torsional deformation. Thus, macromorphology must be considered when examining the micromorphology of bone. This research is supported by a grant from the New York Chiropractic College Research Department.

Physical indicators of health in children of Central Mexico.

SUZANNE WALKER-PACHECO. Department of Sociology, Anthropology, and Criminology, Missouri State University.

Latinos are particularly susceptible to type 2 diabetes, with young children increasingly affected. To provide comparison for a recently completed diabetes and obesity prevention program for Latino children in Springfield, Missouri, I collected data on physical indicators of health in urban and rural locations in Mexico from which the local study group had originated. Greater rates of overweight were expected in the urban population, due to presumed lower frequency of exercise and consumption of a diet higher in fat. The study group consisted of 210 male and female children ranging from 2 to 12 years, approximately half from urban Guadalajara and half from rural Tierrezuaua. A survey on family health, nutrition, and diet was followed by collection of physical data; presented here are results for body mass index (BMI) and waist circumference.

Twenty-eight percent of children had a BMI above the 85th percentile (considered overweight by the CDC). Thirty-two percent of urban children and 25% of rural children exhibited a BMI above the 85th percentile. While no norms exist for healthy ranges of waist circumference percentiles, based on Hirschler et al’s (2007) study, measurements at or above the 75th percentile are considered a cutoff point. As such, 54% of the overall sample was above the 75th percentile. For the urban children, 58% were over the 75th percentile, and 51% of the rural children exceeded this cutoff. This study explores the interplay among various biological and environmental factors and contributes to the body of knowledge about causes and distribution of diabetes. This study was funded by Missouri State University Provost's Future Incentive Grant.

An in-cemetery craniometric assessment of biological variation and post-marital residence in the Missouri Late Mississippian.

KYLE WALLER1, GREG BLOMQVIST1 and THOMAS HOLLAND2. 1University of Missouri-Columbia, Department of Anthropology, 2Department of Defense, Joint POW/MIA Accounting Command, Central Identification Laboratory.

The Late Mississippian was a period of significant migration and social reorganization in American prehistory that left biological traces in contemporaneous skeletal remains. We used biodistance and determinant ratio analyses to assess social organization at the Campbell Site, a Late Mississippian Site located in southeast Missouri. We tested three hypotheses using six craniofacial variables from 61 crania. The first hypothesis tests the assumption that individuals excavated from the northern and western portion of the site represent distinct burial populations, while the second hypothesis assesses the immigrant status of 13 artificially modified female crania from the western portion of the site. The third hypothesis assesses which sex is more variable from the pooled Campbell Site sample by using determinant ratio analysis. Biodistance analysis was conducted using R-matrix methods. We found no cranometric evidence that the human remains were from distinct burial populations, and both portions of the site experienced approximately equal external gene flow. The artificially cranially modified females are closely related to the females from both the north and west portions of the site, and therefore should be considered as part of the local population, rather than immigrants to the site. Lastly, determinant ratio analysis indicated that females were more variable, which is consistent with greater female mobility and thus male-based residence patterns such as patri-locality or virilocality. The finding of a homogenous skeletal population with a male-based residence pattern has significant implications for understanding post-Cahokia Mississippian social organization.

Do bonobos live in communities?

MICHEL T. WALLER, FRANCES J. WHITE, ROSS L. TINDALE, INDIA R. TINDALE and KLAREE J. BOOSE. Department of Anthropology, University of Oregon.

The term “community” when applied to chimpanzees (Pan troglodytes) is defined as a multi-male/multi-female, fission-fusion social organization where members form temporary parties that fluctuate in size and composition. The male chimpanzees are philopatric, closely bonded, actively patrol the borders of their home range, and are hostile to unknown males while female chimpanzees disperse from their natal group into a new community near menarche. Once immigrated, the females are required to compete amongst themselves for food by establishing small core areas for themselves and their offspring, joining larger parties at times of food abundance or peak fertility. Bonobos (Pan paniscus) are also said to live in “communities” based on several shared characteristics with chimpanzees (multi-male/multi-female, fission-fusion, male philopatry). When analyzing bonobo ranging behavior more closely, however, notable differences between the two species emerge. For this study, we used geographic information systems (GIS) software to track the ranging behavior of 15 female and 6 male bonobos at theNdé site within the Lomako Forest Reserve, DRC. We found that, unlike with chimpanzees, females have similar sized home ranges to males (Avg. MCP; females = 92.22 ha, males = 84.63 ha, Avg. 95% fixed kernel; females = 87.49 ha, males = 115.33 ha). Additionally, females were more closely associated with each other (mean Jacob’s Index = .251) than were the males (mean Jacob’s Index = .6527). These results reflect the female-centric nature of bonobo social groups, suggesting that bonobos live in “cliques” rather than communities.

Research was supported by NSF grants BNS-8311252, SBR-9600547, and BCS-0610233 to FJW and the Leakey Foundation.

The meaning of within population dimorphism for group mobility.

CARA WALL-SCHEFFLER1 and KAREN STEUDEL-NUMBERS2. 1Department of Biology, Seattle Pacific University, 2Department of Zoology, University of Wisconsin-Madison.

American Journal of Physical Anthropology
In order to understand the manner in which selection shaped the locomotor morphology of extinct and extant hominins, the manner in which body size influences the cost of locomotion must be determined. This is particularly true of hominin populations which maintain substantial size dimorphism between the sexes, in addition to hominin species which maintain size dimorphism between different populations. Body size alone may influence the cost of locomotion by increasing overall cost or by changing the speeds at which locomotion is either economical or costly. Here we assessed these hypotheses by measuring the changes in the Cost of Transport (CoT) walking curves of people (N=19, 10 males and 9 females), whom we measured free walking at four different speeds. In our sample, males were significantly shorter than their Pre-Latte counterparts (p<0.01 for mass, stature, lower limb length, bi-trochanteric breadth and bi-acromial breadth). Males showed a significantly increased metabolic cost of walking at the optimum speed of their CoT curve (27%; p=0.06), but also maintained a significantly faster optimal walking speed (10% faster; p=0.04) (even with the size variables in the model). Most importantly however, males showed increased curvature of their optimal walking curve (38%), suggesting that males (or large individuals in general) receive an increased energetic penalty for walking away from their optimum speed. This means that in populations which show large size dimorphism, we might expect different mobility strategies for large and small individuals.

This study was funded by the Murdock Charitable Trust, reference number 2006194.JVA:11/16/2006.

A preliminary analysis of post-cranial metrics from the Naton Beach Site, Island of Guam in the Mariana Islands.

CHERIE K. WALTH, SWCA Environmental Consultants.

The Naton Beach collection offers a unique opportunity to better understand the earliest occupants of Guam. The Naton Beach Site includes approximately 170 burials that are associated with the Early and intermediate Pre-Latte Phases. Only a small number of Pre-Latte individuals have previously been documented. This study focuses on a preliminary examination of the post-cranial metric measurements from the Naton Beach burials and compares the early group to the later Latte population. This data may provide population parameters and elucidate biological relationships between the earlier and later populations of Guam. A sample of 40 Pre-Latte and 40 Latte burials was selected from Naton Beach Site. Standard non-metric techniques using the cranial and pelvic characteristics were used to determine sex and the means and standard deviations were then calculated for a sample of post-cranial measurements. The post-cranial measurements selected were those that were well represented in both samples. The early burials were poorly preserved thus limiting the measurements available for use. A Student's T-test was used to compare the means from the two groups and found no statistically significant differences between the males and females of the two groups. This may suggest a similarity in population parameters that may also indicate a biological affinity. This hypothesis will be tested using cranial metric and non-metric data upon completion of data collection. The burials from the Naton Beach Site will continue to provide important information on biological relationships between the two populations and help to better understand the peopling of Guam.

Immunocompetence and the hygiene hypothesis.

KATHERINE WANDER. Department of Anthropology, University of Washington.

Early life infections may shape immune system development. Evidence for this hypothesis comes primarily from allergy epidemiology: children who experience more frequent early life intracellular infections are at lower risk of allergic disease throughout life. Early life intracellular infections may induce a bias toward the T-helper type 1 (Th1) arm of the immune system (and thus away from the Th2 arm, which mediates al-lergic responses). This responsiveness may have evolved to shape immune responses to the local infectious disease ecology: a Th1 bias may enhance future Th1-mediated responses to intracellular infections, improving immune competence. However, an association between early life infectious disease and Th1-mediated responses to pathogens has not been tested. To accomplish this, the Candin skin test for delayed-type hypersensitivity (DTH) was used to evaluate immunocompetence among 288 2-7 year old children in Kilimanjaro, Tanzania. A positive DTH response to Candin indicates competence of Th1-mediated (or cell-mediated) immunity. Controlling for age and sex, three measures of early life immune stimulation were associated with Candin positivity: large family size (>3 other children in the household), OR = 2.90, p = 0.04; BCG vaccination (assessed by the presence of a vaccina- tion scar), OR = 3.06, p = 0.03; and hospitalization in the first year of life (most of which were reported with in- tracellular infectious diseases), OR = 2.83, p = 0.08. Similarly controlling for age and sex, large family size (β = 1.58, p = 0.03) and BCG vaccination (β = 2.52, p = 0.01) were associated with larger Candin induration size.

This research was funded by the American Philosophical Society, the University of Washington, The Wenner-Gren Foundation (Gr. 8065), and The National Science Foundation (BCS-0667842).

Impact of sutures assessed in a finite element model of a macaque cranium using dynamic simulation.

QIAN WANG1, SARAH WOOD2, IAN GROSSE2, DAVID STRAIT3, URIEL ZAPATA1,4, CRAIG BYRON5 and BARTH WRIGHT6. 1Division of Basic Medical Sciences, Mercer University School of Medicine, 2Department of Mechanical & Industrial Engineering, University of Massachusetts, Amherst, 3Department of Anthropology, University at Albany, 4Department of Mechanical Engineering, EAFIT University, 5Department of Anatomy, Kansas City University of Medicine and Biosciences, 6Department of Anatomy, University of Washington.

The global biomechanical impact of cranial sutures on the face and cranium is not well understood. A recent sensitivity study using linear static finite element analysis (FEA) found that sutures had a minimal effect on global strain patterns in a macaque cranium. However, as viscoelastic structures, the manner in which sutures behave must be modeled under dynamic loading conditions. We test the hypothesis that sutures act as energy absorbers protecting skulls subjected to dynamic loads. This hypothesis predicts that [1] sutures have a significant impact on global patterns of strain and skull stiffness when analyzed using dynamic simulations, and [2] this global impact is influenced by suture material properties. A macaque FE model was created and analyzed using five different sets of suture material properties in both static and dynamic simulations of premolar biting. The static and dynamic analyses produced similar results in terms of strain patterns and reaction forces, indicating that sutures play a limited role in modulating global skull mechanics, regardless of loading design. Sutures did not absorb significant amounts of energy during dynamic simulations, regardless of loading speed. These findings are inconsistent with the functional hypothesis tested here. As an alternative, we hypothesize that sutures are mechanically significant only insofar as they are weak points on the cranium that must be shielded from unduly high stresses so as not to disrupt vitally important growth processes. This project was funded by grants from the National Science Foundation Physical Anthropology HOMINID program (NSF BCS 0725183, 0725126, 0725136, 0725078).

Regional isolation and extinction? The story of mid-Pleistocene hominins in Asia.

STEVEN L. WANG1,2. 1Department of Anthropology, The Graduate Center of the City University of New York, 2New York Consortium in Evolutionary Primatology.

American Journal of Physical Anthropology
Over the past decade, numerous reviews of the Middle Pleistocene record have taken place in light of new fossil discoveries. However, with primary focus on the Afro-Eurasian records, much of the rich fossil evidence in the Americas has been sidelined and overlooked. It is thus unsurprising that in the minds of many, Asia remains terra incognita—and its hominin record exotic. Moreover, the accuracy of the Asian chronology remains problematic, adding another layer of impediment to our understanding of regional evolution and local adaptation.

In this context, I bring a synergistic review of the chronology of mid-Pleistocene hominins (Homo erectus and related taxa) in Asia, using a number of not-often-discussed specimens from East and South Asia, including recent new dates from key sites such as Zhoukoudian Locality 1 and Hathnora. Using 3-D geometric morphometric data, I examine cranial shape changes between *H. erectus* and mPH (post-*erectus*, non-*Neanderthal*) and *H. heidelbergensis* as well as to both later Pleistocene hominins. A large number of not-often-discussed specimens are considered (e.g., Hexian, Nanjing 1, Maba, and Ngawi), many of them original fossils. The cranial anatomy from the Asian mid-Pleistocene suggests the existence of at least two distinctive groups in the region. Additionally, a north-south (geographical) least two distinctive groups in the region. Pleistocene suggests the existence of at least two distinctive groups in the region. Although considered as both to later Pleistocene hominins.

Nanjing 1, Maba, and Ngawi), many of them original fossils. A large number of not-often-discussed specimens are considered (e.g., Hexian, Nanjing 1, Maba, and Ngawi), many of them original fossils. The cranial anatomy from the Asian mid-Pleistocene suggests the existence of at least two distinctive groups in the region. Additionally, a north-south (geographical) least two distinctive groups in the region. Pleistocene suggests the existence of at least two distinctive groups in the region.

In this context, I bring a synergistic review of the chronology of mid-Pleistocene hominins (Homo erectus and related taxa) in Asia, using a number of not-often-discussed specimens from East and South Asia, including recent new dates from key sites such as Zhoukoudian Locality 1 and Hathnora. Using 3-D geometric morphometric data, I examine cranial shape changes between *H. erectus* and mPH (post-*erectus*, non-*Neanderthal*) and *H. heidelbergensis* as well as to both later Pleistocene hominins. A large number of not-often-discussed specimens are considered (e.g., Hexian, Nanjing 1, Maba, and Ngawi), many of them original fossils. The cranial anatomy from the Asian mid-Pleistocene suggests the existence of at least two distinctive groups in the region.

Additionally, a north-south (geographical) least two distinctive groups in the region. Pleistocene suggests the existence of at least two distinctive groups in the region. Although considered as both to later Pleistocene hominins.

OVER THE PAST DECADE, NUMEROUS REVIEWS OF THE MIDDLE PLEISTOCENE RECORD HAVE TAKEN PLACE IN LIGHT OF NEW FOSSIL DISCOVERIES. HOWEVER, WITH PRIMARY FOCUS ON THE AFRO-EURASIAN RECORDS, MUCH OF THE RICH FOSSIL EVIDENCE IN THE AMERICAS HAS BEEN SIDELINED AND OVERLOOKED. IT IS THUS UNSURPRISING THAT IN THE MINDS OF MANY, ASIA REMAINS TERRA INCOGNITA—AND ITS HOMININ RECORD EXOTIC. MOREOVER, THE ACCURACY OF THE ASIAN CHRONOLOGY REMAINS PROBLEMATIC, ADDING ANOTHER LAYER OF IMPEDIMENT TO OUR UNDERSTANDING OF REGIONAL EVOLUTION AND LOCAL ADAPTATION.

IN THIS CONTEXT, I BRING A SYNERGISTIC REVIEW OF THE CHRONOLOGY OF MID-PLEISTOCENE HOMININS (Homo erectus AND RELATED TAXA) IN ASIA, USING A NUMBER OF NOT-OFTEN-DISCussed SPECIMENS FROM EAST AND SOUTH ASIA, INCLUDING RECENT NEW DATES FROM KEY SITES SUCH AS ZHOUKoudIAN LOCALITY 1 AND HATHNORA. USING 3-D GEOMETRIC MORPHOMETRIC DATA, I EXAMINE CRANIAL SHAPE CHANGES BETWEEN *H. erectus* AND mPH (POST-*erectus*, NON-NEANDERTHAL*) AND *H. heidelbergensis* AS WELL AS TO BOTH LATER PLEISTOCENE HOMININS. A LARGE NUMBER OF NOT-OFTEN-DISCussed SPECIMENS ARE CONSIDERED (E.G., HEXIAN, NANJING 1, MBA, AND NGAWI), MANY OF THEM ORIGINAL FOSSILS. THE CRANIAL ANATOMY FROM THE ASIAN MID-PLEISTOCENE SUGGESTS THE EXISTENCE OF AT LEAST TWO DISTINCTIVE GROUPS IN THE REGION. ADDITIONALLY, A NORTH-SOUTH (GEOGRAPHICAL) LEAST TWO DISTINCTIVE GROUPS IN THE REGION. PLEISTOCENE SUGGESTS THE EXISTENCE OF AT LEAST TWO DISTINCTIVE GROUPS IN THE REGION.

IN THIS CONTEXT, I BRING A SYNERGISTIC REVIEW OF THE CHRONOLOGY OF MID-PLEISTOCENE HOMININS (Homo erectus AND RELATED TAXA) IN ASIA, USING A NUMBER OF NOT-OFTEN-DISCussed SPECIMENS FROM EAST AND SOUTH ASIA, INCLUDING RECENT NEW DATES FROM KEY SITES SUCH AS ZHOUKoudIAN LOCALITY 1 AND HATHNORA. USING 3-D GEOMETRIC MORPHOMETRIC DATA, I EXAMINE CRANIAL SHAPE CHANGES BETWEEN *H. erectus* AND mPH (POST-*erectus*, NON-NEANDERTHAL*) AND *H. heidelbergensis* AS WELL AS TO BOTH LATER PLEISTOCENE HOMININS. A LARGE NUMBER OF NOT-OFTEN-DISCussed SPECIMENS ARE CONSIDERED (E.G., HEXIAN, NANJING 1, MBA, AND NGAWI), MANY OF THEM ORIGINAL FOSSILS. THE CRANIAL ANATOMY FROM THE ASIAN MID-PLEISTOCENE SUGGESTS THE EXISTENCE OF AT LEAST TWO DISTINCTIVE GROUPS IN THE REGION. ADDITIONALLY, A NORTH-SOUTH (GEOGRAPHICAL) LEAST TWO DISTINCTIVE GROUPS IN THE REGION. PLEISTOCENE SUGGESTS THE EXISTENCE OF AT LEAST TWO DISTINCTIVE GROUPS IN THE REGION.

Ancient bitumen use and polycyclic aromatic hydrocarbons: A potential factor in the health decline of prehistoric California Indians.

SEBASTIAN K. T. S. WARMLANDER1,2, SABRINA B. SHOLTS3, JON M. ERNANSON4, THOMAS SEBASTIAN1,2, AND ROGER WESTERHOLM1, 4Department of Anthropology, University of California, Santa Barbara, 3Division of Biophysics, Arrhenius Laboratories, Stockholm University, 4Museum of Natural and Cultural History, University of Oregon, 4Department of Analytical Chemistry, Arrhenius Laboratories, Stockholm University.

Polycyclic Aromatic Hydrocarbons (PAHs) are the main component of bitumen, a material used by human societies since ancient times. The negative health effects of PAHs are well-known for modern human populations, but have not yet been studied for prehistoric groups. This paper investigates the potential health impacts of PAHs in the prehistoric Chumash Indians of California’s Santa Barbara Channel region, one of the world’s most prolific regions of natural hydrocarbon seepage. Our analysis of raw bitumen from this region identified numerous toxic compounds, which corroborates previous research indicating that PAHs have compromised the health of marine life in the area. Archaeological evidence show that the Chumash used bitumen as adhesive, medicine, and waterproofing-agent, suggesting they were subjected to multiple PAH uptake pathways, including direct contact, oral uptake, and fume inhalation. As bitumen use and consumption of PAH-contaminated fish increased over time, so would PAH exposure. Our measurements of excavated skeletons from prehistoric Channel Island cemeteries show decreasing cranial size and stature over 7,000 years. Given previous research showing that PAH uptake is related to decreased head circumference and birth length in infants, it seems plausible that increasing PAH uptake contributed to the size decrease in prehistoric Channel Islands populations.
A comparison of activity budgets in two captive white-handed gibbon groups.

SARA WARRENER and ELIZABETH STRASSER. Department of Anthropology, California State University, Sacramento.

We investigate the effect of zoo habitat complexity on activity budgets of white-handed gibbons housed at two northern California zoos. The Oakland Zoo gibbon habitat is twice as large as and more complex than the Sacramento Zoo habitat. Therefore, we expected the Oakland gibbons to travel more and rest less than the Sacramento gibbons. Each exhibit housed one male-female pair of gibbons. Data were collected using instantaneous scan sampling at 30-second intervals for 15 hours at each zoo in the spring of 2010, resulting in ~3400 observations per site. Comparisons of activity budgets were made between the individuals within each zoo as well as between the groups at the two zoos. The females of each zoo pair feed more and travel less than the males. Both male and female Sacramento gibbons feed twice as much as do their Oakland counterparts. The frequency of resting by males at both zoos is similar. The frequency of travel by females at both zoos is the same, but the Sacramento female rests more than does the Oakland female. The Sacramento gibbons feed, rest and autogroom more, but travel and interact socially less than do Oakland gibbons. We conjecture that Sacramento gibbons autogroom more than do Sacramento gibbons due to their fewer social interactions. As expected, Oakland gibbons travel more than do Sacramento gibbons, presumably because they have more space. Activity budgets at the larger more complex Oakland Zoo are more similar to those of wild gibbons. This has implications for zoo management practices.

This study was funded by the Ronald E. McNair Postbaccalaureate Achievement Program.

Relating pelvic shape to hip abductor mechanics and locomotor cost.

ANNA WARRENER. Washington University in St. Louis.

The adoption of habitual bipedalism required major alterations in hominin pelvic shape, particularly the recruitment of the minor gluteal muscles as hip stabilizers during the single leg support phase of locomotion. Based on a static model of hip abductor mechanics, previous analyses have disagreed sharply regarding the effect of variation in pelvic width on hip abductor mechanics and locomotor cost in extinct hominins and living humans. This study examines the effect of pelvic width on hip abductor mechanics during locomotion and measures the direct contribution of the hip abductors to locomotor energetic cost. Gait, oxygen consumption, and anatomical data from full lower body MRIs was obtained from 28 individuals who gave informed consent. The results indicate that skeletal measures (femoral neck length and biacetabular width) are poor predictors of hip abductor mechanics primarily because of fluctuations in the medio-lateral component of ground reaction force over the course of stance phase. However, the hip abductors account for a significant portion of total lower limb force production and active muscle volume during walking and running, and the addition of hip abductor active muscle volume to a model predicting locomotor cost increases explained variance. Lower limb mechanics do not differ between males and females at any joint when adjusted for body weight. These results call into question the effectiveness of using skeletal dimensions to predict hip abductor mechanics in extinct hominins, and the assumption that a tradeoff exists between locomotion and parturition in females. This study was supported by grants from the National Science Foundation BCS-0850841, The Lenkey Foundation and The Wenner-Gren Foundation.

Phytoestrogens in the primate diet: insight from the red colobus monkey and mountain gorilla.

MICHAEL D. WASSERMAN, JESSICA M. ROTHMAN, ALEXANDRA TAYLOR-GUTT, COLIN A. CHAPMAN, KATHARINE MILTON and DAVE L. LEITMAN. 1Department of Environmental Science, Policy, and Management, University of California, Berkeley, 2Department of Anthropology, Hunter College of the City University of New York, 3Department of Anthropology & School of Environment, McGill University, 4Department of Nutritional Science & Toxicology, University of California, Berkeley.

We investigated the prevalence of estrogen mimicking compounds (i.e., phytoestrogens) in the diets of wild primates. To address this, we screened 68 plant items comprising 79.7% of the annual diet of red colobus monkeys and 53 plant items comprising 85.2% of the annual diet of mountain gorillas using transient transfection assays. At least 10.8% of the red colobus diet and 8.8% of the gorilla diet were found to have estrogenic activity, mainly from three staple foods (i.e., > 1% of annual diet) eaten by the red colobus and one staple food eaten by mountain gorillas. All estrogenic plants in this study exhibited estrogen receptor subtype selectivity. These results show that phytoestrogens are regularly consumed by two wild primate species and may have important implications for primate reproductive ecology and human evolutionary biology, including reduced fertility and cancer prevention. This study was supported by grants from the National Science Foundation, International Primatological Society, University of California-Berkeley Center for African Studies, and Chang-Lin Tien Scholars Program.

Decrease in hunting by chimpanzees in response to over-harvesting of red colobus monkeys at Ngogo, Kibale National Park, Uganda.

DAVID P. WATTS, JOHN C. MITANI, SYLVIA J. AMSLER and JEREMIAH LWANGA. 1Department of Anthropology, Yale University, 2Department of Anthropology, University of Michigan, 3Department of Anthropology, University of Arkansas-Little Rock, 4Makerere University Institute for the Environment and Natural Resources.

Chimpanzees prey on a range of vertebrate species and preferentially hunt red colobus monkeys wherever the two taxa are sympatric. But chimpanzees have overwhelmingly plant-based diets and do not obligately consume red colobus. The decreasing encounter rates of red colobus monkeys at Ngogo, Kibale National Park, Uganda, has been unusually high. Previous research has shown that offtake was unsustainable and that the local red colobus population has substantially declined. We use data on the encounters and hunts, collected over a 16-year period, to test the hypotheses that increases in search time have led to a decline in the frequency of red colobus hunts; that relatively high predation intensity in one year has a negative feedback effect on predation in the subsequent year, which allows some population recovery; and that the chimpanzees have switched to more reliance on alternative prey. We show that over time, red colobus encounter rates have substantially declined and that encounters have occurred proportionately more often in the territory periphery; this has...
increased the costs of hunting and has been associated with a substantial decrease in hunting. Some evidence for negative feedback and for prey switching exists. However, overall hunting frequency has declined, presumably because capture probabilities, thus expected returns, for other prey are considerably lower than for red colobus, and no evidence yet exists that the red colobus population is recovering.

This study was funded by NSF Grants SBR-9253590, BCS-0215622, and IOB-0516644; The L.S.B. Leakey Foundation; The Wenner Gren Foundation for Anthropological Research, The National Geographic Society; Primate Conservation Inc.; and Yale University.

Sexual dimorphism of the greater sciatic notch in a circumpolar population.

ERIN B. WAXENBAUM and KATYA C. SIDDALL, Department of Anthropology, Northwestern University.

Human skeletal dimorphism and eco-geographic patterning are frequent topics of interest among physical anthropologists. Understanding both inter- and intra-population differences between the sexes can provide diagnostic information on modern skeletal material and create foundations for interpreting paleontological discoveries. The pelvis is cited as the primary region for assigning sex and the greater sciatic notch (GSN), a dimorphic feature that is well-preserved in the archaeological record, is therefore useful in sexing remains that have deteriorated due to taphonomic processes.

Previous research has established that circumpolar and temperate populations differ significantly in bi-iliac breadth, a proxy for body width. While there is a wealth of data on cold-adapted body proportions, there is insufficient research on specific features of the pelvis or circumpolar intra-population sex differences. This study compares GSN metric dimensions between a circumpolar and temperate population, to explore the range of eco-geographic variation in sexual dimorphism.

Left os coxae from Terry Black (male n=49, female n=50) and archaeological Native Alaskan (male n=54, female n=51) samples were selected for assessment. Native Alaskans exhibited significantly wider GSNS than Terry Blacks as a population (p=0.0008). They also displayed less symmetric GSNS, an indicator of "maleness", as compared to Terry Blacks (p=0.0001) as well as by sex and populations (males p=0.0002, females p=0.0010). These results indicate that wide GSNS are not inherently feminine, and climactic adaptations may affect proportions of dimorphic pelvic features.

Did a short-term event in the Middle Pleistocene give rise to modern humans?

TIMOTHY D. WEAGER Department of Anthropology, University of California, Davis.

It is often stated that modern humans originated 250,000–150,000 years ago. This statement implies, at least implicitly, that something "special" happened at this point in the Middle Pleistocene, such as a speciation event that was perhaps triggered by, or resulted in, a bottleneck in human population size. Two pieces of evidence are usually said to support this contention: that living human mitochondrial DNA haplotypes coalesce ~200,000 years ago, and that fossil specimens classified as anatomically modern humans begin to appear shortly afterward. Alternatively, modern human origins could have been a lengthy process that lasted from the divergence of the modern human and Neandertal evolutionary lineages ~400,000 years ago to the expansion of modern humans out of Africa ~50,000 years ago, and nothing particularly "special" happened 250,000–150,000 years ago.

Because this alternative model does not posit a discrete origins event, it may be better able to explain why >50,000-year-old fossils are arguably only "near modern" in anatomy. Here I use computer simulations based on theory from population and quantitative genetics to show that the alternative lengthy-process model also is consistent with a ~200,000-year-old mitochondrial DNA coalescence time and the appearance shortly afterward of fossil specimens that, at least for some traits, appear to be anatomically modern. I further discuss how these two models differ in their predictions and whether or not it is possible to distinguish between them with current fossil and genetic evidence.

Bipedalism: practice and experience in carrying a heavy unilateral load.

DAVID WEBB and SARA BRATSCHE, Department of Anthropology/Sociology, Kutztown University.

To clarify unexpected results in a previous study, a new study was performed to analyze the effects of both short-term practice and lifetime experience on carrying a heavy, unilateral load. While some new results affirmed our original expectations, other results suggested that our accommodations to the load include techniques not previously observed.

Fifteen subjects walked on paper runners while wearing paint-soaked socks, first with an empty canvas bag, then three times with 21% of body weight in the bag. This set of trials was followed by several minutes of practice, then another set of four trials. The footprint trails produced were analyzed for foot angle, step length, step width and distance from the edge of the paper.

Earlier work showed inconsistent results with regard to narrowing step width while carrying a heavy unilateral load. Our research showed that both practice and experience increased subject’s tendencies to narrow step width to balance the load. New results also suggest that those with more lifetime experience meander less than those with less experience, but the effect is more pronounced in the foot opposite the loaded side. Step length also varied positively with step width, such that those with very little experience showed shorter steps. Variation in step length also seemed to be affected by practice and experience, with short-term practice leading to a patterning of the foot on the loaded-side foot than on the_free-side foot, while lifetime experience seemed to exaggerate the difference between the two. Mechanical and safety implications are also discussed.

Diet and mobility in the Nasca region, Peru: carbon and nitrogen isotopic analysis of archaeological hair and bone.

EMILY WEBB1, CHRISTINE WHITE2, and FRED LONGSTAFFE2. 1Department of Anthropology, 2Department of Earth Sciences, all at The University of Western Ontario.

The extreme topography of the Andean region results in relatively short traveling distances among isotopically and ecologically distinct production zones. Isotopic reconstruction of long-term diets and short-term dietary shifting can therefore be used to investigate individual patterns of mobility. Here, we reconstruct the temporal sequence of change in carbon and nitrogen isotopic compositions (δ13C, δ15N) along each hair sample (n=18) from individuals buried at Cahuachi and near Huaca del Loro in the Nasca region. These data on short-term diets are compared with long-term dietary data as indicated by bone (n=8) in order to explore palaeomobility and food acquisition practices among the ancient Nasca (AD100-1000).

We hypothesized that the hair would be useful to differentiate between patterns of dietary shifting consistent with seasonally changing diet, and the exploitation of multiple production zones through mobility.

Each dataset demonstrates the complex interaction between Nasca food acquisition and palaeomobility, and together provide insight into the relationships among the Nasca and their physical and social landscapes. Paired tissues and sequential analysis of hair have revealed three major trends in the isotopic data: (1) longer, (semi-) permanent changes in residence, (2) local mobility,
and (3) stable or seasonal dietary shifting. Potential motivations, including social, economic and environmental impetus, for these patterns of mobility will be explored. The isotopic data presented here suggest that mobility played an important role in Nasca subsistence practices, and was likely an integral part of the Nasca social landscape.

Natural experiments: suture obliteration in familial lines.

NICOLE WEBB, HEATHER WALSH-HANEY and ERICA ARBUEDA, College of Professional Studies, Division of Justice Studies, Florida Gulf Coast University.

Natural experiments including the analysis of inherited or mechanically induced cranial deformations shed light upon how we interpret cranial shape differences throughout human evolution. The literature surrounding the genetic origins of craniosynostosis, or cranitectasia, identifies the possibility of inheriting the condition via autosomal homoyozygous recessive or heterozygous/ homozygous dominant means. We present a skeletal case from the District 17 Medical Examiner’s Office of Broward County, FL, that provides insight into the relationship between craniosynostosis and genetic inheritance. This case is unique because it involves three maternally related females, a 27-year-old female and her two daughters (ages six and eight years), that evidenced premature suture fusion.

We visually examined and radiographed each cranium paying close attention to the coronal, metopic, sagittal, lambdoidal, incisive, anterior median palatine, transverse palatine, and posterior palatine sutures. The youngest child displayed exophyseal or premature obliteration of the sagittal suture as did her mother. The eldest daughter, from a different paternal lineage, did not present with the condition; although, she manifested an accessory sutural bone that was identical to her mother.

Our analysis of a modern natural experiment involving three maternally related young females helps to validate heuristic arguments which support the theory that cranial structure and rate of fusion may be driven by genetic factors, while minimizing the role of environmental stresses and mechanical forces in cranial formation.

Detecting a possible historical epidemic.

VICKI L. WEDELE and DANIEL J. WESCOTT. Western University of Health Sciences,
Florida International University.

In 1993, Shiloh Methodist Church Cemetery excavations yielded burials in three rows, one row perpendicular to the others. Exhumed from this row were 11 young, African-Americans. Their position in the cemetery could indicate something about their status or the circumstances of their deaths or their status. It is hypothesized that these individuals perhaps died close from one of the epidemics known to have swept across Missouri during the 1800’s. Few methods to determine the exact year in which a historical burial took place are available, but dental cementum increment analysis at least has the potential to indicate whether all of the Shiloh individuals died within the same season. For this study, one tooth from each of the 11 burials was embedded in Buehler Epokwik Resin under vacuum pressure. The embedded teeth were then sectioned with a Buehler low speed saw to create 300 micron thick wafers. The wafers were mounted to a petrographic glass slide and ground to a thickness of 100 microns, polished, and viewed under an Olympus DP70 digital camera. The most cementum was recorded for a majority of the teeth. The viable teeth all exhibited the same type of outer increment – a light band, indicating a spring/summer death.

Can mobility patterns be revealed through enthesopathies?

ELIZABETH WEISS. Department of Anthropology, San Jose State University.

Use of fibrous entheses to reconstruct mobility has met with difficulties due to biological confounds, but fibrocartilaginous enthesopathies may prove useful in activity reconstructions. If lower limb entheses reflect mobility, then confounds such as bone healing should be absent, upper limbs should have more asymmetry, and proximal-distal patterns should differ between upper and lower limbs. The present study uses 8 upper limb and 7 lower limb fibrocartilaginous entheses from a sample of 105 adult prehistoric hunter-gatherer Californian Amerinds to determine whether entheses may be utilized in mobility reconstructions. Entheses are gathered using the 3-scale rating method proposed by Villotte (2006). Additionally, femoral head diameters are gathered to calculate body mass using Grine and colleagues’ (1995) formula. Age and sex are determined through pelvic, cranial, and dental morphology. Individuals with DISH are excluded. All data are analyzed for statistical significance using non-parametric tests. Only, the right ulnar triceps brachii insertion correlates positively with body mass (r = 0.255; P = 0.004). Asymmetry analyses reveal significant differences between left and right upper limb sites of the teres major (Z = -2.070; P < 0.05), subscapularis (Z = -2.070; P < 0.05), and the common extensor origin (Z = -2.496; P < 0.05). No significant differences appear in lower limb sites. Significant correlations occur between most upper limb proximal and distal elements (r average = 0.404, P < 0.01). No significant correlations are found in proximal and distal lower limb elements. Results suggest fibrocartilaginous enthesopathies may be useful in reconstructing mobility patterns.

Who is informed in informed consent?

KENNETH M. WEISS. Department of Anthropology, Penn State University.

‘Informed consent’ is easy to agree with. But it is far less easy to know what it means. It is the rare study in which the issues are unambiguous. Perhaps most troubling is that the ambiguity involves the investigators as much as the subjects of a study. There need be no dishonesty or ill intent, just the complexity of studies, the complexity of nature, and the complexity of perception by both parties. Informed consent is especially problematic in genetics, where the correlation between DNA sequence and ancestry or functional inference is often weak or unknown, data on study subjects reveal aspects of their relatives, and future developments of DNA-manipulation technologies cannot be predicted. Some now advocate blanket consent as the truest meaning of ‘informed’, but that is unlikely to work well, because no one can know what is actually being agreed to. Grievances can arise even decades later. If anyone should be aware that such agreements involve stated as well as unstated meanings, anthropologists should. But the drive for data, inconvenience at honoring even sincerely offered promises, and vested interests of both parties undermine notions of being ‘informed’. How these issues should be resolved is important topic, but may have no satisfactory answers.

Financial assistance from Penn State Evan Pugh Professors’ research funding.

A morphogenetic model of cranial interosseous suture formation.

JOHN DAVID WEISSMANN, MARCIA S. PONCE DE LEÓN and CHRISTOPH P. E. ZOLLIKOFER. Anthropological Institute, University of Zurich.

The complex and highly variable shape of interosseous sutures has since long attracted the interest of anthropologists. Cranial sutures are important bone growth sites mediating cranial vault expansion, and they are thought to act as strain dissipators. Various models have been proposed to explain suture formation, and methods of fractal geometry have been used to characterize their shape. Currently available mor-
phogenetic models capture local aspects of suture formation, while global aspects remain unexplored. On the other hand, fractal dimensions only measure overall properties of suture lines, while local and non-fractal properties remain unexplored.

Here we build upon standard concepts of physical interface growth to develop a new model of sutural morphogenesis, which takes into account sutural tissue mechanics and proposes bone strain gradients as major factor governing growth. We also present new morphometric methods to quantify sutural morphology in a multivariate shape space. Computer simulations of our model system produce interface morphologies which closely replicate local and global features of natural intersosseous sutures. Also, patterns of suture shape variation in an orangutan and the mandibular condyle can sample coincide with ontogenetic trajectories of sutures developing "in silico". Our results identify three main sources of sutural morphological variation: variation in ontogenetic rates along a common morphogenetic trajectory, variation in sutural tissue viscosity, and variation in response characteristics of sutural tissue to bone strain.

Comparison of gape morphology between primates and phalangeroid marsupials.

SARAH KAY WELCH and JONATHAN PERRY. Department of Anatomy, Midwestern University.

Recently, parallels between phalangeroid marsupials and primates have been suggested with regard to morphology. Given that some species in each group consume similar diets, and that gape is potentially related to food characteristics, it is expected that we might see parallel cranial characteristics related to gape in these two mammalian groups. Ten species of primates and nine species of marsupials were studied. First caliper measurements were taken of morphological features hypothesized to be related to gape. Each skull was photographed in a position representing maximum osteological gape. As the jaws are opened, this is the position just prior to loss of articular contact between the glenoid fossa and the mandibular condyle. From the photographs, measurements were taken of gape angle and linear gape (prosthion to the anterior edge of the mandible). Primates consistently conform to hypotheses more than marsupials. Some patterns are common to both groups. Gape angle increases with maxilla length and head size. Linear gape increases with skull size in primates (R^2=0.967) and to a lesser degree in marsupials (R^2 = 0.529); this suggests that factors other than size strongly influence gape limitations in marsupials. In both groups, folivores have small linear gape and condyle height for their skull size, and omnivores have low condyle relative to skull size. Daubentonia and Dactylopsila displayed a greater linear gape and lower condyle than predicted with their skull size. These results offer insight into the relationships between skull morphological features and gape and the convergence of primates and phalangeroid marsupials.

This study was funded by the Kenneth A. Suarez Summer Research Fellowship, Midwestern University.

Guild shift: a unique and defining characteristic of hominin evolution.

LARS WERDELIN1 and MARGARET E. LEWIS2. 1Department of Palaeozoology, Swedish Museum of Natural History. 2Biology, The Richard Stockton College of New Jersey.

The hominin lineage is nearly unique among mammals in having shifted from a herbivorous feeding apparatus to one that fulfills many of its protein requirements with animals to utilizing a significant amount of animal protein. Such an ecological trajectory in mammals has otherwise only been seen in two marsupial lineages: the thylacoleonids (marsupial lions) and propolpine kangaroos. The hominin guild shift has been extensively studied by archaeologists and anthropologists on the basis mainly of material culture and the traces of its use. This research has highlighted a number of behavioral, ecological, and physiological consequences of the shift. However, only limited attention has been paid to the top down macroecological effects on the carnivore guild, the mammal communities, and the ecosystem as a whole. We have previously emphasized the significant drop in carnivoran species richness coincident with advent of derived stone tools (derived Oldowan/early Acheulean) after 2 million years ago. Here we will consider consequences to the carnivore guilds of the African Plio-Pleistocene through analysis of 16 craniodental variables reflecting the morphospace of the feeding apparatus. The analyses will be evaluated in terms of functional richness (size of morphospace) and functional evenness (distribution of taxa in morphospace). We will also explore whether the hominoid radiation of the carnivore guild engendered a trophic cascade throughout the eastern African ecosystems of the early Pleistocene.

Femoral shape and terrestrial logistic mobility patterns.

DANIEL J. WESCOTT. Department of Biological Sciences, Florida International University.

Femur diaphyseal shape is commonly used to interpret levels of terrestrial logistic mobility (TLM) in human populations. However, since femoral shape is not size standardized, variation in it can be influenced by activity (including TLM), differences in body physique (especially body breadth), growth and development patterns, terrain type, and other factors. Therefore, suture-shaped femora can occur in populations with different levels of TLM. In this study, we investigate the influence of habitual activity, body size, and growth and development patterns on femoral shape. I do this by examining temporal trends in Native American and modern US populations, comparing diaphyseal shape between mobile and immobile individuals, and examining the shape of growth and development in femoral shape using American populations. I also investigate if using multiple biomechanical properties and multiple bones can provide a clearer picture of the patterns of activity. Examples from Native American populations and individuals such as Kennewick Man are provided to demonstrate the advantage of using multivariate analyses. While the assessment of variation in femoral shape is a valuable tool for reconstructing mobility, investigators should consider standardizing by body breadth, using multiple biomechanical properties, and examining multiple bones when interpreting mobility from long bone morphology.

Tourism in Suriname: do monkeys view tourists as predators or conspecifics?

JESSICA L. WESTIN1 and LAURIE KAUFMAN2. 1Department of Anthropology, The Pennsylvania State University. 2Department of Biological Science, DePaul University.

Nonhuman primate populations are in decline in many parts of the world. One reason for this decline is that primate conservation often clashes with the economic needs of people living in host countries. What can be done to provide for регионаlities or still protecting natural resources? Ecotourism is commonly promoted as a potential solution, but the impact of tourism on primate populations is seldom investigated. We present data comparing two field sites and multiple species of monkey in Suriname. The two sites are characterized by differences in species composition, habitat, and level of tourism. Preliminary results indicate that different species of monkey exhibit different coping mechanisms to tourist activities at the two sites. Certain species of monkey, including spider monkeys, bearded sakis, tamarsins, and wedge-cap capuchins, espe-
cally in the Central Suriname Nature Reserve, seem to view tourists as potential predators and respond with alarm calls and fleeing. Other species, including brown capuchins and howler monkeys exhibit much milder responses to tourists. Red howler monkeys in more remote areas of the Brownsberg Nature Park exhibit a different pattern from the rest, occasionally responding to humans as if threatened by conspecifics. Preliminary comparisons of habitat and tourism aspects between the two sites will be explored as potential influences on monkey response. Results will contribute to our understanding of how nonhuman primates respond to human actions, and have important implications for conservation and tourism programs in tropical forests.

This research was funded by the Rackham Experiential Grant, the Department of Anthropology at the University of Michigan, and by the National Science Foundation Graduate Research Fellowship.

Population history at the micro-scale: craniometrics of Cayo Santiago macaques.

DARICE R. WESTPHAL and GREGORY E. BLOMQUIST. Department of Anthropology, University of Missouri.

Several methods have been developed to infer relatedness among human or other primate populations using metric data. Of these, R-matrix methods have typically been used to approach questions of population history on global or regional scales with a time depth of tens to thousands of generations. Applications to non-human primate data are also rare. This study uses detailed genealogical and demographic information for rhesus macaques born over four decades on Cayo Santiago, indicating a matrix of individually matched cranial measurements. We evaluated the ability of craniometric data to recover two important patterns expected from the demographic records: individuals born in more distant time periods are less similar to each other, social groups that arose from the fissioning of a parent group will be more similar to each other than to other social groups. Craniometric data are consistent with both the expanse of time of the demographic data. Further research is needed to refine and test predictions about patterns in the craniometric data and relate them to larger questions of primate socioecology. Of particular interest are the influence of group fissioning along matriline boundaries and the role of male-mediated gene flow, perhaps with matriline-biased mating, among social groups.

Research supported by the University of Missouri and University of Illinois Graduate College. Cayo Santiago and the Caribbean Primate Research Center (CPRC) are supported by the University of Puerto Rico and National Institutes of Health (NIH).

Functions of male and female bonobo loud calls in inter and intra community interactions.

FRANCES J. WHITE1, MICHEL T. WALLER1 and NICHOLAS M. MALONE2. 1Department of Anthropology, University of Oregon, 2Department of Anthropology, The University of Auckland.

Data on frequencies, context, and location of vocalizations were recorded for wild bonobos, Pan paniscus, at the Lomako Forest study site in the Democratic Republic of the Congo from 1983 to 2009. Location relative to the edge of the community range was determined by GPS for 642 calls, including 383 loud calls (88 by focal females and 47 by focal males). Loud calls differed from other vocalizations in being more common towards the periphery of the community range (G = 32.2773, p < 0.001). The frequency of loud calls by male and female focal animals differed in location (G = 104.036, p < 0.001). Females called more in the center of the range whereas loud calls by male focal animals were only observed on the edges of the community range. Both males and females participated in loud calls used for inter-party communication within the community. Calling and response rates by both males and females were higher during party fusion than party fission (G = 6.106, p < 0.05) and were common at evening nesting. Calling and party fission were also common at food patches. Calling, followed by fusion, was more frequent when a small party called from large patches. We conclude that bonobo females and males may use loud calls to bring others to large food patches but differ in that loud calling by males is important in inter-community communication.

Research was supported by NSF grants BNS-8311252, SBR-9605474, and BCS-0610233 to FJW and the Leakey Foundation.

Evidence of violent conflict in males from Pot Creek Pueblo.

CATRINA BANKS WHITLEY. Office of Archaeological Studies, Museum of New Mexico.

Skeletal evidence of violence in the American Southwest is well known and both healed and peri-mortem trauma has been reported at many sites, including high rates of cranial injury supporting evidence of warfare. The present study examines the peri-mortem skeletal injuries in three young males, aged 18-22 years-at-death, from Pot Creek Pueblo (AD 1260-1320) located in the Taos Valley. Of the 88 Pot Creek individuals analyzed, peri-mortem trauma only occurred in these three males, although healed ante-mortem injuries were present in several other individuals. CT scans of the skulls provided an additional method of analysis of the injuries and data necessary to differentiate peri-mortem trauma from post-mortem damage in one case. The pattern of peri-mortem blunt force and chopping force trauma to the skulls and post-cranial remains suggests hand-to-hand combat occurred and these individuals died from chopping trauma to the skull possibly from warfare related activities.

This research was funded by a National Science Foundation Graduate Research Fellowship, the Southwest Diagnostic Imaging Center, and the William P. Clements Center for Southwest Studies.

It's all in your head: heat related deformation and color change in frontal bones at Bab edh-Dhra'.

KATIE WHITMORE1, ELENA RODRIGUEZ3, JAIME ULLINGER3 and SUSAN GUISE SHERIDAN2.

1School of Human Evolution and Social Change, Arizona State University, 2Department of Anthropology, University of Notre Dame, 3Department of Anthropology, Ohio State University.

Heat related deformations, such as warping, delamination, deforming fractures, and bone color can be used to determine whether bones were burned in a wet versus dry state. This study investigated frontal bones from charnel house A22 from the Early Bronze Age (2950-2200 BC) site of Bab edh-Dhra', Jordan. It was hypothesized that skulls would exhibit few deformations, as archaeological records indicated that fire was not a part of the site's mortuary tradition, despite the extensive burning seen in bones from the tomb. Additionally, this study hypothesized that deformations would occur more frequently with gray and white bones (colors indicating that the bone was exposed to high heat). The presence of warping, delamination, and deforming fractures was assessed on three different landmarks (midpoint of the supraorbital tori, fronton eminence and mid-coronal suture) on 122 frontal bones. Color was also assessed with both the Munsell Color system and by using a spectrophotometer. Delamination was only found on one of 77 supraorbital tori (1.3%), while warping was found as high as 10.8% (9/83) and fracturing was as high as 12.0% (9/75). Specimens from the right side were analyzed and showed no difference among the frontal regions of the right side.

Specimens from the right side were analyzed and showed no difference among the frontal regions of the right side. A preliminary analysis suggested deforming features appeared more often on calcined bone. The lack of directional burning in addition to a comparison of other known archaeological and forensic sites indicated that the bones were burnt in a dry state.

This study was funded by a National Science Foundation Research Experimen-
Minerals in the fruit and seed diet of the Tana River mangabey (Cercopithecus galeritus) of Kenya.

JULIE WIECZKOWSKI1, JESSICA M. ROTHMAN2,3, and ELLEN S. DIERENFELD1.

1Department of Anthropology, Buffalo State College, 2Department of Anthropology, Hunter College of the City University of New York, 3New York Consortium in Evolutionary Primatology (NYCEP), 4Research & Development, Africa, Novus International, Inc.

Minerals in primate foods can play an important role in food choice and habitat quality, yet few data exist, especially for fruits and seeds. We analyzed mineral content of diet and non-diet items of the Tana River mangabey (Cercopithecus galeritus) by collecting data from three groups; one from August 2000 to July 2001 and two from July 2005 to June 2006. During the latter period, we collected diet and non-diet items of the same ripeness stage from trees in or under which mangabeys were eating, and additional samples during 2009. A total of 35 fruit and seeds from 18 species were analyzed for minerals by atomic emission spectroscopy according to standard methods. Based on 13,200 eating events on identified plant items, the 35 items comprise 54.3% of the annual diet. Mann-Whitney tests showed no differences in mineral content between eaten and uneaten items. There were no significant Spearman correlations between diet contribution and mineral content. The annual mineral intake included mineral concentration weighted by percent contribution to diet, when compared to the 2003 National Research Council recommendations for non-human primates, was deficient in Ca, P, Na, Zn, and Cu; almost sufficient for Mn; and exceeded the recommended amount for Mg, K (provided mainly by fruit), and Fe (provided mainly by seeds).

Our data fit general nutritional profiles established from other published values, where fruit and leaf Ca (with the exception of Ficus spp.), P, Na, Cu, and Zn, and adequate/high with respect to K, Mg, Fe, and Mn.

This research was funded by the Wildlife Conservation Society, Margot Marsh Biodiversity Foundation, Conservation International's Primate Action Fund, Primate Conservation, Inc., a University of West Georgia Sponsored Operations Fund Enhancement Award, and a Buffalo State College's Research and Creativity Council's Research Incentive Award to JW.

Inventories, adding individuals, and tracking skeletal elements in Osteoware.

CYNTHIA A. WILCZAK. Department of Anthropology, San Francisco State University.

A common difficulty in human osteology data management is in organizing records for commingled remains and bone lots catalogued under a single collection number or recovered from a single burial. Several key features of the Osteoware system for documenting human remains are designed to manage this problem: adding individuals, commingled inventories, and tracking by individual skeletal elements. Once a catalogue or field identification number is entered into the system, the user has the option of entering data for multiple individuals under the same number.

Osteoware will automatically generate a unique database record by appending a letter to that number. Adding individuals is generally reserved for cases where several major skeletal elements that are clearly associated are present in addition to the main individual. For cases where there is no main individual, as in bone lots, or when additional elements not belonging to the main individual are present, commingled inventories can be used to enumerate individual elements under three age categories (infant, subadult and adult). This research was funded by the Wildlife Conservation Society, Margot Marsh Biodiversity Foundation, Conservation International's Primate Action Fund, National Park Service, and the Smithsonian Web 2.0 Fund.

Entertaining entrainment: reconsidering the effects of respiratory constraints on the optimal running speed.

MICHAEL WILCOCKSON and CARA WALL-SCHIEFFLER. Department of Biology, Seattle Pacific University.

In Carrier's (1984) initial paper on the importance of running as a hunting strategy among Homo, he put forth the observation that running humans should display greater plasticity in the critical functions of respiration...than running quadrupeds. He used this observation to partly explain the invariance in the Cost of Transport (CoT) of human running, and the ability of Homo sp. to run down prey at the prey's least optimal speed. Since it has recently been shown that the CoT of human running is not speed invariant, this leads to the question of whether people actually have the plasticity in critical aspects of breathing function, such as a link between the breathing cycle and the locomotor cycle ('entrainment'). Here we measured the energetic cost of human running (N=9) at five different speeds and calculated individual CoT curves for each participant. Simultaneously, entrainment was determined by the degree to which a post-stimulus histogram (breaths per 0.05sec bin following a footfall) differed from a uniform plot. We then compared the degree of entrainment to each participant's optimal running speed and...
found that while eight of our subjects clearly entrained at some speeds, entrainment was not a function of CoT (p = 0.897). Since entrainment was also not correlated with speed (p = 0.304), it appears that bipedalism removed the respiratory constraints associated with quadrupedalism as originally predicted by Carrier. Unlike quadrupeds, for whom respiratory constraints remain implicit, bipedalism is leading to a minimum CoT, constraints which lead to an minimum CoT for people must involve other variables.

Modeling species variation with nonmetrics using a fuzzy inference system.

CATHY WILLERMET. Department of Sociology, Anthropology, and Social Work, Central Michigan University.

Species identification incudes a search for autapomorphic nonmetric variables. Overall, variables with more intraspecific and interspecific variation in these characte- ters affects our ability to recognize fossil species. Nonmetric variables may present as a continuously expressed trait, such as degree of rounding of the inferolateral orbital margins. We partition continuously distributed variables into graded/bimodal character states for data collection. Sometimes multiple character states are observable in a population. Variables presenting multiple character states are problematic for determination of polarity and identification of autapomorphies, particularly if multiple character states exist in a specie- s. Nonmetric variables are often described using linguistic variables ("large"); moderate, ",small"), which are fuzzy categories. A fuzzy rule-based system allows computing with linguistic categories. Can Neandertals and early moderns be partitioned using multistate nonmetric variables? How well do multistate characters perform in group identification?

Nine nonmetric cranial variables representing three regions of the skull were collected on 14 Neandertals and 24 moderns. Nonmetric variables were limited to those having three or more character states. A Mamdani fuzzy inference rule-based system was devised using MATLAB Fuzzy Logic Toolbox. Fuzzy membership functions were defined for each variable from their graded categories. Fuzzy inference rules used these functions to calculate membership into "Neandertal" and "Modern" sets. Analysis was performed on variables individually and in aggregate, and results compared. Some variables (ex: infra-glabellar notch profile) performed better than others (ex: superciliary arch shape) for group identification. A bet- ter understanding of multistate nonmetric variables can advance their use for species identification and phylogeny construction.

Achieving efficiency and accuracy in Oldowan stone tool production.

ERIN MARIE WILLIAMS1, 2, 3, ADAM D. GORDON4, and BRIAN G. RICHMOND1, 2, 3.

It is now clear that multiple hominin species used and/or produced stone tools, yet evidence suggests that only later Homo intensified and developed the behavior. This difference has been attributed to the ability to execute efficient tool production, to the exclusion of earlier hominin species. The current study evaluates whether modern human upper limb anatomy contributes to energetic efficiency and/or accuracy during knapping. Knapping kinematics were captured from eight experienced knappers using a VICON motion analysis system (200Hz). Each subject produced four Oldowan choppers under two conditions: two choppers under normal conditions and two with subjects' wrists restrained to ~30° of extension to simulate one aspect of the primitive hominin condition. Under nor- mal conditions all subjects employed a partial proximal-to-distal joint sequence, with peak segment linear velocities and peak joint angular velocities initiating at the shoulder and elbow, respectively, and progress- ing distally. Subjects exhibited the "dart-throwers arc," moving from wrist extension/radial deviation to flexion/ulnar deviation. Wrist exten- sion peaked 0.037-0.075 seconds before strike, positioning the wrist to reach peak flexion velocity immediately before strike, resulting in peak hammerstone acceleration at strike. Preliminary results suggest that together these motions patterns produced signifi- cantly more work in an energeti- cally efficient manner compared to swings when the wrist was restrained and precluded from being positioned for rapid flexion. Further, with an unstrained wrist subjects struk- their targets with significantly greater accuracy (p < 0.05). These results sug- gest that derived hominin hand and wrist anatomy contributes energetic efficiency and accuracy to stone tool production.

This project was funded by the Wenner- Gren Foundation’s Dissertation Fieldwork Grant (#7995), the National Science Foundation’s Doctoral Dissertation Improvement Grant (# BCS-0903652) and Integrative Graduate Education and Research Traineeship (IGERT # DGE 0801634) and The George Wash- ington University’s Selective Excellence Fund.

Dietary proclivities in three purported terrestrial fossil catarrhines, Procynocephalus subhimalayanus, Parapapio whitei Parapapio bambolii, from Scale-sensitive frac- tal analaysis of enamel surface text- ture characteristics using white-light confocal microscopy.

FRANK L. WILLIAMS. Department of Anthropology, Georgia State University.

Terrestrial locomotion has been inferred for Procynocephalus subhimalayanus from its relatively large maxilla. To identify whether purported terrestrial- ity correlates with dietary proclivities, the dental microwear of Procynoceph- alus is compared to Parapapio whitei from Makapan in an attempt to produce an analogue with an isotopic and trace element signature indicating underground storage organs were consumed. As a parallel example of terrestrial locomo- tion possibly corresponding to dietary regimes, two late Miocene taxa, Oreopithecus bamboli (n = 2) and Mesopithecus pentelicus (n = 12), are sampled and all the fossils are compared to extant primates with known diets. Den- tal microwear was examined by scan- ning the protocone surface using white- light confocal microscopy at 100x, followed by Scale-sensitive fractal anal- ysis. The four texture characteristics extracted from surface dimensions were ranked before Anova with post-hoc tests of significance and multivariate analy- ses were performed. Procynocephalus and Parapapio exhibit relatively com- plex surfaces and middle to low values for anisotropy compared to frugivores such as Trachypithecus and Aloiattu. Procynocephalus and Parapapio exhibit higher textural fill volumes compared to extant analogous indicating even harder and more brittle foods were consumed than observed in the diets of arboreal hard-object specialists or leaf/seed for- agers. In multivariate analyses, Procynocephalus and Parapapio consistantly cluster together. Oreopithecus resembles Trachypithecus and Gorilla gorilla beringei in a principal components analy- sis but is linked with Mesopithecus in a cluster analysis. The inferred terres- trial diets of Procynocephalus and Para- papio most closely approximate the diet signal of Lophocebus suggesting mixed- fruit and hard-object feeding character- ized at least a portion of their diets.

Evolutionary history of the homi- noid vertebral formula.

SCOTT A. WILLIAMS. Department of Anthropology, University of Illinois, Urbana-Champaign.
The numerical composition of the vertebral column has generated newfound interest in recent years, particularly regarding its role in the evolution of hominoid primates, in large part due to the implications for hominins origins and the evolution of bipedalism. Recently, several different scenarios were proposed to describe the modal number of lumbar vertebrae possessed by the last common ancestor (LCA) of humans and chimpanzees. These include a "chimpanzee-like" ("short-back") ancestry, a "Pongo-like" ("long-back") ancestry, and a "human/gibbon-like" ancestry. Initial investigations of the Ar Amoosusus radius support the long-back scenario, although the ARA-VP-6/500 skeleton does not preserve sufficient remains to assess vertebral counts.

I test these competing hypotheses using a combined dataset of published vertebral formulae for both extant and extinct mammals, supplemented with my own data (total N = 5,600 specimens). Modal ancestral vertebral formulae are reconstructed throughout mammalian evolution and the hominoid vertebral column is placed in this large phylogenetic framework. Results suggest that a 7-13-6-3 (cervical-thoracic-lumbar-sacral) vertebral formula evolved in the ancestor of therian mammals and persisted throughout mammalian evolution, including the LCA of catarrhines. The LCA of crown hominoids achieved a 7-13-5-4 formula through a caudally-directed homeotic shift at the lumbo-sacral border, a rare occurrence among mammals. The LCA of hominids experienced a subsequent shift at this border, rendering the vertebral formula 7-13-4-5, a "great-ape-like" pattern that persisted through to the hominin-maximal LCA. Therefore, this study supports a short-back, "short-trunk" scenario of hominins ancestry. Implications for orthograde, bipedalism, and hominin evolution are discussed. This study was funded by the National Science Foundation, grant BSC-0925734.

Reproductive ecology, carious lesions, and selective mortality in late prehistoric west-central Illinois.

JEREMY J. WILSON. Department of Anthropology, Indiana University-Purdue University.

Recent research by John Lukacs and colleagues has highlighted the synergistic relationship between the reproductive ecology of women and the likelihood of poor dental health in prehistoric and contemporary populations. While these findings help to explain the prevalence and pattering of carious lesions in bioarchaeological samples, few scholars to date have effectively measured the biological cost of poor dental health and subsequent probability of entry into a death assemblage. Building upon the theoretical and methodological concerns formalized in the "Osteological Paradox" (Wood et al., 1992), results from a paleo-epidemiological analysis of dental health for the late prehistoric period in west-central Illinois are presented. This includes a reexamination of the multi-component Dickson Mounds skeletal sample using maximum likelihood methods of age estimation and hazard modeling to address the impact of selective mortality.

The co-variance of advanced carious lesions with age-at-death in females of reproductive age in all the time periods examined indicates that heterogeneity in frailty led to early entry into the mortality profile with the probability of poor dental health increasing with age. These findings add additional light on the relationship between fertility, subsistence, and well-being in traditional agricultural populations, while simultaneously challenging bioarchaeologists to employ analytical methods suitable for the right-censored data inherent to skeletal samples.

Components of this research were supported by grants from Wenner-Gren and the National Science Foundation.

Causes of intergroup aggression among chimpanzees at Gombe National Park, Tanzania.

MICHAEL L. WILSON1,2, DEUS M. MJUNGU3 and ANNE E. PUSEY4.

1Department of Anthropology, University of Minnesota, 2Department of Evolutionary Anthropology and Center for Cognitive Neuroscience, Duke University.

Since the first observations of intergroup killings among chimpanzees (Pan troglodytes) at Gombe National Park, Tanzania, anthropologists have used chimpanzee violence as a source of insights for explaining the origin and evolution of human warfare. Nonetheless, the cases of chimpanzee "warfare" remain only partly understood. Why, for example, are intergroup killings more common at some times and places than others? Debate continues over whether chimpanzee intergroup aggression depends mainly on the relative fighting power of neighboring groups, efforts to attract female immigrants, or competition for food resources. To better understand the relative importance of these factors, we analyzed 35 years of data from Gombe. We found considerable variation in the frequency and location of intergroup aggression. Direct physical contact occurred infrequently, but resulted in severe injuries, including at least 17 fatalities. Intergroup interactions were hostile throughout the study period but occurred most frequently during the destruction of the Kahama community in the 1970s, and the expansion of the Kasekela community in the 1990s and 2000s. The timing and location of patrols and intergroup encounters depended on the relative size of neighboring communities, and on the abundance and location of key food resources. In the past decade, Kasekela chimpanzees directed most of their conflict in the food-rich north, but gained most of their female immigrants from the south, suggesting that competition for food, rather than females, is the more common motivator for intergroup aggression in this population.

This study was made possible by funding from National Science Foundation grant BSC-0648481 and the University of Minnesota.

Species differences in the rate of cognitive ontogeny among humans, chimpanzees, and bonobos.

VICTORIA WOBBER1, ESTHER HERRMANN1, BRIAN HARE2, RICHARD WRANGLHAM1 and MICHAEL TOMASELLO2.

1Department of Human Evolutionary Biology, Harvard University, 2Department of Comparative and Developmental Psychology, Max Planck Institute for Evolutionary Anthropology, 3Department of Evolutionary Anthropology and Center for Cognitive Neuroscience, Duke University.

Patterns of cranial development vary significantly between humans and our closest living relatives, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). Humans have been proposed to undergo a greater degree of cranial growth postnatally in comparison to the genus Pan, while in turn bonobos appear to exhibit delayed development in certain aspects of their crania relative to chimpanzees. Little data currently exists to test whether these changes in cranial ontogeny are associated with changes in behavioral or cognitive ontogeny. Here we compare the cognitive ontogeny of human infants (n = 48), chimpanzees (n = 138), and bonobos (n = 50), utilizing a battery of over 10 tasks examining a wide range of cognitive abilities. We test two hypotheses: 1) human cognitive development is accelerated relative to that of Pan in infancy and 2) bonobo cognitive development is delayed relative to that of chimpanzees. We found that human infants show accelerated cognitive development between 2 to 4 years of age, likely owing to an early emergence of social cognition abilities relative to Pan infants that allows for participation in human culture. We
also found that bonobos exhibited delayed cognitive development relative to chimpanzees, though only in physical cognition skills (those employed in foraging or reasoning about objects). These results suggest that differences in cranial ontology in hominoids are associated with significant differences in cognitive ontology. Further work should integrate studies of behavioral and physiological development as part of a larger evolutionary developmental approach to understanding human evolution.

This work was supported in part by a Etronics Research Commercial Advanced Grant Agreement 233927 and National Science Foundation grant NSF-BCS-08-27552-02 to B.H, and an L.S.B. Leakey Foundation Grant, NSF DDIG 0851291, and Wenner-Gren Foundation Grant to V.W.

Co-associations of subsistence strategy, non-specific infection, and congenital defects of the deciduous dentition in pre-Columbian Tennessee.

MARISSA C. WOJCINSKI, Department of Sociology and Anthropology, Illinois State University.

Defects of the deciduous dentition flag prenatal stress which may predispose children to postnatal chronic health problems. These chronic health problems may be skeletal manifested as periostitic or osteoporotic changes in the cranial and postcranial skeleton, and compromised growth of the long bones. The subadults which possessed deciduous dentition (skeletally <7 years of age) from 7 sites (N=386) from the agriculture-intensive late Mississippian (AD 1300-1550) period of East Tennessee were compared to the same skeletal age cohort from 5 sites (N=111) dated to the Late Archaic (2000-100 BC) period of west-central Tennessee. Despite the problems associated with the differential preservation of skeletal material, results indicate a higher frequency of chronic health problems in the maize-dependant Late Mississippian (32 indicative cases), with 13 of those individuals also demonstrating long bone involvement (13 indicative cases). The Late Archaic hunter-gatherers demonstrate a higher frequency of long bone involvement: 9 indicative cases out of 10 subadults with chronic conditions. When the co-association of chronic infection and dental defects was examined, results indicate that 26 (7%) Late Mississippian period subadults displayed gross enamel defects, 10 of which also demonstrate chronic infection.

Ignoring the past, our behavior is bound to remain the horrid offspring of our prehistoric habits.

In contrast, the Late Archaic hunter-gatherers demonstrate gross enamel defects, 10 of which also demonstrate chronic infection. In the Late Archaic sample indicate a much lower frequency of dental defects (3%) with only 1 case co-associated with chronic stress. These results suggest that factors which contribute to this settlement and subsistence difference, which include fundamental community health differences linked to sedentism and population density, likely contributed to a higher co-association of non-specific infection and deciduous defects in the Late Mississippian.

Ontogeny of limb growth and locomotor behavior in Lemur catta and Propithecus verreauxi.

STEPHANIE A. WOLF, RICHARD R. LAWLER, and ROSHNA E. WUNDERLICH. 1Department of Biology, 2Department of Anthropology, James Madison University.

Propithecus verreauxi and Lemur catta differ in adult locomotor behavior and morphology, especially in terms of specialization for hindlimb-dominant locomotion. However, little is known of the ontogenetic trajectories by which these adult forms are acquired. We examined changes in locomotor behavior and limb morphology from 0-2 years in L. catta and P. verreauxi. Limb segment lengths and body mass were recorded every two weeks (infants) or four weeks (yearlings) at the Duke Lemur Center (DLC). Locomotor data were collected on infants and yearlings of each species in free-ranging enclosures at the DLC using locomotor bout sampling. Bouts were classified as hindlimb, forelimb, or "all-limb" dominant locomotion. Positive allometric growth was observed in all limb segments (except L. catta radius) and was highest in femur length from 0-6 months in both species. No significant differences in allometric growth were found between species or age classes. Propithecus have significantly longer limb segment lengths than L. catta during infancy, and both species have relatively higher intermembral indices during 0-6 month versus 6-12 months of age. More hindlimb dominant locomotion was observed in L. catta infants than yearlings. No differences were observed in locomotor behaviors between P. verreauxi infants and yearlings. L. catta displayed higher frequencies of all-limb locomotion than P. verreauxi in all age classes. Growth trajectories were similar between species, yet initial limb segment lengths and locomotor behaviors differed between species across age classes. These data suggest that differences between species in adult body proportions may be established early in neonatal life. This study was partially funded by Sigma Xi Grants-In-Aid of Research G2009151076.

Keeping their friends close? Contrasting models of social association in Hadza hunter-gatherers.

BRIAN M. WOOD, DAVID A. RAICHEL, HERMAN PONTZER, JAMES H. JONES, AUDAX Z.P. MABULLA, and FRANK W. MARLOWE. 1Department of Anthropology, Stanford University, 2School of Anthropology, University of Arizona, 3Department of Anthropology, Hunter College, 4Archaeology Unit, University of Dar Es Salaam, 5Department of Anthropology, Durham University.

Because spatial proximity is necessary for most forms of social behavior, friendships and other "close" relationships are likely to be expressed in patterns of space use. While primatologists often explicitly model the social structure of a species or population in terms of space use, researchers studying human populations are much less likely to do so. Primatologists and other biologists often use observations of social interaction and grouping to create inductive models of social structure, from which individuals preferred social partners can be inferred. In contrast, anthropologists and sociologists typically use interview data to create deductive models of social structure based on nominations of important social relationships, such as friendships. This paper will compare models of Hadza hunter-gatherer social structure derived from both methodologies: direct measures of social grouping as recorded by GPS devices worn by subjects, and the same subjects' nominations of who their friends were. Men and women living in 2 Hadza camps in 2010 wore GPS devices daily for two weeks. We use measures of space use to model the strength of social association between individuals. The same subjects were asked to name who their closest friends in camp were. Both GPS data and interview responses reveal a strong preference for social association with same-sexed individuals. We examine the spatial correlates of strong and weak friendship ties, and test whether husbands and wives can be identified through patterns of spatial proximity. This study was funded by NSF BCS 0850815.

Phylogenetic signals in the hominoid carpus.

STEVEN WORTHINGTON. Center for the Study of Human Origins, Department of Anthropology, New York University, and New York Consortium in Evolutionary Primatology (NYCEP).

The carpal skeleton has been an important region in studies of hominoid anatomy. It is the product of functional, developmental and phylogenetic processes and therefore many carpal traits would be expected to exhibit mixed 'signals'. The question asked in this study is: which carpal characters exhibit a high-level of phylogenetic structure? Nineteen metric and several categorical characters were collected from the capitate, hamate, lunate, triquetral, pisiform and scaphoid. Ten extant anthropoid taxa (n=253), including six hominoid species, were sampled. Individual
traits were ranked by their ability to recover phylogenetic information (topology and branch lengths) independently inferred from molecular characters. Null models of tree statistics were constructed with maximum likelihood and parsimony-based algorithms (using R, Matlab and Mesquite). Null models represent hypotheses of no phylogenetic signal in a trait for the sampled taxa. Characters were ranked by their deviation from these null models. Traits of different rank were then compared in tree inference (using PAUP). For metric characters, a matrix of five highly-ranked traits performed better than matrices composed of all nineteen traits, or of eleven lowly-ranked traits. Trees of lowly-ranked traits failed to support hominoid monophyly, while those generated from all characters failed to support any primate clade. The ranked traits succeeded on both counts, though did not completely recover the hominoid molecular topology. Tree inference is improved by excluding traits that contain little hierarchical structure (parsimonious trees have shorter lengths and greater support). Highly-ranked characters may be useful for inferring the phylogenetic relationships of closely related fossil taxa.

This study was funded by NSF 0824496, NSF (NYCEP IGERT) 0333415, The Leakey Foundation, the Systematics Research Fund of The Linnean Society of London and the Lewis and Clark Fund of the American Philosophical Society.

Ovarian hormones and inflammation in urban Bolivians.

CAROL M. WORTHMAN1, MARIAM KARAMALI1 and VIRGINIA J. VITZTHUM2. 1Department of Anthropology, Indiana University, Bloomington.

Reproductive ecology has established eco-behavioral and developmental bases for variation in ovarian function within and between human populations. These same populations face immune challenges for health, yet the trade-offs between reproduction and maintenance demands across the wide range of human ecologies remains largely unexplored. A cortisol response (CRP) is a component of inflammatory response, has been implicated as a biomarker of circulatory and metabolic disease risk; moreover, variation in CRP has been linked to cyclic variations in ovarian hormones in western women. This study probes the relationship of ovarian hormones and CRP in urban non-western women living at altitude.

61 La Paz residents aged 25-35—pregnant, lactating, or -contracepting—contributed 5 blood spot samples between days 6-24 of an ovarian cycle. Samples were assayed for estradiol, progesterone, and CRP, along with FSH and LH to confirm ovulation. Although 5% of samples indicated acute infection (>4 mg/L), CRP was markedly low (median 0.28 mg/L) relative to comparable western populations. Nevertheless, the expected relationship of BMI (median 24.1) and CRP was apparent (beta 0.11, p <.01). The 80% of ovarian cycles that were ovulatory exhibited mid-follicular estradiol (median 86 pg/mL) and mid-luteal progesterone (14.9 ng/mL) levels similar to western populations. Even so, we detected no systematic relationships between CRP and ovarian hormones across ovulatory cycles, either in tests for direct association or in models including possible moderators (age, BMI, cycle length, socioeconomic status). In sum, interactions of CRP and ovarian hormones were not apparent in a population with very low CRP. Supported by: MH67761, NSF SBR 9506107.

Does the Dali cranium belong to Homo heidelbergensis?

XINZHI WU1, SHEELA ATHREYA2 and HONG SHANG1. 1Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 2Department of Anthropology, Texas A&M University.

A comparative morphological study was undertaken in order to assess the affinity of the Dali cranium from China relative to a sample of middle and late Pleistocene Eurasian and African hominins. Specifically, the purpose was to determine if Dali was most likely to group with specimens typically classified as Homo heidelbergensis. Because there is not one prevailing hypothesis for this taxon, the comparative H. heidelbergensis sample was configured in three ways: inclusive of all Eurasian and African non-erectus middle Pleistocene specimens, inclusive of just European and African fossils, and inclusive of only the European ones. The affinity of Dali was assessed using discriminant function analysis. The results group Dali with Homo erectus in the first configuration of the comparative sample, and with the European and African middle Pleistocene hominins in latter two configurations albeit with weak (1%) typicality probabilities. These results suggest that the population from which Dali is derived is neither uniquely African/European in origin, nor is it uniquely Asian. It would be reasonable to group Dali with H. heidelbergensis but given this fossil’s affinity with Asian H. erectus in the first analysis, these results call into question the notion of H. erectus being an evolutionary dead-end. Rather, this study suggests that H. erectus played a role in the emergence of later middle Pleistocene hominin morphology.

Craniofacial Ontogenetic trajectories of two subspecies of Japanese macaque (Macaca fuscata). From fetus to adult.

W. YANO1, N. EGI2, T. TAKANO3 and N. OGISHARA4. 1Department of Zoology, Kyoto University, 2Primate Research Institute, Kyoto University, 3Japan Monkey Centre, 4Department of Mechanical Engineering, Keio University.

Previous studies have suggested the postnatal craniofacial ontogeny in primates mainly establish interspecific craniofacial shape variations, whereas intraspecific variation has not been recognized. Other studies have demonstrated that such a variation is already formed before birth. Few studies, however, have induced comprehensive craniofacial trajectory from fetus to adult to identify when and how divergence of ontogenetic trajectories between closely related primates animals. In this study, we cross-sectionally analyzed the ontogenetic shape changes in cranial of two subspecies of Japanese macaque to explore whether they share a common trajectory in the ontogeny. We used a total of 137 specimens of Japanese macaque subspecies (75 Macaca fuscata fuscata and 62 Macaca fuscata yakui). We used 32 fetus samples and 105 dried crania for infants, juvenile, subadult, and adult samples. Each specimen underwent computed tomography scanning, and 54 landmark coordinates were digitized on the internal and external surfaces of the crania. We adopted a geometric morphometrics technique and principal component analysis to three-dimensionally investigate cranial ontogenetic shape changes. Our results showed that two subspecies generally share a common size-related ontogenetic pattern from fetus to adult (PC1 and PC2). Clear cranial shape differences, such as the height of neurocranium and the shape of the orbit and occipital bone, accounted for PC3, which were found to be already present by the one third of the fetal life. Our results suggested that the divergence of primate craniofacial ontogenetic trajectories probably occur at the very early stage of the fetal period even between closely related taxa.

Vaginal microbial community structure and maternal ecology in primates.

SULEYMAN YILDIRIM1, ANGEL RIVERA1, STEVEN LEIGH1,2, CARL YEOMAN1, BRYAN WHITE1, TONY GOLDBERG2, BRENDA WILSON1 and REBECCA STUMPF1,2. 1Department of Anthropology, University of Wisconsin, Madison, 2The Institute for Genomic Biology, University of Illinois, Urbana-Champaign, University of Wisconsin, Madison.

Preterm birth serves as a severe selective agent and is a major cause of morbidity and mortality in contemporary populations. In the US alone, costs of preterm birth reach upwards of $25B American Journal of Physical Anthropology
annually. One closely associated factor is disruption of the normal microbiota of the reproductive tract. Though much is known about pathogenic bacteria, the function and diversity of commensal bacteria associated with the vaginal ecosystem is currently poorly understood, as are the mechanisms influencing microbial disruption associated with preterm birth.

From an evolutionary perspective, humans are characterized by difficult births, owing to large neonatal head size relative to pelvic dimensions. In contrast, nonhuman primates (NHPs) are characterized by easy births. Because of the nature of human birth and the close association between human vaginal microbial microbiomes and reproductive fitness, and ultimately evolution, we predict that humans exhibit distinct diet-related patterns compared to non-human primates.

We analyzed vaginal swab samples from eight diverse primate species using multitag 454-pyrosequencing (GS-FLX Titanium) to detect 16S rRNA, including Papio anubis, Papio cynocephalus, Propithecus diadema, Procolobus rufoventer, Chlorocebus aethiops, Cercocebus atys, Gorilla beringei, and Homo sapiens. Comparisons of microbial community structure indicate that the human vaginal microbiome is more different from the average NHP microbiome than any NHP microbiome is from another NHP microbiome. We discuss the potential implications of this for preterm birth and human evolution and suggest future research directions.

This work was supported by the National Science Foundation grant BCS08-20709, the University of Illinois Research Board, and the UIUC Institute for Genomic Biology.

The regional variation of maritime adaptation in prehistoric Japan.

MINORU YONEDA1, NAOMI DOI2, YUKIO DODO3 and HAJIME ISHIDA2.
1Department of Integrated Biosciences, Graduate school of Frontier Sciences, University of Tokyo, 2School of Medicine, University of Ryukyu, 3School of Medicine, Tohoku University.

The dietary reconstruction of prehistoric human populations in Japan was conducted using carbon and nitrogen isotopic ratios in bone collagen. Exploitation of marine resources including marine mammals was significant in only prehistoric Hokkaido, while populations in Tohoku and other regions on main islands were relied on the combination of terrestrial C3 and marine ecosystems. The results from the southern part of Japanese Archipelago, Ryukyu Islands, showed another type dietary habit based on shellfish and smaller fish from coral reef lagoons. This regional variability of Jomon substance was clearly corresponding to ecological zones, suggesting at least three different kinds of human adaptation strategies by Jomon people lived on the Holocene Japanese archipelago.

On the other hand, the temporal change of protein source during the Jomon period is not significant when we focus on a specific region. It seems that the tradition of Jomon continued from the Earliest to Latest Jomon and even in the following Yayoi period when rice paddy agriculture was introduced form China via Korean peninsula as a main part of subsistence. Hence, these continuous traditions of ancient diet suggest that the acceptance of rice agriculture at the initial Yayoi period was not the reason, but the result of cultural differentiation in prehistoric Japan.

This study was funded by Grand-in-Aids for Scientific Research (KAKENHI: 22200030, 20255007, 20370005).

Paternal genetic history of the Basque population of Spain.

KRISTIN L. YOUNG1, ARANTZA G. A Praiz2, GUANGYUN SUN3, RANJAN DEKA3 and MICHAEL H. CRAWFORD3. 1Department of Family Medicine, Research Division, University of Kansas Medical Center, 2Department of Anthropology, University of Kansas, 3Department of Environmental Health, University of Cincinnati Medical Center.

This study examines the genetic variation in Basque Y chromosome lineages using data on 12 Y-STR loci in a sample of 158 males from four Basque provinces of Spain. In agreement with previous studies, the Basques are characterized by high frequencies of haplogroup R1b (83%). Five additional haplogroups were identified in this sample: E1b1b (6%), J2a (3%), I2 (3%), G2a (2%), and L (1%). Only 8% of haplotypes were found in more than one province, and the AMOVA analysis shows only a small amount of variation (1.71%, p = 0.0369) is accounted for between provinces, demonstrating the overall homogeneity of this population. Gene and haplotype diversity levels in the Basques are on the low end of the European distribution (gene diversity: 0.4268; haplotype diversity: 0.9421). Other isolated populations in Europe, including the Swedes (Sweden), the Roma in Portugal, and Albanians in Kosovo, also exhibit low haplotype diversity levels. Comparison of the Garza-Williamson Index for the Basques and 36 additional European populations shows no significant impact of a recent genetic bottleneck on the continent. A bootstrapped neighbor-joining tree (R² = 0.922) of Shriver’s genetic distances (Dsw) clusters Basque populations with other Atlantic Fringe groups (Galia, Ireland) and the non-Indo-European Saami. Paleolithic and Neolithic contributions to the paternal Basque gene pool was estimated by measuring the proportion of proposed Paleolithic (R1b, I2a2) and Neolithic haplogroups (E1b1b, G2a, J2a). The Basque provinces show varying degrees of post-Neolithic contribution in the paternal lineages, with 10.9% Neolithic lineages in the combined sample.

This study was funded by the National Geographic Society (Project 6935-00).

New re-reconstruction of Skull IX, a Homo erectus cranium from Sangiran, Central Java.

YAHDI ZAIM1, YOUSUKE KAIFU2, HISAO BABA2, Iwan KURNIAWAN3, DAIJIRU KUBO3, YAN RIZAL3, JOHAN ARIF1 and FACHROEL AZIZ2.
1Department of Geology, Institut Teknologi Bandung-Indonesia, 2Department of Anthropology, National Museum of Nature and Science Tokyo-Japan, 3Centre for Geodetic Surveys of Geomatics and Geophysical Agency, Bandung-Indonesia, 4Department of Biological Sciences, The University of Tokyo-Japan.

Skull IX (Tig.1993.05) from Sangiran is a remarkably complete cranial specimen of Homo erectus from the early Pleistocene of Java, preserving substantial portions of the vault and face. However, the distortion present in the original reconstruction has hampered detailed documentation of its morphological characteristics. We here report our new re-reconstruction of Skull IX that has successfully recovered its original morphology and significantly differs from the previous reconstructions. The specimen was unearthed from the upper stratigraphic zone (Bapang-AG levels) of the hominid-bearing sequence in Sangiran. Its endocranial volume was measured as 870 cc using micro CT technology. In overall cranial form, details of its surface structures, and facial morphology, Skull IX exhibits numerous similarities to the other Bapang-AG H. erectus specimens. Along with other Asian H. erectus specimens from Java and China, Skull IX exhibits a narrow superior facial breadth and a low facial height, suggesting that a small face was a consistent Asian characteristic as compared to African Homo from ~2.0-0.5 Ma. Comparisons of Skull IX, Sangiran 17, and other fossil specimens from Java, China, Georgia, and Africa suggest that the H. erectus population from Sangiran had a unique combination of facial morphology, which includes a vertically tall and transversely oriented maxillary zygomatic process, and a low, horizontal course of the zygomaticoalveolar pillar. Polarity of these characters may be as well as their regional variation within Afro-Asian Pleistocene Homo are discussed.

Standardizing the collection and analysis of cranial suture complexity data.

CARLOS J ZAMBRANO1 and RONALD L WRIGHT2. 1Department of Anthropology, Kansas State University, 2Department of Anthropology, University of Kansas.

The collection and analysis of cranial suture complexity data is important as it provides insight into brain development, growth, and evolutionary history. However, the diversity in methods and terminology used to describe cranial sutures has led to inconsistencies and difficulties in comparing data across studies. This study aims to standardize the collection and analysis of cranial suture complexity data. The standardized approach includes clear definitions, standardized methods of data collection, and a common language for describing cranial sutures. This will facilitate more consistent and comparable research findings in the field of cranial biology.
ogy, University of Florida, 2 Student Services, College of Education, University of Florida.

Fractal dimensions have been used as a means to quantify cranial suture complexity. However, a formalized benchmark method does not exist for collection of suture complexity data. Furthermore, there is a thorough lack of understanding of how complexity values compare to one another. As a result there is a gap in understanding how fractal dimensions generated by various software packages compare to one another or to the ratio between direct length and linear length. This study will offer a standardized method to collect and analyze complexity data. Sagittal suture morphology data was collected from 19 crania using 3 data collection methods: 1) physically tracing the suture onto clear tape then scanning the tracing; 2) using digital photography then tracing the suture within Adobe Photoshop CS4 and Images; 3) digitizing the sagittal suture using a 3D Microscribe then plotting the x and y coordinates. The tracings and plots are converted into binary bitmap images from which fractal dimensions are generated for all three methods using FracLac 2.5 plugin for ImageJ and Benoit 1.3 software. Direct length to linear length ratios will be calculated using the Straighten plugin for ImageJ and compared to Fractal Dimensions. Correlation and regression analyses are performed to examine congruency between observers as well as methods. Preliminary results for method 1 indicate that there is a strong correlation (r = 0.760) between fractal dimensions generated between users for ImageJ but not Benoit; additionally there is a statistical difference between the fractal dimensions calculated by the programs.

Noninvasive microstructural analysis of two late Early-Middle Pleistocene deciduous molar crowns from the Sangiran Dome, Java, Indonesia.

CLEMENT ZANOLLI1, ARNAUD MAZURIER2, LUCA BONDOLI3 and ROBERTO MACCHIARELLI1,4
1 Département de Préhistoire, UMR 7194, MNHN, 2 Société Études Recherches Matériaux, 3 Sezione di Antrhopologia, Soprintendenza al Museo Nazionale Preistorico Etnografico "Luigi Pigorini", 4 Département Géosciences, Université de Poitiers. The Sangiran Dome Pleistocene deposits (Central Java, Indonesia) have yielded the most abundant sample of fossil hominins in Southeast Asia, including over 200 dental elements, ten of which are deciduous. Two additional deciduous molar crowns have been recently found in the late Early-Middle Pleistocene Kabuh formation outcropping near the village of Pucung, in the southern part of the Sangiran area. The nearly unorn specimens represent an upper left m1 (ULm1) and a lower left m2 (LLm2). While the allocation of the ULm1 to Homo (likely H. erectus) seems unquestionable, the taxonomic assessment of the lower molar, still bearing a small concretion partially masking the occlusal surface disto-lingually, is more problematic, and its belonging to a non-human fossil hominid cannot be fully discarded.

In order to characterize the two crowns in terms of tissue proportions, enamel thickness variation, enamel-dentine junction topography, and neonatal line relative position and thickness, the specimens have been detailed by microtomography (μCT) at the Centre de Microtomographie of the University of Poitiers, France (21.64 μm resolution), and at the Elettra Sincrotrone Trieste, Italy (6.25 μm).

Based on a comparative deciduous dental sample of extant and fossil human molars (representing H. heidelbergensis, Neanderthals, and anatomically modern humans), as well as of extant Pongo, the endostructural conformation of the LLm2 reveals typically human. In both crowns, differently from the condition typical of Neanderthals but similarly to the penecontemporary sample from Tighenif, Algeria, the 2-D dental tissue proportions and the enamel distribution pattern more closely approach the modern human figures. Funded by French CNRS and Univ. of Poitiers (Centre de Microtomographie).

Every single you ever wanted to know about infant growth rates in prosimians but didn’t have a large enough sample size to ask: analyses of infant weight data at the Duke Lemur Center.

SARAH ZEHR, DAVID HARING, JULIE TAYLOR, ANDREA KATZ, CATHY WILLIAMS and ANNE YODER. The Duke Lemur Center.

Prosimian primates exhibit a vast array of morphological, behavioral, dietary, ecological, and reproductive differences, and we would expect to also see related differences in infant growth. Using records collected over the 40 year history of the Duke Lemur Center for over 200 individuals, analyses of infant growth rates were conducted for 9 species (Propithecus coquereli, Lemur catta, Daubentonia madagascariensis, Microcebus murinus, Varecia variegata/ rubra, Eulemur mongoz, Eulemur macaco flavifrons, and Galago senegalensis). The availability of data for large numbers of individuals allowed us to statistically significant differences to be identified. We found that prosimian species exhibit a variety of growth strategies, and these are not strictly correlated with longevity, body size, or age at first reproduction. Mm have the most rapid growth, achieving adult body size at roughly 3 months of age, while the slowest growing species examined, P. does not reach adult weight until nearly 3 years of age. Both Dm and Mm exhibit a declining rate of growth throughout infancy, with newborn infants gradually but immediately decreasing weight gain over time. Others, such as Lc and the Eulemurs, show relatively consistent growth throughout infancy. Not surprisingly, animals that park their young (Varecia, Mm, Dm) grow at a faster rate than those whose young are born with a high infant. In addition, interesting differences were identified among species within these two groups. These data not only give us insight into the relationships between growth and reproduction strategies, but are useful as a guide for ensuring healthy infant development in captive populations.

An ontogenetic assessment of trabecular architecture at the human talocalcaneal joint.

ANGEL ZEININGER. Department of Anthropology, University of Texas at Austin.

Absolute peak loading of the calcaneus during mature bipedalism occurs near the posterior articular facet (PAF), just inferior to the posterior talocalcaneal joint (TCJ). Supination and close-packing of the TCJ in preparation for toe-off may contribute to high compressive forces near the PAF of the calcaneus as well as the complementary PAF of the talus. This study tested the hypothesis that epigenetically-sensitive trabeculca in the talus (PAF of juveniles whose immature bipedalism lacks a propulsive toe-off (prior to 2 years) differs from that of adults. High resolution computed tomography scans of 3 young juveniles (1-2 years), 3 older juveniles (2-4 years), and 3 adults were used to analyze trabecular bone structure within a volume of interest near the talar PAF. Results support this hypothesis, as bone volume fraction (BV/TV), and the primary trabecular orientation were calculated. Compared to juveniles, adults had a significantly higher degree of anisotropy and a higher bone volume fraction. Among juveniles, DA and BV/TV were lowest in 1-2 year olds. Adult and juvenile trabeculae were oriented along a dorsoplantar axis. However, primary trabecular orientation in adults was anterodorsal to posteroplantar while juvenile primary trabecular orientation was more variable. Results suggest that the close-packing of the TCJ in adults is associated with highly organized, densely packed talar PAF trabeculae while the lack of a close-packing TCJ mechanism in 1-2 year olds is associated with isotropic, less densely packed talar PAF trabeculae. Results support the hypothesis that the complementary PAF trabeculae identification of bipedalism correlates with pedal trabecular architecture. This study was funded by the Leakey Foundation and NSF (BCS 1028958).
Comparison of intraspecific genetic and morphological diversity among primates.

JULIA ZICHELLO1,2 and MICHAEL STEIPER2,3,4 1Program in Anthropology, The Graduate Center, City University of New York, 2New York Consortium in Evolutionary Primatology (NYCEP), 3Department of Anthropology, Hunter College of the City University of New York, 4Program in Biology, The Graduate Center, City University of New York.

Neutral genetic diversity within living populations reflects patterns of drift and past demographic history, not trends of natural selection. The neutral theory of molecular evolution predicts that most neutral polymorphism is related to the stochastic sampling of alleles from generation to generation. The neutral theory has largely been applied to molecular polymorphisms, although the model should apply to any neutral variation within a population, including morphological. Here, we compare genetic diversity to cranial diversity in a series of catarrhines to test the null hypothesis that neutral molecular and morphological variation are correlated. If populations with more genetic diversity show more cranial shape diversity, then cranial variation may be governed primarily by drift and not selection. In this analysis, we compare autosomal, mitochondrial and X-chromosome genetic variation to 3D geometric morphometric cranial vault shape diversity within 10 primate populations. Our findings indicate that primate populations with more genetic diversity also show more cranial vault shape diversity. Inferring how stochastic evolutionary processes, such as drift, shape morphological diversity can inform decisions about which extant species are appropriate analogs for delimiting fossil primate position in human evolution, not GI tract size. The Expensive Tissue Hypothesis challenges "the expensive tissue hypothesis''.

Neutral genetic diversity within living populations reflects patterns of drift and past demographic history, not trends of natural selection. The neutral theory of molecular evolution predicts that most neutral polymorphism is related to the stochastic sampling of alleles from generation to generation. The neutral theory has largely been applied to molecular polymorphisms, although the model should apply to any neutral variation within a population, including morphological. Here, we compare genetic diversity to cranial diversity in a series of catarrhines to test the null hypothesis that neutral molecular and morphological variation are correlated. If populations with more genetic diversity show more cranial shape diversity, then cranial variation may be governed primarily by drift and not selection. In this analysis, we compare autosomal, mitochondrial and X-chromosome genetic variation to 3D geometric morphometric cranial vault shape diversity within 10 primate populations. Our findings indicate that primate populations with more genetic diversity also show more cranial vault shape diversity. Inferring how stochastic evolutionary processes, such as drift, shape morphological diversity can inform decisions about which extant species are appropriate analogs for delimiting fossil primate position in human evolution, not GI tract size. The Expensive Tissue Hypothesis challenges "the expensive tissue hypothesis''.

Neutral genetic diversity within living populations reflects patterns of drift and past demographic history, not trends of natural selection. The neutral theory of molecular evolution predicts that most neutral polymorphism is related to the stochastic sampling of alleles from generation to generation. The neutral theory has largely been applied to molecular polymorphisms, although the model should apply to any neutral variation within a population, including morphological. Here, we compare genetic diversity to cranial diversity in a series of catarrhines to test the null hypothesis that neutral molecular and morphological variation are correlated. If populations with more genetic diversity show more cranial shape diversity, then cranial variation may be governed primarily by drift and not selection. In this analysis, we compare autosomal, mitochondrial and X-chromosome genetic variation to 3D geometric morphometric cranial vault shape diversity within 10 primate populations. Our findings indicate that primate populations with more genetic diversity also show more cranial vault shape diversity. Inferring how stochastic evolutionary processes, such as drift, shape morphological diversity can inform decisions about which extant species are appropriate analogs for delimiting fossil primate position in human evolution, not GI tract size. The Expensive Tissue Hypothesis challenges "the expensive tissue hypothesis''.
In nonhuman apes, the P_3 functions as a honing device for the maxillary canine. The loss of canine honing and subsequent morphological transformation of the P_3 are important evidence for the "hominization" of the C/P_3 complex. For the P_3, interspecific differences among Plio-Pleistocene hominins in crown size and the degree of "molarization" (crown shape, cusp number, etc.) have been classically thought to reflect adaptations to a changing dietary resource base. While dental microwear studies have proven to be an important tool for reconstructing hominin diets and tooth-use behaviors, most research has focused on the molars. Here we report the results of the first comparative dental microwear texture analysis of P_3 "Phase II" facets of $A. afarensis$ ($n=18$) and $A. africanus$ ($n=9$) taxa whose postcanine morphological diversity captures one stage of the hominin C/P_3 transformation at ca. 3.5-2.5 Ma. White-light confocal profilometry and scale-sensitive fractal analysis were combined to generate data for five microwear texture attributes reflecting dietary use-wear (anisotropy, complexity, scale of maximum complexity, heterogeneity, and texture fill volume) for each P_3. Results indicate that $A. africanaus$ has significantly higher complexity and anisotropy values than $A. afarensis$. However, as previously revealed, the molars of $A. afarensis$ and $A. africanus$ differ in complexity but not anisotropy. Therefore, the suite of microwear texture attributes that distinguish these species differs between P_3 and the molars. This result has important implications for understanding variation between species in both diet and degree of functional differentiation along the tooth row.

Funded by the US National Science Foundation.